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Clustering overview 

 Why clustering? 
 

 … no labels available  group by similarity (unsupervised learning scenario) 

 … to hopefully detect “intrinsic” structure in the data (“natural clusters”) 

 … to hopefully better understand/analyze the data through reduction to 
important patterns 

 … to detect outliers 

Clustering by  
density 
 
outliers 
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Source:  
Wikipedia 



Clustering search results 

Source: http://yippy.com/ 

Grouping topical categories 
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http://yippy.com/


Finding communities in social networks 

http://hci.stanford.edu/jheer/projects/vizster/ 
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http://hci.stanford.edu/jheer/projects/vizster/
http://hci.stanford.edu/jheer/projects/vizster/


Hierarchical vs. partitional/flat clustering 

 Hierarchical 

 Detailed, insightful 
hierarchies/dendrograms 

 Simple but expensive 
algorithms 

 Top-down (divisive) 

 Bottom-up (agglomerative) 

 Partitional/flat 

 Coarse data overview 

 Level of detail depends on 
number of clusters 

 Relatively efficient algorithms 

 K-means  

 EM on mixture models 

… 
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From metric distances to similarities 

 Similarity is typically based on a metric distance: 

      A data space 𝑀 with distance function 𝑑:𝑀 ×𝑀 →  ℝ is called a metric space   

      if for any 𝑥, 𝑦, 𝑧 ∈ 𝑀: 

 1. 𝑑 𝑥, 𝑦 = 0 iff 𝑥 = 𝑦 

 2. 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥  (symmetry) 

 3. 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧  (triangle inequality) 

     In a metric space 𝑀 with distance function 𝑑 the similarity between any  

     𝑥, 𝑦 ∈ 𝑀 can  be defined as 𝑠𝑖𝑚 𝑥, 𝑦 ≔
1

1+𝑑(𝑥,𝑦)
 or 𝑠𝑖𝑚 𝑥, 𝑦 ≔

1

𝑒𝑑(𝑥,𝑦)
  

 Metric distance Definition 

Euclidean 𝐱 − 𝐲 =  𝑥𝑖 − 𝑦𝑖
2

𝑖   

Manhattan 𝐱 − 𝐲 1 =  𝑥𝑖 − 𝑦𝑖𝑖   

Maximum 𝐱 − 𝐲 ∞ = max
𝑖
𝑥𝑖 − 𝑦𝑖   

Mahalanobis 
𝑑𝑚𝑎ℎ𝑎 𝐱, 𝐲 =  

𝑥𝑖−𝑦𝑖

𝜎𝑖

2

𝑖   
(for normally  
distributed data) 
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Other popular similarity and distance measures 

 Pearson correlation 

 𝜌 𝐱, 𝐲 =
 (𝑥𝑖−𝑥 )(𝑦𝑖−𝑦 )𝑖

 (𝑥𝑖−𝑥 )
2

𝑖  (𝑦𝑖−𝑦 )
2

𝑖

 (similarity measure) 

 𝑑𝜌 𝐱, 𝐲 =
1−𝜌(𝐱,𝐲)

2
 (distance metric) 

 

 Cosine similarity 

 𝑐𝑠𝑖𝑚 𝐱, 𝐲 =
𝐱𝑇𝐲

𝐱 𝐲
  

 𝑑𝑐𝑠𝑖𝑚 𝐱, 𝐲 = 1 − 𝑐𝑠𝑖𝑚 𝐱, 𝐲  (distance measure) 

 

 Jaccard similarity 

 𝐽 𝐜, 𝐜′ =
𝐜∩𝐜′

𝐜∪𝐜′
  (similarity measure) 

 𝑑𝐽 𝐜, 𝐜
′ = 1 − 𝐽 𝐜, 𝐜′  (distance metric) 
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Internal clustering criteria 

 General goal: For objects 𝐱1, … , 𝐱𝑛 with pair-wise similarities, construct 
𝑘 ≤ 𝑛 clusters 𝐜1, … , 𝐜𝑘 such that 

 

 Intra-cluster similarity is high 

1

𝑘
 

1

𝐜𝑖 ( 𝐜𝑖 −1)
 𝑠𝑖𝑚 𝐱, 𝐱′ 𝐱,𝐱′∈𝐜𝑖𝑖  or  

1

𝑘
 
1

𝐜𝑖
 𝑠𝑖𝑚 𝐱, 𝐜𝑖

∗ 𝐱∈𝐜𝑖𝑖  

 

