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Outline

 Linear regression

 Regularization functions

 Polynomial curve fitting

 Stochastic gradient descent for regression

 MLE for regression

 Step-wise forward regression
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Regression methods

 Statistical techniques for finding the best-fitting curve for a set of 
perturbed values from unknown function

Example from C. Bishop: PRML book

Points generated 
from sin(2𝜋𝑥),
perturbed with
Gaussian noise
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Error functions for regression

 Let (𝐱1, 𝑡1), … , (𝐱𝑛, 𝑡𝑛) be pairs of instances and their true values for an 
unknown function 𝑓:𝓧 → ℝ, 𝓧 ⊆ ℝ𝑘

 Let 𝑦1, … , 𝑦𝑛 ∈ ℝ be the values returned by a regression model for  
instances 𝐱1, … , 𝐱𝑛 ∈ 𝓧

 Sum-of-squares error (also called quadratic error or least-squares error)

𝑒𝑠𝑞 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 =
1

2
 

𝑖=1

𝑛

(𝑦𝑖 − 𝑡𝑖)
2

𝐸 𝑒𝑠𝑞 = 𝑣𝑎𝑟 + 𝑏𝑖𝑎𝑠2 + 𝑛𝑜𝑖𝑠𝑒

 Mean squared error
𝑚𝑠𝑒 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 = 2𝑒𝑠𝑞 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 /𝑛

 Root-mean-square error

𝑒𝑟𝑚𝑠 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛 = 𝑚𝑠𝑒 𝑦1, … , 𝑦𝑛, 𝑡1, … , 𝑡𝑛
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Curve fitting

 General idea:

 Use approximation function of the form

𝑦 𝐱𝑖 , 𝐰 = 𝑤0 + 𝑤1𝜙1 𝐱𝑖 +⋯+𝑤𝑀𝜙𝑀 𝐱𝑖 , 𝐱𝑖 ∈ ℝ𝑘, 𝜙𝑗: ℝ
𝑘 → ℝ

e.g., for 𝐱𝑖 ∈ ℝ, 𝑦 𝐱𝑖 , 𝐰 =  𝑗=𝑜
𝑀 𝑤𝑗𝐱𝑖

𝑗
with 𝜙𝑗 𝐱𝑖 = 𝐱𝑖

𝑗

𝜙𝑗 𝐱𝑖 are called basis functions 

 Minimize misfit between 𝑦 𝑥𝑖 , 𝐰 and 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑛, e.g., the sum-of-squares 
error

1

2
 

𝑖=1

𝑛

𝑦 𝑥𝑖 , 𝐰 − 𝑡𝑖
2

displacement/residual

sum-of-squares error 

≡
1

2
sum-of-squares of displacements

Example from C. Bishop: PRML book
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Univariate linear regression

 General form of univariate linear regression
𝑡 = 𝑤0 + 𝑤1𝑥 + 𝑛𝑜𝑖𝑠𝑒, 𝑥, 𝑤𝑗 ∈ ℝ

 Example

 Suppose we aim at investigating the relationship between people’s height (ℎ𝑖) 
and weight (𝑔𝑖) based on measurements 

ℎ𝑖 , 𝑔𝑖 , 1 ≤ 𝑖 ≤ 𝑛

 Find 
𝑔𝑖 = 𝑤0 + 𝑤1ℎ𝑖 , ∀𝑖

subject to 

min
𝑤0,𝑤1

1

2
 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖
2

6

Least-squares method



Example

 9 simulated measurements by adding Gaussian noise to the dashed linear 
function

 Solid line represents linear regression applied to the 9 points with mean 0 
and variance 5
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Example from 
“Machine Learning” 
by P. Flach



Optimal parameters for univariate linear regression

 Set derivatives for the intercept (𝑤0) and the slope (𝑤1) to zero and solve 
for each of the variables, respectively:

𝜕

𝜕𝑤0

1

2
 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖
2
= − 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖 = 0

