

REGRESSION

Outline

- Linear regression
- Regularization functions
- Polynomial curve fitting
- Stochastic gradient descent for regression
- MLE for regression
- Step-wise forward regression

Regression methods

> Statistical techniques for finding the **best-fitting curve** for a set of perturbed values from unknown function

Points generated from $\sin(2\pi x)$, perturbed with Gaussian noise

Example from C. Bishop: PRML book

Error functions for regression

- Let $(\mathbf{x}_1, t_1), ..., (\mathbf{x}_n, t_n)$ be pairs of instances and their true values for an unknown function $f: \mathcal{X} \to \mathbb{R}, \mathcal{X} \subseteq \mathbb{R}^k$
- Let $y_1, ..., y_n \in \mathbb{R}$ be the values returned by a regression model for instances $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathcal{X}$
- > Sum-of-squares error (also called quadratic error or least-squares error)

$$e_{sq}(y_1, ..., y_n, t_1, ..., t_n) = \frac{1}{2} \sum_{i=1}^{n} (y_i - t_i)^2$$

 $E(e_{sq}) = var + bias^2 + noise$

Mean squared error

$$mse(y_1, ..., y_n, t_1, ..., t_n) = 2e_{sq}(y_1, ..., y_n, t_1, ..., t_n)/n$$

Root-mean-square error

$$e_{rms}(y_1, ..., y_n, t_1, ..., t_n) = \sqrt{mse(y_1, ..., y_n, t_1, ..., t_n)}$$

Curve fitting

General idea:

Use approximation function of the form

$$y(\mathbf{x}_i, \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}_i) + \dots + w_M \phi_M(\mathbf{x}_i), \ \mathbf{x}_i \in \mathbb{R}^k, \ \phi_j \colon \mathbb{R}^k \to \mathbb{R}$$
 e.g., for $\mathbf{x}_i \in \mathbb{R}$, $y(\mathbf{x}_i, \mathbf{w}) = \sum_{j=0}^M w_j \mathbf{x}_i^j$ with $\phi_j(\mathbf{x}_i) = \mathbf{x}_i^j$ $\phi_j(\mathbf{x}_i)$ are called **basis functions**

Minimize misfit between $y(x_i, \mathbf{w})$ and $t_i, 1 \le i \le n$, e.g., the sum-of-squares error

Univariate linear regression

General form of univariate linear regression

$$t = w_0 + w_1 x + noise, \qquad x, w_i \in \mathbb{R}$$

- Example
 - > Suppose we aim at investigating the relationship between people's height (h_i) and weight (g_i) based on measurements

$$(h_i, g_i), 1 \le i \le n$$

> Find

subject to

$$g_i = w_0 + w_1 h_i, \forall i$$
 Least-squares method
$$\min_{w_0, w_1} \frac{1}{2} \sum_{i=1}^n \left(g_i - (w_0 + w_1 h_i) \right)^2$$

6

Example

- > 9 simulated measurements by adding Gaussian noise to the dashed linear function
- Solid line represents linear regression applied to the 9 points with mean 0 and variance 5

Optimal parameters for univariate linear regression

 \triangleright Set derivatives for the intercept (w_0) and the slope (w_1) to zero and solve for each of the variables, respectively:

$$\frac{\partial}{\partial w_0} \frac{1}{2} \sum_{i=1}^n (g_i - (w_0 + w_1 h_i))^2 = -\sum_{i=1}^n (g_i - (w_0 + w_1 h_i)) = 0$$

$$\Rightarrow \widehat{w}_0 = \bar{g} - \widehat{w}_1 \bar{h}$$

$$\frac{\partial}{\partial w_1} \frac{1}{2} \sum_{i=1}^n (g_i - (w_0 + w_1 h_i))^2 = -\sum_{i=1}^n (g_i - (w_0 + w_1 h_i)) h_i = 0$$

$$\Rightarrow \widehat{w}_1 = \frac{\sum_{i=1}^n (h_i - \overline{h})(g_i - \overline{w})}{\sum_{i=1}^n (h_i - \overline{h})^2} = \frac{n \cdot Cov(h, g)}{n \cdot Var(h)}$$

$$\Rightarrow g = \widehat{w}_0 + \widehat{w}_1 h = \bar{g} + \widehat{w}_1 (h - \bar{h})$$