 Inter-cluster similarity is low 

1

 𝐜𝑖 𝐜𝑗𝐜𝑖,𝐜𝑗

 𝑠𝑖𝑚 𝐱, 𝐱′ 𝐱∈𝐜𝑖,𝐱′∈𝐜𝑗
 or 

1

𝑘 𝑘−1
 𝑠𝑖𝑚 𝐜𝑖

∗, 𝐜𝑗
∗

𝐜𝑖
∗,𝐜𝑗
∗  

Cluster 
centroids 
or clustroids 

Centroid: element representing the center  
of the cluster, e.g. in vector space: 

  𝐜𝑖
∗ =
1

𝐜𝑖
 𝐱𝐱∈𝐜𝑖  

 

Clustroid: cluster point that is closest to all  
cluster points 
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External clustering criteria (1) 

 How well does the clustering of 𝑁 elements 𝑪 = 𝒄1, … , 𝒄𝑘  represent the 
ground truth classes 𝑮 = {𝒄1

′ , … , 𝒄𝑙
′} 

 

 Purity (each cluster should possibly contain only elements from one class) 

𝑃𝑢𝑟𝑖𝑡𝑦 𝑪, 𝑮 =
1

𝑁
 max

𝑗
 {|𝒄𝑖 ∩ 𝒄𝑗

′|}
𝑘

𝑖=1
 

      Note: purity is 1 if each element is in its own cluster 

 

 Normalized mutual information (each cluster should possibly contain only 
elements from one class and possibly all the elements from that class) 

 

𝑁𝑀𝐼 𝑪, 𝑮 =

  
𝒄𝑖 ∩ 𝒄𝑗

′

𝑁 log
𝑁 𝒄𝑖 ∩ 𝒄𝑗

′

𝒄𝑖 |𝒄𝑗
′|𝑗𝑖

1
2
 
𝒄𝑖
𝑁
log
𝑁
𝒄𝑖
+  
𝒄𝑖
′

𝑁
log
𝑁

𝒄𝑖
′𝑖𝑖
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External clustering criteria (2) 

 How well does the clustering of 𝑁 elements 𝑪 = 𝒄1, … , 𝒄𝑘  represent the 
ground truth classes 𝑮 = {𝒄1

′ , … , 𝒄𝑙
′} 

 

 Rand index (accuracy, i.e., percentage of agreements with ground truth) 

𝑅𝑎𝑛𝑑 𝑪, 𝑮 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

      where  

      𝑇𝑃: # pairs in same group in C and in G 

 𝑇𝑁: # pairs in different groups in C and in G 

 𝐹𝑃: # pairs in same group in C but in different groups in G 

 𝐹𝑁: # pairs in same group in G but in different groups in C 

 

 

 Precision, Recall, F-measure can be defined analogously 
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Impossibility Theorem 

 Let 𝑓𝑑: 𝐷 ↦ 2
𝐷 be a partitioning function on the dataset 𝐷 based on a 

(metric or non-metric) distance function 𝑑:𝐷 × 𝐷 ↦ ℝ0 that satisfies 
𝑑 𝑥, 𝑦 = 0 ⟺ 𝑥 = 𝑦 

 

       The following axioms cannot be satisfied simultaneously: 

 
 Scale-invariance:  

 for any 𝑑 and any 𝛼 > 0: 𝑓𝑑 = 𝑓𝛼𝑑 

 
 Expressiveness (control over the data):  

 for any partitioning Π ⊆ 2𝐷 there exists a 𝑑, such that 𝑓𝑑 produces Π 

 
 Consistency: 

 for any 𝑑, let 𝑑′ be such that 𝑑′ 𝑥, 𝑦 < 𝑑(𝑥, 𝑦) if 𝑥, 𝑦 are in the same 
 cluster created by 𝑓𝑑 and 𝑑′ 𝑥, 𝑦 > 𝑑(𝑥, 𝑦) otherwise, then 𝑓𝑑′ = 𝑓𝑑 
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Source: J. Kleinberg, NIPS 2002 

http://books.nips.cc/papers/files/nips15/LT17.pdf
http://books.nips.cc/papers/files/nips15/LT17.pdf
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Simple taxonomy of generic clustering approaches 

clustering 

hierarchical partitional 

single-link complete-link 

agglomerative divisive square 
error 

algebraic probabilistic 

k-means 

mixture-
resolving 

mode-
seeking 

spectral 

13 

information- 
theoretic 

reducing mutual 
information 



Hierarchical clustering 

 Divisive/top-down 

 Start with a single cluster containing the whole dataset 

 In each iteration: 

 identify the cluster 𝐜 with lowest intra-cluster similarity 

 divide it into two clusters 𝐜1, 𝐜2 with minimal 𝑠𝑖𝑚 𝐜1, 𝐜2  

 stop when each cluster has only one element 

 

