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Regression methods

 Statistical techniques for finding the best-fitting curve for a set of 
perturbed values from unknown function

Example from C. Bishop: PRML book

Points generated 
from sin(2𝜋𝑥),
perturbed with
Gaussian noise
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Error functions for regression

 Let (𝐱1, 𝑡1), … , (𝐱𝑛, 𝑡𝑛) be pairs of instances and their true values for an 
unknown function 𝑓:𝓧 → ℝ, 𝓧 ⊆ ℝ𝑘

 Let 𝑦1, … , 𝑦𝑛 ∈ ℝ be the values returned by a regression model for  
instances 𝐱1, … , 𝐱𝑛 ∈ 𝓧

 Sum-of-squares error (also called quadratic error or least-squares error)

𝑒𝑠𝑞 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 =
1

2
 

𝑖=1

𝑛

(𝑦𝑖 − 𝑡𝑖)
2

𝐸 𝑒𝑠𝑞 = 𝑣𝑎𝑟 + 𝑏𝑖𝑎𝑠2 + 𝑛𝑜𝑖𝑠𝑒

 Mean squared error
𝑚𝑠𝑒 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 = 2𝑒𝑠𝑞 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 /𝑛

 Root-mean-square error

𝑒𝑟𝑚𝑠 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 = 𝑚𝑠𝑒 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛
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Curve fitting

 General idea:

 Use approximation function of the form

𝑦 𝐱𝑖 , 𝐰 = 𝑤0 + 𝑤1𝜙1 𝐱𝑖 +⋯+𝑤𝑀𝜙𝑀 𝐱𝑖 , 𝐱𝑖 ∈ ℝ𝑘, 𝜙𝑗: ℝ
𝑘 → ℝ

e.g., for 𝐱𝑖 ∈ ℝ, 𝑦 𝐱𝑖 , 𝐰 =  𝑗=𝑜
𝑀 𝑤𝑗𝐱𝑖

𝑗
with 𝜙𝑗 𝐱𝑖 = 𝐱𝑖

𝑗

𝜙𝑗 𝐱𝑖 are called basis functions 

 Minimize misfit between 𝑦 𝑥𝑖 , 𝐰 and 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑛, e.g., the sum-of-squares 
error

1

2
 

𝑖=1

𝑛

𝑦 𝑥𝑖 , 𝐰 − 𝑡𝑖
2

displacement/residual

sum-of-squares error 

≡
1

2
sum-of-squares of displacements

Example from C. Bishop: PRML book
5



Univariate linear regression

 General form of univariate linear regression
𝑡 = 𝑤0 + 𝑤1𝑥 + 𝑛𝑜𝑖𝑠𝑒, 𝑥, 𝑤𝑗 ∈ ℝ

 Example

 Suppose we aim at investigating the relationship between people’s height (ℎ𝑖) 
and weight (𝑔𝑖) based on measurements 

ℎ𝑖 , 𝑔𝑖 , 1 ≤ 𝑖 ≤ 𝑛

 Find 
𝑔𝑖 = 𝑤0 + 𝑤1ℎ𝑖 , ∀𝑖

subject to 

min
𝑤0,𝑤1

1

2
 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖
2

6

Least-squares method



Example

 9 simulated measurements by adding Gaussian noise to the dashed linear 
function

 Solid line represents linear regression applied to the 9 points with mean 0 
and variance 5
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Example from 
“Machine Learning” 
by P. Flach



Optimal parameters for univariate linear regression

 Set derivatives for the intercept (𝑤0) and the slope (𝑤1) to zero and solve 
for each of the variables, respectively:

𝜕

𝜕𝑤0

1

2
 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖
2
= − 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖 = 0

⇒  𝑤0 =  𝑔 −  𝑤1
 ℎ

𝜕

𝜕𝑤1

1

2
 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖
2
= − 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖 ℎ𝑖 = 0