⇒  𝑤0 =  𝑔 −  𝑤1
 ℎ

𝜕

𝜕𝑤1

1

2
 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖
2
= − 

𝑖=1

𝑛

𝑔𝑖 − 𝑤0 + 𝑤1ℎ𝑖 ℎ𝑖 = 0

⇒  𝑤1 =
 𝑖=1
𝑛 ℎ𝑖 −  ℎ 𝑔𝑖 −  𝑤

 𝑖=1
𝑛 ℎ𝑖 −  ℎ

2 =
𝑛 ⋅ 𝐶𝑜𝑣 ℎ, 𝑔

𝑛 ⋅ 𝑉𝑎𝑟 ℎ

⇒ 𝑔 =  𝑤0 +  𝑤1ℎ =  𝑔 +  𝑤1 ℎ −  ℎ
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Abstract view on univariate linear regression

 For a target variable 𝑡 that is linearly dependent on a feature 𝑥, i.e.,

𝑡 = 𝑤0 +𝑤1𝑥 + 𝑛𝑜𝑖𝑠𝑒

the general solution depends only on 

 𝑤1 =
𝐶𝑜𝑣 𝑥, 𝑡

𝑉𝑎𝑟 𝑥

 This means that solution is highly sensitive to noise and outliers

 Steps

1. Normalize the feature by dividing its values by the feature’s variance

2. Calculate the covariance between target variable and normalized feature
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Probabilistic view on least-squares

 𝑡𝑖 = 𝑤0 + 𝑤1𝑥𝑖 + 𝜖𝑖 , 𝜖𝑖~𝑁 0, 𝜎2 i.i.d. normally distributed errors

 Assumption: 𝑡𝑖~𝑁 𝑤0 + 𝑤1𝑥𝑖 , 𝜎
2

𝑃 𝑡𝑖|𝑤0, 𝑤1, 𝜎
2 =

1

2𝜋𝜎2
exp −

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖
2

2𝜎2

 For 𝑛 i.i.d. data points 𝑡1, … , 𝑡𝑛:

𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2 = 

𝑖=1

𝑛 1

2𝜋𝜎2
exp −

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖
2

2𝜎2

=
1

2𝜋𝜎2

𝑛

exp −
 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

2𝜎2

∝ −
𝑛

2
ln 2𝜋 −

𝑛

2
ln 𝜎2 −

 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

2𝜎2 10



Maximum Likelihood Estimation of 𝒘𝟎, 𝒘𝟏, 𝝈
𝟐

𝜕 ln 𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2

𝜕𝑤0
=  

𝑖=1

𝑛

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖 = 0

⇒  𝑤0 =  𝑡 −  𝑤1  𝑥

𝜕 ln 𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2

𝜕𝑤1
=  

𝑖=1

𝑛

𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖 𝑥𝑖 = 0

⇒  𝑤1 =
𝐶𝑜𝑣 𝑥, 𝑡

𝑉𝑎𝑟 𝑥

𝜕 ln 𝑃 𝑡1, … , 𝑡𝑛|𝑤0, 𝑤1, 𝜎
2

𝜕𝜎2
= −

𝑛

2

1

𝜎2
+
 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

2 𝜎2 2
= 0

⇒ 𝜎2 =
 𝑖=1
𝑛 𝑡𝑖 − 𝑤0 + 𝑤1𝑥𝑖

2

𝑛
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Multivariate linear regression

𝑡𝑖 = 𝑤0 + 𝑤1𝑥𝑖 + 𝜖𝑖 , 1 ≤ 𝑖 ≤ 𝑛
⇔

𝑡1.
.
.
𝑡𝑛

=

1.
.
.
1

𝑤0 +

𝑥1.
.
.
𝑥𝑛

𝑤1 +

𝜖1.
.
.
𝜖𝑛

⇔

𝑡1.
.
.
𝑡𝑛

=

1 𝑥1.
.
.

.

.