 Agglomerative/bottom-up 

 Start with a cluster for each element in the dataset  

 In each iteration: 

 identify the two clusters 𝐜1, 𝐜2 with maximal 𝑠𝑖𝑚 𝐜1, 𝐜2  

 merge 𝐜1, 𝐜2 into  𝐜 = 𝐜1 ∪ 𝐜2 

 stop when there is single cluster 

With exhaustive search 𝑂 2𝑛  

𝑂 𝑛3  (at best 𝑂 𝑛2  for special cases) 
Best known methods: SLINK, CLINK 
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Hierarchical clustering: Single-link vs. complete-link  

 Let max 𝑑 𝐜, 𝐜′ , 𝑑 𝐜, 𝐜′′ ≥ 𝑑 𝐜, 𝐜′ ∪ 𝐜′′  for all partitions 𝐜, 𝐜′, 𝐜′′ 
 

 Single-link method: 𝑑 𝐜, 𝐜′ = 𝑑 𝐱, 𝐱′ , such that 𝐱 ∈ 𝐜 and 𝐱’ ∈ 𝐜′ have 
 the minimum distance of all elements from 𝐜, 𝐜′  

 

 Complete-link method: 𝑑 𝐜, 𝐜′ = 𝑑 𝐱, 𝐱′ , such that 𝐱 ∈ 𝐜 and 

  𝐱’ ∈ 𝐜′ have the maximum distance of all elements from 𝐜, 𝐜′ (merge the two 
 clusters with smallest maximum pairwise distance)  

 

 

 

 

Single-link Complete-link 
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Partitional clustering approaches 
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partitional 

square 
error 

probabilistic 

k-means spectral 

information- 
theoretic 

reducing mutual 
information 

algebraic 

mixture-
resolving 

mode-
seeking 



K-means (1)  

 For given data records 𝐱1, … , 𝐱𝑛 ∈ ℝ
𝑚, find 𝑘 ≤ 𝑛 clusters 𝐜1, … , 𝐜𝑘 according 

to some similarity measure 𝑠𝑖𝑚 and a cluster stability threshold  𝑡 

  

Randomly choose prototype clusters 𝐜1, … , 𝐜𝑘, by choosing 
random centroids and assigning a point to its closest 

centroid 

While there exists 𝐜𝑖 with  𝐱 − 𝐜𝑖
∗ 2

𝐱∈𝐜𝑖 > 𝑡 

 For 𝑗 ≔ 1 to 𝑛 do 

  Assign 𝐱𝑗 to 𝐜𝑙 with the highest 𝑠𝑖𝑚(𝐜𝑙
∗, 𝐱𝑗) 

 For 𝑗 ≔ 1 to 𝑘 do 

  Recompute 𝐜𝑗
∗ //where 𝐜𝑗

∗ =
1

𝐜𝑗
 𝐱𝐱∈𝐜𝑗  
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K-means (2)  

 Example 
 

       

From http://astrostatistics.psu.edu/su09/lecturenotes/clus2.html 
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K-means (3) 

 In practice, runtime is polynomial 

 

 Theoretical complexity is exponential (2Ω(𝑛)) 

 

 𝑘 can be determined experimentally or based on the minimum-description-
length (MDL) principle 

 

 Choice of initial prototype vectors influences the result; often 𝑘-means is 
re-run multiple times with random choices 

 

 Initial prototype vectors could be chosen by using another  –  very efficient  
– clustering method (on random sample of the data records) 

 

 Any arbitrary metric can be used 
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Getting 𝑘 right 

1) For increasing values of 𝑘 estimate the change of the average distance to   

     the centroid 

      

     Choose 𝑘 for which average distance changes very little 

 

 

 

 

 

 

 

 

2) MDL criterion: Check whether cost of encoding the information of the  

     current cluster configuration exceeds the cost of the previous configuration 

Average 
distance 
to centroid 
(or another 
objective  
function) 

𝑘 

Good value for 𝑘 
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Mixture models for clustering (1)  

 Resolving mixtures through expectation maximization (EM) for clustering 

       

 

 

 

 

 

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴; 𝑥1, … , 𝑥𝑛 = 𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

𝑖

  

 

 

1. Expectation step: Estimate the expected membership value of each point 𝑥𝑖 
given the current estimations of 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 ,  𝑝𝐴 , 𝑝𝐵 

2. Maximization step: Maximize the likelihood of 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵,  𝑝𝐴 , 𝑝𝐵 in light of 
the observations (i.e., use the expected membership values to re-estimate 
the parameters)  

 