⇒  𝑤1 =
 𝑖=1
𝑛 ℎ𝑖 −  ℎ 𝑔𝑖 −  𝑤

 𝑖=1
𝑛 ℎ𝑖 −  ℎ

2 =
𝑛 ⋅ 𝐶𝑜𝑣 ℎ, 𝑔

𝑛 ⋅ 𝑉𝑎𝑟 ℎ

⇒ 𝑔 =  𝑤0 +  𝑤1ℎ =  𝑔 +  𝑤1 ℎ −  ℎ
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Abstract view on univariate linear regression

 For a target variable 𝑡 that is linearly dependent on a feature 𝑥, i.e.,

𝑡 = 𝑤0 +𝑤1𝑥 + 𝑛𝑜𝑖𝑠𝑒

the general solution depends only on 

 𝑤1 =
𝐶𝑜𝑣 𝑥, 𝑡

𝑉𝑎𝑟 𝑥

 This means that solution is highly sensitive to noise and outliers

 Steps

1. Normalize the feature by dividing its values by the feature’s variance

2. Calculate the covariance between target variable and normalized feature
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Probabilistic view on least-squares

 𝑡𝑖 = 𝑤0 + 𝑤1𝑥𝑖 + 𝜖𝑖 , 𝜖𝑖~𝑁 0, 𝜎2 i.i.d. normally distributed errors

 Assumption: 𝑡𝑖~𝑁 𝑤0 + 𝑤1𝑥𝑖 , 𝜎
2

𝑃 𝑡𝑖|𝑤0, 𝑤1, 𝜎
2 =

1

2𝜋𝜎2
exp −

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖
2

2𝜎2

 For 𝑛 i.i.d. data points 𝑡1, … , 𝑡𝑛:

𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2 = 

𝑖=1

𝑛 1

2𝜋𝜎2
exp −

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖
2

2𝜎2

=
1

2𝜋𝜎2

𝑛

exp −
 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

2𝜎2

∝ −
𝑛

2
ln 2𝜋 −

𝑛

2
ln 𝜎2 −

 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

2𝜎2 10



Maximum Likelihood Estimation of 𝒘𝟎, 𝒘𝟏, 𝝈
𝟐

𝜕 ln 𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2

𝜕𝑤0
=  

𝑖=1

𝑛

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖 = 0

⇒  𝑤0 =  𝑡 −  𝑤1  𝑥

𝜕 ln 𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2

𝜕𝑤1
=  

𝑖=1

𝑛

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖 𝑥𝑖 = 0

⇒  𝑤1 =
𝐶𝑜𝑣 𝑥, 𝑡

𝑉𝑎𝑟 𝑥

𝜕 ln 𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2

𝜕𝜎2
= −

𝑛

2

1

𝜎2
+
 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

2 𝜎2 2
= 0

⇒ 𝜎2 =
 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

𝑛
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Multivariate linear regression

𝑡𝑖 = 𝑤0 + 𝑤1𝑥𝑖 + 𝜖𝑖 , 1 ≤ 𝑖 ≤ 𝑛
⇔

𝑡1.
.
.
𝑡𝑛

=

1.
.
.
1

𝑤0 +

𝑥1.
.
.
𝑥𝑛

𝑤1 +

𝜖1.
.
.
𝜖𝑛

⇔

𝑡1.
.
.
𝑡𝑛

=

1 𝑥1.
.
.

.

.

.
1 𝑥𝑛

𝑤0

𝑤1
+

𝜖1.
.
.
𝜖𝑛

 General form of multivariate linear regression
𝐭 = 𝐗𝐰+ 𝝐

12

𝐭 ∈ ℝ𝑛×1, vector of target variables
𝐗 ∈ ℝ𝑛×𝑚, matrix of 𝑛 feature vectors (each containing 𝑚 features)
𝐰 ∈ ℝ𝑚×1, weight vector (i.e., a weight for each feature)
𝝐 ∈ ℝ𝑛×1, noise vector



General solution for 𝐰 in the multivariate case

 For univariate linear regression we found  𝑤1 =
𝐶𝑜𝑣 𝑥,𝑡

𝑉𝑎𝑟 𝑥

 It turns out that the general solution for the weight vector in the 
multivariate case