Abstract view on univariate linear regression

 \triangleright For a target variable t that is linearly dependent on a feature x, i.e.,

$$t = w_0 + w_1 x + noise$$

the general solution depends only on

$$\widehat{w}_1 = \frac{Cov(x, t)}{Var(x)}$$

- This means that solution is highly sensitive to noise and outliers
- Steps
 - 1. Normalize the feature by dividing its values by the feature's variance
 - 2. Calculate the covariance between target variable and normalized feature

Probabilistic view on least-squares

- $\succ t_i = w_0 + w_1 x_i + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$ i.i.d. normally distributed errors
- \rightarrow Assumption: $t_i \sim N(w_0 + w_1 x_i, \sigma^2)$

$$P(t_i|w_0, w_1, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\left(t_i - (w_0 + w_1 x_i)\right)^2}{2\sigma^2}\right)$$

For n i.i.d. data points $t_1, ..., t_n$:

$$P(t_1, \dots, t_n | w_0, w_1, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\left(t_i - (w_0 + w_1 x_i)\right)^2}{2\sigma^2}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{\sum_{i=1}^n \left(t_i - \left(w_0 + w_1 x_i\right)\right)^2}{2\sigma^2}\right)$$

$$\propto -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{\sum_{i=1}^{n} (t_i - (w_0 + w_1x_i))^2}{2\sigma^2}$$

Maximum Likelihood Estimation of w_0 , w_1 , σ^2

$$\frac{\partial \ln(P(t_1, ..., t_n | w_0, w_1, \sigma^2))}{\partial w_0} = \sum_{i=1}^n (t_i - (w_0 + w_1 x_i)) = 0$$

$$\Rightarrow \widehat{w}_0 = \overline{t} - \widehat{w}_1 \overline{x}$$

$$\frac{\partial \ln(P(t_1, ..., t_n | w_0, w_1, \sigma^2))}{\partial w_1} = \sum_{i=1}^n (t_i - (w_0 + w_1 x_i)) x_i = 0$$

$$\Rightarrow \widehat{w}_1 = \frac{Cov(x, t)}{Var(x)}$$

$$\frac{\partial \ln(P(t_1, ..., t_n | w_0, w_1, \sigma^2))}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{\sum_{i=1}^n (t_i - (w_0 + w_1 x_i))^2}{2(\sigma^2)^2} = 0$$

 $\Rightarrow \sigma^2 = \frac{\sum_{i=1}^n (t_i - (w_0 + w_1 x_i))^2}{1}$

Multivariate linear regression

General form of multivariate linear regression

$$t = Xw + \epsilon$$

 $\mathbf{t} \in \mathbb{R}^{n \times 1}$, vector of target variables

 $\mathbf{X} \in \mathbb{R}^{n \times m}$, matrix of n feature vectors (each containing m features)

 $\mathbf{w} \in \mathbb{R}^{m \times 1}$, weight vector (i.e., a weight for each feature)

 $\epsilon \in \mathbb{R}^{n \times 1}$, noise vector

General solution for w in the multivariate case

- For univariate linear regression we found $\widehat{w}_1 = \frac{Cov(x,t)}{Var(x)}$
- It turns out that the general solution for the weight vector in the multivariate case

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$$

- Assume feature vectors (i.e., rows) in **X** are 0-centered, i.e., from each row $(x_{i1}, ..., x_{im})$ we have subtracted $(\overline{x_{.1}}, ..., \overline{x_{.m}})$, where $\overline{x_{.j}} \coloneqq \frac{1}{n} \sum_{i=1}^{n} x_{ij}$
- Then $\frac{1}{n}\mathbf{X}^T\mathbf{X}$ is the $m \times m$ covariance matrix, i.e., containing the pairwise covariances between all features (what does it contain in the diagonal?) $\rightarrow (\mathbf{X}^T\mathbf{X})^{-1}$ decorrelates, centers, and normalizes features
- And $\frac{1}{n}(\mathbf{X}^T\mathbf{t})$ is an m-vector holding the covariance between each feature and the output values \mathbf{t}

Effect of correlation between features

Example from "Machine Learning" by P. Flach

- \triangleright Red dots represent noisy samples of y
- \triangleright Red plane represents true function $y = x_1 + x_2$
- Green plane function learned by multivariate linear regression
- ➤ Blue plane function learned by decomposing the problem into two univariate regression problems
- On the right features are highly correlated, the sample gives much less information about the true function

Regularized multivariate linear regression

Least squares method

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} (\mathbf{t} - \mathbf{X}\mathbf{w})^T (\mathbf{t} - \mathbf{X}\mathbf{w}) + \lambda ||\mathbf{w}||^2$$
Least-squares error Regularization term