𝐴 
𝐵 
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Mixture models for clustering (2) 

 Resolving mixtures through expectation maximization (EM) 

        𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴; 𝑥1, … , 𝑥𝑛 = 𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

𝑖

  

 

 EM in practice 

 Initialize the parameters 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵, 𝑝𝐴, 𝑝𝐵 to some random values (note: 
𝑝𝐴 + 𝑝𝐵 = 1) 

 E-step: Compute expected membership values 𝑃 𝐴 𝑥𝑖 , 𝑃(𝐵|𝑥𝑖) 

 M-step: Re-estimate the parameters 

 Iterate steps 2 and 3 until convergence (i.e., until changes of log likelihood are 
negligible) 
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Mode-seeking clustering  with Mean-Shift 

 Method to locate the maxima of a density function 

 

 

 

 

 

 

Select 𝐱1, … , 𝐱𝑘 of the 𝑛 sample points (at random) as modes 

While 𝐱1, … , 𝐱𝑘 not converged 

 For each 𝐱𝑖   

  𝑚 𝐱𝑖 ≔ 
 𝐾 𝐲,𝐱𝑖  𝐲 𝐲∈𝑁𝑏 𝐱𝑖

 𝐾 𝐲,𝐱𝑖𝐲∈𝑁𝑏 𝐱𝑖

,   with:  𝐾 𝐲, 𝐱 = 𝑒𝑐 𝐲−𝐱   

  𝐱𝑖 ≔ 𝑚(𝐱𝑖) 
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Mean-Shift visualization 

 

 

 

 

 

 

 

 Mean shift vector always points toward the direction of  maximum increase  

      in density 
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Efficient mode-seeking clustering with DBSCAN 

 DBSCAN: density-based clustering for applications with noise 
 

 For each data point 𝐱 do  

    Insert 𝐱 into (spatial) index //(e.g. R-tree) 

 For each data point 𝐱 do  

    Locate all points with distance less than 𝑑_max to 𝐱   

    If these points form a single cluster then  

  Add 𝐱 to this cluster 

    Else  

  If there are at least min_𝑝𝑡𝑠 data points (that 
  do not yet belong to a cluster) such that for all 

  point pairs the distance is less than 𝑑_max then  

      Construct a new cluster with these points 

  

 Mode-seeking algorithm with average run-time: 𝑂(𝑛  log 𝑛) 

 Data points that are added later can be easily assigned to a cluster 

 Points that do not belong to any cluster are considered “noise” 
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Spectral clustering techniques 

 Typically used derive a lower-dimensional representation of the data 

 

 Variant 1 

 Map each data point into 𝑘-dimensional space 

 Assign each point to its highest-value dimension (strongest spectral 
component) 

 

 Variant 2 

 Compute 𝑘 clusters for the data points (using any clustering algorithm) 

 Project data points onto 𝑘 centroid vectors (“axes” of 𝑘-dim. space) 
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Spectral clustring 

 Spectral clustering algorithm for variant 1 

 

Construct similarity graph of 𝑛 data points 

Construct graph Laplacian 𝐿 =  𝐷 −𝑊 // 𝐷: diagonal with  

     // 𝐷𝑖𝑖 =degree of 𝑖′th node 

    //𝑊 weighted adjacency matrix 

Compute smallest 𝑘 Eigenvalues and Eigenvectors  

      // 𝐿𝐱 =  𝜆𝐷𝐱 

           // 𝜆: Eigenvalue 

Let 𝑀 be the 𝑛 × 𝑘 matrix with these Eigenvectors 
as columns 

Treat the 𝑛 rows of 𝑀 as 𝑘-dim. data points  

Run 𝑘-means with these points 
 

Runtime: Θ |𝐿|2  
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Spectral clustering – choosing 𝑘 

 Theorem 

 All Eigenvalues of a graph Laplacian are non-negative reals. 

 The multiplicity 𝑘 of the smallest Eigenvalue 0 is the number of connected 
components of the graph. 

 The corresponding Eigenvectors  𝐱1, … , 𝐱𝑘 are indicator vectors of the 
components  𝐱𝑖 𝑗 = 1 if node 𝑗 is in the 𝑖′th component, and 0 otherwise. 
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Source: U. von Luxburg, A Tutorial on Spectral Clustering  
 

http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf


Summary 

 Clustering goals 
 Internal criteria 

 External criteria 

 Impossibility theorem 

 

 Hierarchical clustering  
 Divisive 

 Agglomerative 

 Merging based on single-link, complete-link heuristics 

 

 Flat clustering  
 K-means (getting k right) 

 Mean-shift 

 DBSCAN 

 Spectral clustering 
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