.
1 𝑥𝑛

𝑤0

𝑤1
+

𝜖1.
.
.
𝜖𝑛

 General form of multivariate linear regression
𝐭 = 𝐗𝐰+ 𝝐

12

𝐭 ∈ ℝ𝑛×1, vector of target variables
𝐗 ∈ ℝ𝑛×𝑚, matrix of 𝑛 feature vectors (each containing 𝑚 features)
𝐰 ∈ ℝ𝑚×1, weight vector (i.e., a weight for each feature)
𝝐 ∈ ℝ𝑛×1, noise vector



General solution for 𝐰 in the multivariate case

 For univariate linear regression we found  𝑤1 =
𝐶𝑜𝑣 𝑥,𝑡

𝑉𝑎𝑟 𝑥

 It turns out that the general solution for the weight vector in the 
multivariate case

 𝐰 = 𝐗T𝐗
−1
𝐗T𝐭

 Assume feature vectors (i.e., rows) in 𝐗 are 0-centered, i.e., from each 
row 𝑥𝑖1, … , 𝑥𝑖𝑚 we have subtracted 𝑥.1, … , 𝑥.𝑚 , where 𝑥.𝑗 ≔
1

𝑛
 𝑖=1
𝑛 𝑥𝑖𝑗

 Then 
1

𝑛
𝐗T𝐗 is the  𝑚 ×𝑚 covariance matrix, i.e., containing the pair-

wise covariances between all features (what does it contain in the 

diagonal?)    𝐗T𝐗
−1

decorrelates, centers, and normalizes features

 And 
1

𝑛
𝐗T𝐭 is an 𝑚-vector holding the covariance between each feature 

and the output values 𝐭
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Effect of correlation between features

14

Example from “Machine Learning” by P. Flach

 Red dots represent noisy samples of 𝑦

 Red plane represents true function 𝑦 = 𝑥1 + 𝑥2
 Green plane function learned by multivariate linear regression

 Blue plane function learned by decomposing the problem into two univariate
regression problems

 On the right features are highly correlated, the sample gives much less 
information about the true function

𝑦

𝑥1 𝑥2

𝑦

𝑥1 𝑥2



Regularized multivariate linear regression

 Least squares method 
𝐰∗ = argmin𝐰 𝐭 − 𝐗𝐰 T 𝐭 − 𝐗𝐰 + 𝜆 𝐰 2

 Solution is 

 𝐰 = 𝐗T𝐗 + 𝜆𝐈
−1
𝐗T𝐭

 For the regularization one can use

 Ridge regularization 𝐰 2 =  𝑖𝑤𝑖
2 (i.e., L2 norm)  Ridge regression

 Lasso regularization 𝐰 =  𝑖 |𝑤𝑖| (i.e., L1 norm), which favors sparser 
solutions  Lasso regression

 𝜆 determines the amount of regularization

 Lasso regression is much more sensitive to the choice of 𝜆

15

Least-squares error Regularization term

𝐈 is the identity matrix 
with 1s in the diagonal 
and 0s everywhere else



Ridge vs. Lasso regularization

16

𝑤1

𝑤2

𝑤1
2 + 𝑤2

2 (Ridge regularization)

𝐰𝑀𝐿

|𝑤1| + 𝑤2 (Lasso regularization)



Linear regression for classification

 We learned that the general solution for 𝐰 is

 𝐰 = 𝐗T𝐗
−1
𝐗T𝐭

 For linear classification the goal is to learn 𝐰∗ for a decision boundary

𝐰∗ ⋅ 𝐱 = 𝑏

 Can we set 𝐰∗ =  𝐰?

 Yes  Least-squares classifier 

 𝐗T𝐗
−1

decorrelates, centers, and normalizes features (good to have)

 Suppose 𝐭 =
+/− 1
…

+/− 1
; what is the result of 𝐗T𝐭 ?

 Caution: Complexity of computing 𝐗T𝐗
−1

is 𝑂 𝑛2𝑚 +𝑚3
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Univariate polynomial curve fitting

 Use approximation function of the form

𝑦 𝑥𝑖 , 𝐰 = 𝑤0 + 𝑤1𝜙1 𝑥𝑖 +⋯+𝑤𝑀𝜙𝑀 𝑥𝑖 , where 𝜙𝑗 𝑥𝑖 = 𝑥𝑖
𝑗

 Least-squares regression: Minimize misfit between 𝑦 𝑥𝑖 , 𝐰 and 𝑡𝑖 , 1 ≤
𝑖 ≤ 𝑛, e.g., the sum-of-squares error