Solution is

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$$

I is the identity matrix with 1s in the diagonal and 0s everywhere else

- For the regularization one can use
 - ➤ Ridge regularization $\|\mathbf{w}\|^2 = \sum_i w_i^2$ (i.e., L2 norm) → Ridge regression
 - ► Lasso regularization $|\mathbf{w}| = \sum_i |w_i|$ (i.e., L1 norm), which favors sparser solutions → Lasso regression
 - $\triangleright \lambda$ determines the amount of regularization
- \blacktriangleright Lasso regression is much more sensitive to the choice of λ

Ridge vs. Lasso regularization

Linear regression for classification

We learned that the general solution for w is

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$$

 \triangleright For linear classification the goal is to learn \mathbf{w}^* for a decision boundary

$$\mathbf{w}^* \cdot \mathbf{x} = b$$

- \triangleright Can we set $\mathbf{w}^* = \widehat{\mathbf{w}}$?
- Yes → Least-squares classifier
 - $\succ (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ decorrelates, centers, and normalizes features (good to have)
 - > Suppose $\mathbf{t} = \begin{pmatrix} (+/-)1 \\ ... \\ (+/-)1 \end{pmatrix}$; what is the result of $\mathbf{X}^T \mathbf{t}$?
 - \triangleright Caution: Complexity of computing $(\mathbf{X}^T\mathbf{X})^{-1}$ is $O(n^2m + m^3)$

Univariate polynomial curve fitting

Use approximation function of the form

$$y(x_i, \mathbf{w}) = w_0 + w_1 \phi_1(x_i) + \dots + w_M \phi_M(x_i)$$
, where $\phi_j(x_i) = x_i^j$ bias term

Least-squares regression: Minimize misfit between $y(x_i, \mathbf{w})$ and $t_i, 1 \le i \le n$, e.g., the sum-of-squares error

$$\frac{1}{2} \sum_{i=1}^{n} (y(x_i, \mathbf{w}) - t_i)^2$$

 \triangleright Still **linear** in the weights w_i

Example of overfitting

Impact of data and regularization

Another possibility: Use regularization $\tilde{e}(\mathbf{w}) = \frac{1}{2} \sum_{i} (y(x_i, \mathbf{w}) - t_i)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$

Examples from C. Bishop: PRML book

Regularization

term

Polynomial curve fitting: Stochastic Gradient Descent

Definition: The gradient of a differentiable function $f(w_1, ..., w_M)$ is defined as $\nabla_{\mathbf{w}} f = \frac{\partial f}{\partial w_1} \mathbf{e}_1 + \dots + \frac{\partial f}{\partial w_M} \mathbf{e}_M$

where the e_i are orthogonal unit vectors

- Theorem: For a function f that is differentiable in the neighborhood of a point \mathbf{w} , $\mathbf{w}' \coloneqq \mathbf{w} \eta \nabla_{\mathbf{w}} f(\mathbf{w})$ yields $f(\mathbf{w}') < f(\mathbf{w})$ for small enough $\eta > 0$
- Least-mean-squares algorithm

For each data point x_i

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla_{\!\!\!\mathbf{w}} \left(\frac{1}{2} \sum_{i=1}^n \left(t_i - \mathbf{w}^{(\tau)T} \boldsymbol{\varphi}(x_i) \right)^2 \right)$$
//gradient descent
// η :learning rate
$$\approx \mathbf{w}^{(\tau)} - \eta \left(t_i - \mathbf{w}^{(\tau)T} \boldsymbol{\varphi}(x_i) \right) \boldsymbol{\varphi}(x_i)$$
//stochastic gradient descent
//with the least-mean squares rule $_{21}$

Polynomial curve fitting: Maximum Likelihood Estimation

Assume each observation t_i comes from function, with added Gaussian noise

$$t_{i} = y(x_{i}, \mathbf{w}) + \varepsilon, \qquad P(\varepsilon | \sigma^{2}) = N(\varepsilon | 0, \sigma^{2})$$

$$\Leftrightarrow$$

$$P(t_{i} | x_{i}, \mathbf{w}, \sigma^{2}) = N(t_{i} | y(x_{i}, \mathbf{w}), \sigma^{2})$$

