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Outline

» Linear regression
» Regularization functions
» Polynomial curve fitting

» Stochastic gradient descent for regression

» MLE for regression

» Step-wise forward regression
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Regression methods

» Statistical techniques for finding the best-fitting curve for a set of
perturbed values from unknown function

Points generated
1t { from sin(2mx),
; O perturbed with
Gaussian noise
O 0
O
0t © -
O
—1rF .
0 - 1

Example from C. Bishop: PRML book
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Error functions for regression

> Let (X1,t1), ..., Xy, t) be pairs of instances and their true values for an
unknown function f: X - R, X € R¥

» Letyq,..., ¥, € R be the values returned by a regression model for
instances X¢, ..., X, €EX

» Sum-of-squares error (also called quadratic error or least-squares error)
n
- 2
caa ) = 1S 0 1)
i=1

E(esq) = var + bias? + noise

» Mean squared error
mse (Y1, v, Yo b1y oo tn) = 285 (V1) ooy Yo by, e t) /10

» Root-mean-square error
erms (Vi) cor Vi, b1y s ty) = \/mse(yl, U VA S
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Curve fitting

> General idea:

» Use approximation function of the form
y(X;, W) = wo + wi ¢y (X;) + -+ wydy(X;), X; ERF, ¢j: R¥ > R
e.g, forx; ER, y(x;,w)=3L, ij{ with ¢;(x;) = x{

¢;(x;) are called basis functions

» Minimize misfit between y(x;,w) and t;, 1 < i < n, e.g., the sum-of-squares

error
n
1 2
=) 0 w) - )
i=1
t“ gin )

displacement/residual

sum-of-squares error
1 :
=3 sum-of-squares of displacements

Example from C. Bishop: PRML book
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Univariate linear regression

» General form of univariate linear regression
t = wy + wix + noise, x,wj € R

» Example

» Suppose we aim at investigating the relationship between people’s height (h;)
and weight (g;) based on measurements
(hi,g:),1<i<n

» Find
gdi = Wy + Wlhil Vi
subject to — Least-squares method
S el 2
min Ez 1(gi — (wg + Wlhi))
i= _

Wo,W1




Hasso

Plattner

Institut
TSy | Universitat Potsdam

Examp le
QC'I-
y
851 /
| i
80 /
Example from 75 /
“Machine Learning” | /
by P. Flach [ _ / ;
65 s
P
60 // g
A
50
a5+
0% 150 0 170 80 190 200

» 9 simulated measurements by adding Gaussian noise to the dashed linear
function

» Solid line represents linear regression applied to the 9 points with mean 0
and variance 5
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~Optimal parameters for univariate linear regression

» Set derivatives for the intercept (w,) and the slope (w;) to zero and solve
for each of the variables, respectively:

ZZ (9 — (wo +wih)" = _2;(% — (Wwo +wyh)) =0

aWO
= WO = g_—Wli_l

0 1

n
a_VVlE (gl - (WO + W]_h )) Zi=1(gi - (WO + Wlhi))hi = O

"y (ki = B)(g: = W) _n- Cou(h,g)
ORO RO
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Abstract view on univariate linear regression

» For a target variable t that is linearly dependent on a feature x, i.e.,
o
t = wy + wyx + noise |

the general solution depends only on

_ Cov(x,t)
1= Var(x)

: = " A ; s
150 160 170 180 190 200

» This means that solution is highly sensitive to noise and outliers

> Steps
1. Normalize the feature by dividing its values by the feature’s variance
2. Calculate the covariance between target variable and normalized feature
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Probabilistic view on least-squares

> t; =wy +wix; +€;, €;~N(0,0%)i.i.d. normally distributed errors
> Assumption: t;~N(wg + wyx;,02)

2
1 t; — (wy + wyx;)
P(tilwo,wi, 0%) = == exp (—( Lot )

» Forni.i.d. data points tq, ..., t;:

P(tli nlWO;W1; 2) - 1_[

- (_ (ti — (wo + wlxi>)2>

202

1V2mo?