 𝐰 = 𝐗T𝐗
−1
𝐗T𝐭

 Assume feature vectors (i.e., rows) in 𝐗 are 0-centered, i.e., from each 
row 𝑥𝑖1, … , 𝑥𝑖𝑚 we have subtracted 𝑥.1, … , 𝑥.𝑚 , where 𝑥.𝑗 ≔
1

𝑛
 𝑖=1
𝑛 𝑥𝑖𝑗

 Then 
1

𝑛
𝐗T𝐗 is the  𝑚 ×𝑚 covariance matrix, i.e., containing the pair-

wise covariances between all features (what does it contain in the 

diagonal?)    𝐗T𝐗
−1

decorrelates, centers, and normalizes features

 And 
1

𝑛
𝐗T𝐭 is an 𝑚-vector holding the covariance between each feature 

and the output values 𝐭
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Effect of correlation between features

14

Example from “Machine Learning” by P. Flach

 Red dots represent noisy samples of 𝑦

 Red plane represents true function 𝑦 = 𝑥1 + 𝑥2
 Green plane function learned by multivariate linear regression

 Blue plane function learned by decomposing the problem into two univariate
regression problems

 On the right features are highly correlated, the sample gives much less 
information about the true function

𝑦

𝑥1 𝑥2

𝑦

𝑥1 𝑥2



Regularized multivariate linear regression

 Least squares method 
𝐰∗ = argmin𝐰 𝐭 − 𝐗𝐰 T 𝐭 − 𝐗𝐰 + 𝜆 𝐰 2

 Solution is 

 𝐰 = 𝐗T𝐗 + 𝜆𝐈
−1
𝐗T𝐭

 For the regularization one can use

 Ridge regularization 𝐰 2 =  𝑖𝑤𝑖
2 (i.e., L2 norm)  Ridge regression

 Lasso regularization 𝐰 =  𝑖 |𝑤𝑖| (i.e., L1 norm), which favors sparser 
solutions  Lasso regression

 𝜆 determines the amount of regularization

 Lasso regression is much more sensitive to the choice of 𝜆

15

Least-squares error Regularization term

𝐈 is the identity matrix 
with 1s in the diagonal 
and 0s everywhere else



Ridge vs. Lasso regularization

16

𝑤1

𝑤2

𝑤1
2 + 𝑤2

2 (Ridge regularization)

𝐰𝑀𝐿

|𝑤1| + 𝑤2 (Lasso regularization)



Linear regression for classification

 We learned that the general solution for 𝐰 is

 𝐰 = 𝐗T𝐗
−1
𝐗T𝐭

 For linear classification the goal is to learn 𝐰∗ for a decision boundary

𝐰∗ ⋅ 𝐱 = 𝑏

 Can we set 𝐰∗ =  𝐰?

 Yes  Least-squares classifier 

 𝐗T𝐗
−1

decorrelates, centers, and normalizes features (good to have)

 Suppose 𝐭 =
+/− 1
…

+/− 1
; what is the result of 𝐗T𝐭 ?

 Caution: Complexity of computing 𝐗T𝐗
−1

is 𝑂 𝑛2𝑚 +𝑚3
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Univariate polynomial curve fitting

 Use approximation function of the form

𝑦 𝑥𝑖 , 𝐰 = 𝑤0 + 𝑤1𝜙1 𝑥𝑖 +⋯+𝑤𝑀𝜙𝑀 𝑥𝑖 , where 𝜙𝑗 𝑥𝑖 = 𝑥𝑖
𝑗

 Least-squares regression: Minimize misfit between 𝑦 𝑥𝑖 , 𝐰 and 𝑡𝑖 , 1 ≤
𝑖 ≤ 𝑛, e.g., the sum-of-squares error

1

2
 

𝑖=1

𝑛

𝑦 𝑥𝑖 , 𝐰 − 𝑡𝑖
2

 Still linear in the weights 𝑤𝑖

18

bias term



Example of overfitting

Example from C. Bishop: PRML book

overfitting
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Impact of data and regularization 