1

2
 

𝑖=1

𝑛

𝑦 𝑥𝑖 , 𝐰 − 𝑡𝑖
2

 Still linear in the weights 𝑤𝑖

18

bias term



Example of overfitting

Example from C. Bishop: PRML book

overfitting
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Impact of data and regularization 

Examples from C. Bishop: PRML book

Increasing the number of data points mitigates overfitting

Another possibility:  Use regularization     𝑒 𝐰 =
1

2
 𝑖 𝑦 𝑥𝑖 , 𝐰 − 𝑡𝑖

2 +
𝜆

2
𝐰 2

Regularization
term

Regularization
coefficient
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Polynomial curve fitting: Stochastic Gradient Descent

 Definition: The gradient of a differentiable function 𝑓(𝑤1, … , 𝑤𝑀) is defined as

𝛻𝐰𝑓 =
𝜕𝑓

𝜕𝑤1
𝐞1 +⋯+

𝜕𝑓

𝜕𝑤𝑀
𝐞𝑀

 Theorem: For a function 𝑓 that is differentiable in the neighborhood of a point 
𝐰, 𝐰′ ≔ 𝐰− 𝜂𝛻𝐰𝑓 𝐰 yields 𝑓 𝐰′ < 𝑓 𝐰 for small enough 𝜂 > 0

 Least-mean-squares algorithm

For each data point 𝑥𝑖

𝐰(𝜏+1) = 𝐰(𝜏) − 𝜂𝛻𝐰
1

2
 𝑖=1
𝑛 𝑡𝑖 −𝐰 𝜏 𝑇𝛟 𝑥𝑖

2

//gradient descent

//𝜂:learning rate

≈ 𝐰(𝜏) − 𝜂 𝑡𝑖 −𝐰 𝜏 𝑇𝛟 𝑥𝑖 𝛟 𝑥𝑖

//stochastic gradient descent

//with the least-mean squares rule

where the  𝒆𝑖 are orthogonal unit vectors
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Polynomial curve fitting: Maximum Likelihood Estimation

 Assume each observation 𝑡𝑖 comes from function, with added Gaussian 
noise

𝑡𝑖 = 𝑦 𝑥𝑖 , 𝐰 + 𝜀, 𝑃 ε 𝜎2 = 𝑁 𝜀 0, 𝜎2

⇔
𝑃 𝑡𝑖 𝑥𝑖 , 𝐰, 𝜎

2 = 𝑁(𝑡𝑖|𝑦 𝑥𝑖 , 𝐰 , 𝜎2)

 We can write the likelihood function based on the observations

𝑦 𝑥𝑖 , 𝐰 = 𝑤0 + 𝑤1𝜙1 𝑥𝑖 +⋯+𝑤𝑀𝜙𝑀 𝑥𝑖 = 𝐰𝑇𝛟(𝑥𝑖)

𝑃 𝐭 𝐱,𝐰, 𝜎2 = 
𝑖
𝑁(𝑡𝑖|𝑦 𝑥𝑖 , 𝐰 , 𝜎2) = 

𝑖
𝑁(𝑡𝑖|𝐰

𝑇𝛟(𝑥𝑖), 𝜎
2)
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Polynomial curve fitting: Maximum Likelihood Estimation (2)

 We can write the likelihood function based on i.i.d. observations

𝑃 𝐭 𝐱,𝐰, 𝜎2 = 
𝑖
𝑁(𝑡𝑖|𝑦 𝑥𝑖 , 𝐰 , 𝜎2) = 

𝑖
𝑁(𝑡𝑖|𝐰

𝑇𝛟(x𝑖), 𝜎
2)

 Taking the logarithm

ln𝑃 𝐭 𝐱,𝐰, 𝜎2 = 
𝑖=1

𝑛

ln(𝑁(𝑡𝑖|𝐰
𝑇𝛟(𝑥𝑖), 𝜎

2))

= −
𝑛

2
ln 𝜎2 −

𝑛

2
ln 2𝜋 −

1

2𝜎2
 

𝑖=1

𝑛

𝑡𝑖 −𝐰𝑇𝛟(𝑥𝑖)
2
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Polynomial curve fitting: Maximum Likelihood Estimation (3)