B 1 ex( 1(1: (W0+W1xi))2>
B \V21o? P 204

n(t; — (W + wixp)”

n n
——=In(2n) — =In(c?) —
X 2n(ﬂ) 2n(a) P ;
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0 ln(P(tl, ey tn|WO' Wy, 0-2)) _
aWO a

n

z. (ti = (wo + wix)) = 0
=1

= WO - E_ Wlf

d ln(P(tl, ey tn|WO' Wy, 0-2)) _
0W1 -

n
S (6 o+ w0 =0
1=

PO Cov(x,t)
W1 = Var(x)

0 In(P(ty, ..., ty|wo,wy,0%)) nl N et — (wo + Wlxi))z _

— 0
002 2 g2 2(02)2

(= (wo + W1xi))2
n

11
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Multivariate linear regression

ti:WO+W1xi+Eir 1<i<<n
&
t1 1 X1 €1
= . Wo + . W1 +
tn 1 xn En
L
tq 1 xq €1
. . . W :
| . (Wl) t
% 1 x, En

» General form of multivariate linear regression
t=Xw+e€
t € R™™1, vector of target variables
X € R™™ matrix of n feature vectors (each containing m features)
w € R™*1 weight vector (i.e., a weight for each feature)
€ € R™1 noise vector

12
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General solution for w in the multivariate case

Cov(x,t)

Var(x)

» It turns out that the general solution for the weight vector in the
multivariate case

» For univariate linear regression we found w; =

w = (XTX) " 'XTt

» Assume feature vectors (i.e., rows) in X are 0-centered, i.e., from each

row (X;s, ..., Xjm) wWe have subtracted (X, ..., X, ), where x; :=
Lyn
n&=1"

» Then ;XTX is the m X m covariance matrix, i.e., containing the pair-

wise covariances between all features (what does it contain in the
~1
diagonal?) - (XTX) decorrelates, centers, and normalizes features

1 . : :
» And - (XTt) is an m-vector holding the covariance between each feature

and the output values t
13
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Effect of correlation between features

Example from “Machine Learning” by P. Flach

Red dots represent noisy samples of y
Red plane represents true function y = x; + x5
Green plane function learned by multivariate linear regression

Blue plane function learned by decomposing the problem into two univariate
regression problems

On the right features are highly correlated, the sample gives much less
information about the true function

YV V V V

A\

14
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Regularized multivariate linear regression

» Least squares method
w* = argminw\(t — Xw)T(t — Xw) + A||w]|?

|

Least-squares error Regularization term

> Solution is

N -1

W = (XTX + /H) XTt I is the identity matrix
with 1s in the diagonal
and Os everywhere else

» For the regularization one can use
> Ridge regularization ||w||?2 = Y, w? (i.e., L2 norm) = Ridge regression

» Lasso regularization |w| = Y, |w;| (i.e., L1 norm), which favors sparser
solutions = Lasso regression

» A determines the amount of regularization

» Lasso regression is much more sensitive to the choice of A

15
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wi + w# (Ridge regularization)

Ridge vs. Lasso regularization

AW2

|lw;| + |w,| (Lasso regularization)

16
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Linear regression for classification

» We learned that the general solution for w is
-1
w=(XTX) XTt

» For linear classification the goal is to learn w™ for a decision boundary
W -X=5>»
» Canwesetw* = W?

> Yes - Least-squares classifier

> (XTX)_1 decorrelates, centers, and normalizes features (good to have)
(+/-)1
(+/-)1

» Caution: Complexity of computing (XTX)_1 is O(n’*m + m3)

» Suppose t = ; what is the result of Xt ?

17
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Univariate polynomial curve fitting

» Use approximation function of the form
y(x;, W) = wo + wiy (x;) + - + wy oy (x;), where ¢;(x;) = x;

bias term

> Least-squares regression: Minimize misfit between y(x;,w) and t;, 1 <
[ <n,e.g., the sum-of-squares error

%;(J’(Xi;w) —t;)?

» Still linear in the weights w;

18



Hasso

Plattner

Institut
ring | Universitat Potsdam

IT Systems Engineering

Example of overfitting

M=0 - 1
t
- (]
L
_ l:}_
o
-1t
- 1 0

overfitting

. 1 0
Example from C. Bishop: PRML book

19



Hasso

Plattner
Institut
Universitat Potsdam

IT Systems Engineering

Impact of data and regularization

8]

0 1 0 - 1 Regularization

Increasing the number of data points mitigates overfitting coefficient

Another possibility: Use regularization é(w) = %Zi(y(xi,w) —t;)%+ % |lw||?