Examples from C. Bishop: PRML book

Increasing the number of data points mitigates overfitting

Another possibility:  Use regularization     𝑒 𝐰 =
1

2
 𝑖 𝑦 𝑥𝑖 , 𝐰 − 𝑡𝑖

2 +
𝜆

2
𝐰 2

Regularization
term

Regularization
coefficient
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Polynomial curve fitting: Stochastic Gradient Descent

 Definition: The gradient of a differentiable function 𝑓(𝑤1, … , 𝑤𝑀) is defined as

𝛻𝐰𝑓 =
𝜕𝑓

𝜕𝑤1
𝐞1 +⋯+

𝜕𝑓

𝜕𝑤𝑀
𝐞𝑀

 Theorem: For a function 𝑓 that is differentiable in the neighborhood of a point 
𝐰, 𝐰′ ≔ 𝐰− 𝜂𝛻𝐰𝑓 𝐰 yields 𝑓 𝐰′ < 𝑓 𝐰 for small enough 𝜂 > 0

 Least-mean-squares algorithm

For each data point 𝑥𝑖

𝐰(𝜏+1) = 𝐰(𝜏) − 𝜂𝛻𝐰
1

2
 𝑖=1
𝑛 𝑡𝑖 −𝐰 𝜏 𝑇𝛟 𝑥𝑖

2

//gradient descent

//𝜂:learning rate

≈ 𝐰(𝜏) − 𝜂 𝑡𝑖 −𝐰 𝜏 𝑇𝛟 𝑥𝑖 𝛟 𝑥𝑖

//stochastic gradient descent

//with the least-mean squares rule

where the  𝒆𝑖 are orthogonal unit vectors
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Polynomial curve fitting: Maximum Likelihood Estimation

 Assume each observation 𝑡𝑖 comes from function, with added Gaussian 
noise

𝑡𝑖 = 𝑦 𝑥𝑖 , 𝐰 + 𝜀, 𝑃 ε 𝜎2 = 𝑁 𝜀 0, 𝜎2

⇔
𝑃 𝑡𝑖 𝑥𝑖 , 𝐰, 𝜎

2 = 𝑁(𝑡𝑖|𝑦 𝑥𝑖 , 𝐰 , 𝜎2)

 We can write the likelihood function based on the observations

𝑦 𝑥𝑖 , 𝐰 = 𝑤0 + 𝑤1𝜙1 𝑥𝑖 +⋯+𝑤𝑀𝜙𝑀 𝑥𝑖 = 𝐰𝑇𝛟(𝑥𝑖)

𝑃 𝐭 𝐱,𝐰, 𝜎2 = 
𝑖
𝑁(𝑡𝑖|𝑦 𝑥𝑖 , 𝐰 , 𝜎2) = 

𝑖
𝑁(𝑡𝑖|𝐰

𝑇𝛟(𝑥𝑖), 𝜎
2)
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Polynomial curve fitting: Maximum Likelihood Estimation (2)

 We can write the likelihood function based on i.i.d. observations

𝑃 𝐭 𝐱,𝐰, 𝜎2 = 
𝑖
𝑁(𝑡𝑖|𝑦 𝑥𝑖 , 𝐰 , 𝜎2) = 

𝑖
𝑁(𝑡𝑖|𝐰

𝑇𝛟(x𝑖), 𝜎
2)

 Taking the logarithm

ln𝑃 𝐭 𝐱,𝐰, 𝜎2 = 
𝑖=1

𝑛

ln(𝑁(𝑡𝑖|𝐰
𝑇𝛟(𝑥𝑖), 𝜎

2))

= −
𝑛

2
ln 𝜎2 −

𝑛

2
ln 2𝜋 −

1

2𝜎2
 

𝑖=1

𝑛

𝑡𝑖 −𝐰𝑇𝛟(𝑥𝑖)
2

23



Polynomial curve fitting: Maximum Likelihood Estimation (3)