We can write the likelihood function based on the observations

$$y(x_i, \mathbf{w}) = w_0 + w_1 \phi_1(x_i) + \dots + w_M \phi_M(x_i) = \mathbf{w}^T \mathbf{\phi}(x_i)$$

$$P(\mathbf{t}|\mathbf{x},\mathbf{w},\sigma^2) = \prod_i N(t_i|y(x_i,\mathbf{w}),\sigma^2) = \prod_i N(t_i|\mathbf{w}^T\mathbf{\phi}(x_i),\sigma^2)$$

We can write the likelihood function based on i.i.d. observations

$$P(\mathbf{t}|\mathbf{x},\mathbf{w},\sigma^2) = \prod_i N(t_i|y(x_i,\mathbf{w}),\sigma^2) = \prod_i N(t_i|\mathbf{w}^T\mathbf{\phi}(\mathbf{x}_i),\sigma^2)$$

> Taking the logarithm

$$\ln P(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma^2) = \sum_{i=1}^n \ln(N(t_i|\mathbf{w}^T \mathbf{\phi}(x_i), \sigma^2))$$

$$= -\frac{n}{2} \ln \sigma^2 - \frac{n}{2} \ln(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^n (t_i - \mathbf{w}^T \mathbf{\phi}(x_i))^2$$

HPI Hasso Plattner Institut

olynomial curve fitting: Maximum Likelihood Estimation (3)

Taking the gradient and setting it to zero

$$\nabla_{\mathbf{w}} \ln P(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^{N} (t_i - \mathbf{w}^T \mathbf{\phi}(x_i)) \mathbf{\phi}(x_i)^T = 0$$

Solving for w

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(x_1) & \cdots & \phi_M(x_1) \\ \vdots & \ddots & \vdots \\ \phi_0(x_N) & \cdots & \phi_M(x_N) \end{pmatrix}$$

Geometrical interpretation

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{ML} = [\varphi_0, ..., \varphi_M] \mathbf{w}_{ML} \in S \subseteq \mathcal{T} \ni \mathbf{t}$$

(\mathbf{w}_{ML} minimizes the distance between \mathbf{t} and its projection on S)

Reviewing the multivariate case

Generalization to the multivariate case

$$y(\mathbf{x}, \mathbf{w}) = \sum_{i=0}^{M} w_i \, \phi_i(\mathbf{x}) = \mathbf{w}^T \mathbf{\phi}(\mathbf{x}), \qquad \mathbf{x} \in \mathbb{R}^k$$

- ➤ The discussed algorithms of stochastic gradient descent and MLE generalize to this case as well
- ightharpoonup The choice of ϕ_i is crucial for the tradeoff between regression quality and complexity

Choices for basis functions

 \triangleright Simplest case: Return the i'th component of \mathbf{x}

$$\phi_i(\mathbf{x}) = x_{(i)}$$

Polynomial basis function for $x \in \mathbb{R}$

$$\phi_i(x) = x^i$$

(small changes in x affect all basis functions)

$$\phi_i(x) = \exp\left(\frac{x-\mu_i}{2s^2}\right)$$
 controls location controls scale

(small changes in x affect nearby basis functions)

Forward step-wise regression

- Find fitting function $\hat{y}(x_i) = y_1(x_i, \mathbf{w}_1) + \cdots + y_n(x_i, \mathbf{w}_n)$
- > Step 1: Fit first simple function $y_1(x_i, \mathbf{w}_1)$

$$\mathbf{w}_1 = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^n (t_i - y_1(x_i, \mathbf{w}))^2$$

> Step 2: Fit second simple model $y_2(x_i, \mathbf{w}_2)$ to the residuals of the first:

$$\mathbf{w}_2 = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^n (t_i - y_1(x_i, \mathbf{w}_1) - y_2(x_i, \mathbf{w}))^2$$

•

•

.

- \triangleright Step n: Fit a simple model $y_n(x_i, \mathbf{w}_n)$ to the residuals of the previous step
- Stop when no significant improvement in training error is made

Further considerations on regression

- Other choices of regularization functions
 - $\succ L_p$ -regularization is given by $\sum_i |w_i|^p$

- \triangleright For p > 1, no sparse solutions are achieved
- Tree models can be applied to regression
 - Impurity reduction translates to variance reduction (see also exercises)

Summary

- Main solution for linear regression
 - Univariate

$$\widehat{w}_1 = \frac{Cov(x,t)}{Var(x)}$$

Multivariate

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$$

- Regularization mitigates overfitting
 - Lasso (L1): With high probability sparse
 - > Ridge (L2): Not sparse
- Solution strategies
 - Stochastic gradient descent
 - > MLE
 - Forward step-wise regression