1t o InA=0 1 Regularization
; term

; — 5 —
Examples from C. Bishop: PRML book
20
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“Polynomial curve fitting: Stochastic Gradient Descent

» Definition: The gradient of a dlfferentiable function f (w4, ..., wy) is defined as

of
wf—_ e+ -+ ——ey

aWM
where the e; are orthogonal unit vectors

» Theorem: For a function f that is differentiable in the neighborhood of a point
w, w =w —nV, f(w)yields f(w) < f(w) for small enoughn > 0

» Least-mean-squares algorithm

For each data point x;

1 2
WD = w® — 7, (23, (6 - wOTHG0) )

//gradient descent

//n:learning rate

~ W =7 (& = wOTH(x) ) dlx)
//stochastic gradient descent

//with the least-mean squares rule
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» Assume each observation t; comes from function, with added Gaussian
noise
t; = y(x;, W) + ¢, P(g|lo?) = N(g|0,02)
&
P(tilxii W, 0-2) — N(tily('xii W), 0-2)

» We can write the likelihood function based on the observations
y(x;, W) = wy +wy () + -+ wydy(x;) = whd(x))

Ptixw,0?) = | | Ntilyiw,o?) =| | Ntw o), 0%)

22
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» We can write the likelihood function based on i.i.d. observations
Ptixw,0?) = | | NetilyGew),o?) = | | MW o), 0%
i i

» Taking the logarithm

InP(tlxw,02) = In(N(H W (), 0%))

=1

n n 1 n
= —Eln g% — zln(Zn) — ﬁziﬂ(ti - w d(x;))?

23
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‘Polynomial curve fitting: Maximum Likelihood Estimation (3)

» Taking the gradient and setting it to zero

T In P(tw,0) = = (&~ WTp(x) b = 0
i=1

» Solving forw
WML - (q)Tq) )_1q)Tt

where
bo(x1) - Pm(x1)
b = : :
Go(xy) -+ dy(xn)
S
» Geometrical interpretation t
y - (I)WML — [QDOI ...,(pM]WML € S cT ot P y

(Wy,; minimizes the distance between t and its
projection on S)

Example from C. Bishop: PRML book
24
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Reviewing the multivariate case

> Generalization to the multivariate case

YW =Y w00 =wek), xeRE

» The discussed algorithms of stochastic gradient descent and MLE
generalize to this case as well

» The choice of ¢; is crucial for the tradeoff between regression quality and
complexity

25
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Choices for basis functions

» Simplest case: Return the i’th component of x

¢ (X) = x(;

» Polynomial basis function for x € R
¢i(x) = xt

(small changes in x affect all basis functions)

» Gaussian basis function (for x € R)

0.75
. Is location
B X—U; contro 0.5
¢i(X) = exXp ( 52 ;j controls scale
025/

(small changes in x affect nearby basis functions)

Examples from C. Bishop: PRML book
26
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Forward step-wise regression

» Goal: Find fitting function y(x;) = y; (x;, wy) + -+ + y, (x;, wy,)

> Step 1: Fit first simple function y; (x;, wy)
n
. 2
w; = argmin Z(ti — y1(x;, W)
Vo=
> Step 2: Fit second simple model y, (x;, w,) to the residuals of the first:

n
. 2
w; = argmin 'y (6 = y1.Ge W) — ¥ Cxi, W)
voi=

> Step n: Fit a simple model y,, (x;, w,,) to the residuals of the previous step

» Stop when no significant improvement in training error is made
27
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Further considerations on regression

» Other choices of regularization functions
> L,-regularization is given by };|w;|?

s
DT

» Forp > 1, no sparse solutions are achieved

p=0.5

» Tree models can be applied to regression
» Impurity reduction translates to variance reduction (see also exercises)

28
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Summary

» Main solution for linear regression

» Univariate
. Cov(x,t)

1= Var(x)
» Multivariate

~ Ty) 1yT

w=(XTX) XxTt

» Regularization mitigates overfitting
» Lasso (L1): With high probability sparse
» Ridge (L2): Not sparse

» Solution strategies

» Stochastic gradient descent
» MLE
» Forward step-wise regression

29