 Taking the gradient and setting it to zero

 Solving for 𝐰
𝐰𝑀𝐿 = (𝚽𝑇𝚽 )−1𝚽𝑇𝐭

where

𝚽 =
𝜙0(𝑥1) ⋯ 𝜙𝑀(𝑥1)

⋮ ⋱ ⋮
𝜙0(𝑥𝑁) ⋯ 𝜙𝑀(𝑥𝑁)

 Geometrical interpretation

𝐲 = 𝚽𝐰𝑀𝐿 = 𝜑0, … , 𝜑𝑀 𝐰𝑀𝐿 ∈ 𝑆 ⊆ 𝒯 ∋ 𝐭

(𝐰𝑀𝐿 minimizes the distance between 𝐭 and its 

projection on 𝑆)

Example from C. Bishop: PRML book
24

𝛻𝐰 ln 𝑃 𝐭|𝐱,𝐰, 𝜎2 =
1

𝜎2
 

𝑖=1

𝑁

𝑡𝑖 −𝐰𝑇𝛟 𝑥𝑖 𝛟 𝑥𝑖
𝑇 = 0



Reviewing the multivariate case 

 Generalization to the multivariate case

𝑦 𝐱,𝐰 = 
𝑖=𝑜

𝑀

𝑤𝑖 𝜙𝑖 𝐱 = 𝐰𝑇𝛟 𝐱 , 𝐱 ∈ ℝ𝑘

 The discussed algorithms of stochastic gradient descent and MLE 
generalize to this case as well

 The choice of 𝜙𝑖 is crucial for the tradeoff between regression quality and 
complexity

25



Choices for basis functions

 Simplest case: Return the 𝑖’th component of 𝐱

𝜙𝑖 𝐱 = 𝑥(𝑖)

 Polynomial basis function for 𝑥 ∈ ℝ

𝜙𝑖 𝑥 = 𝑥𝑖

(small changes in 𝑥 affect all basis functions)

 Gaussian basis function (for 𝑥 ∈ ℝ)

𝜙𝑖 𝑥 = exp
𝑥−𝜇𝑖

2𝑠2

(small changes in 𝑥 affect nearby basis functions)

controls location
controls scale

Examples from C. Bishop: PRML book
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Forward step-wise regression

 Goal: Find fitting function  𝑦 𝑥𝑖 = 𝑦1 𝑥𝑖 , 𝐰1 +⋯+ 𝑦𝑛 𝑥𝑖 , 𝐰𝑛

 Step 1: Fit first simple function 𝑦1 𝑥𝑖 , 𝐰1

𝐰1 = argmin
𝐰

 

𝑖=1

𝑛

𝑡𝑖 − 𝑦1 𝑥𝑖 , 𝐰
2

 Step 2: Fit second simple model 𝑦2 𝑥𝑖 , 𝐰2 to the residuals of the first:

𝐰2 = argmin
𝐰

 

𝑖=1

𝑛

𝑡𝑖 − 𝑦1 𝑥𝑖 , 𝐰1 − 𝑦2 𝑥𝑖 , 𝐰
2

.

.

.

 Step n: Fit a simple model 𝑦𝑛 𝑥𝑖 , 𝐰𝑛 to the residuals of the previous step

 Stop when no significant improvement in training error is made
27



Further considerations on regression

 Other choices of regularization functions 

 𝐿𝑝-regularization is given by  𝑖 𝑤𝑖
𝑝

 For 𝑝 > 1, no sparse solutions are achieved

 Tree models can be applied to regression 

 Impurity reduction translates to variance reduction (see also exercises)

28

𝑝=0.5 𝑝=1 𝑝=2 𝑝=4



Summary

 Main solution for linear regression

 Univariate

 𝑤1 =
𝐶𝑜𝑣 𝑥, 𝑡

𝑉𝑎𝑟 𝑥

 Multivariate

 𝐰 = 𝐗T𝐗
−1
𝐗T𝐭

 Regularization mitigates overfitting

 Lasso (L1): With high probability sparse

 Ridge (L2): Not sparse

 Solution strategies

 Stochastic gradient descent

 MLE

 Forward step-wise regression 
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