 Taking the gradient and setting it to zero

 Solving for 𝐰
𝐰𝑀𝐿 = (𝚽𝑇𝚽 )−1𝚽𝑇𝐭

where

𝚽 =
𝜙0(𝑥1) ⋯ 𝜙𝑀(𝑥1)

⋮ ⋱ ⋮
𝜙0(𝑥𝑁) ⋯ 𝜙𝑀(𝑥𝑁)

 Geometrical interpretation

𝐲 = 𝚽𝐰𝑀𝐿 = 𝜑0, … , 𝜑𝑀 𝐰𝑀𝐿 ∈ 𝑆 ⊆ 𝒯 ∋ 𝐭

(𝐰𝑀𝐿 minimizes the distance between 𝐭 and its 

projection on 𝑆)

Example from C. Bishop: PRML book
24

𝛻𝐰 ln 𝑃 𝐭|𝐱,𝐰, 𝜎2 =
1

𝜎2
 

𝑖=1

𝑁

𝑡𝑖 −𝐰𝑇𝛟 𝑥𝑖 𝛟 𝑥𝑖
𝑇 = 0



Reviewing the multivariate case 

 Generalization to the multivariate case

𝑦 𝐱,𝐰 = 
𝑖=𝑜

𝑀

𝑤𝑖 𝜙𝑖 𝐱 = 𝐰𝑇𝛟 𝐱 , 𝐱 ∈ ℝ𝑘

 The discussed algorithms of stochastic gradient descent and MLE 
generalize to this case as well

 The choice of 𝜙𝑖 is crucial for the tradeoff between regression quality and 
complexity

25



Choices for basis functions

 Simplest case: Return the 𝑖’th component of 𝐱

𝜙𝑖 𝐱 = 𝑥(𝑖)

 Polynomial basis function for 𝑥 ∈ ℝ

𝜙𝑖 𝑥 = 𝑥𝑖

(small changes in 𝑥 affect all basis functions)

 Gaussian basis function (for 𝑥 ∈ ℝ)

𝜙𝑖 𝑥 = exp
𝑥−𝜇𝑖

2𝑠2

(small changes in 𝑥 affect nearby basis functions)

controls location
controls scale

Examples from C. Bishop: PRML book
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Forward step-wise regression

 Goal: Find fitting function  𝑦 𝑥𝑖 = 𝑦1 𝑥𝑖 , 𝐰1 +⋯+ 𝑦𝑛 𝑥𝑖 , 𝐰𝑛

 Step 1: Fit first simple function 𝑦1 𝑥𝑖 , 𝐰1

𝐰1 = argmin
𝐰

 

𝑖=1

𝑛

𝑡𝑖 − 𝑦1 𝑥𝑖 , 𝐰
2

 Step 2: Fit second simple model 𝑦2 𝑥𝑖 , 𝐰2 to the residuals of the first:

𝐰2 = argmin
𝐰

 

𝑖=1

𝑛

𝑡𝑖 − 𝑦1 𝑥𝑖 , 𝐰1 − 𝑦2 𝑥𝑖 , 𝐰
2

.

.

.

 Step n: Fit a simple model 𝑦𝑛 𝑥𝑖 , 𝐰𝑛 to the residuals of the previous step

 Stop when no significant improvement in training error is made
27



Further considerations on regression

 Other choices of regularization functions 

 𝐿𝑝-regularization is given by  𝑖 𝑤𝑖
𝑝

 For 𝑝 > 1, no sparse solutions are achieved

 Tree models can be applied to regression 

 Impurity reduction translates to variance reduction (see also exercises)
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𝑝=0.5 𝑝=1 𝑝=2 𝑝=4



Summary

 Main solution for linear regression

 Univariate

 𝑤1 =
𝐶𝑜𝑣 𝑥, 𝑡

𝑉𝑎𝑟 𝑥

 Multivariate

 𝐰 = 𝐗T𝐗
−1
𝐗T𝐭

 Regularization mitigates overfitting

 Lasso (L1): With high probability sparse

 Ridge (L2): Not sparse

 Solution strategies

 Stochastic gradient descent

 MLE

 Forward step-wise regression 
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