

UNSUPERVISED LEARNING – CLUSTERING

Outline

- Clustering overview
- Internal and external clustering criteria
- Impossibility Theorem for clustering
- Hierarchical clustering
- Single-link, complete-link heuristics
- Partitional/flat clustering algorithms

Clustering overview

➤ Why clustering?

- ... no labels available -> group by similarity (unsupervised learning scenario)
- ... to hopefully detect "intrinsic" structure in the data ("natural clusters")
- ... to hopefully better understand/analyze the data through reduction to important patterns
- > ... to detect outliers

Clustering search results

Source: http://yippy.com/

Grouping topical categories

Finding communities in social networks

http://hci.stanford.edu/jheer/projects/vizster/

Hierarchical vs. partitional/flat clustering

Hierarchical

- Detailed, insightful hierarchies/dendrograms
- Simple but expensive algorithms
 - > Top-down (divisive)
 - ➤ Bottom-up (agglomerative)

Partitional/flat

- Coarse data overview
- Level of detail depends on number of clusters
- > Relatively efficient algorithms
 - > K-means
 - > EM on mixture models
 - **>** ...

From metric distances to similarities

Similarity is typically based on a metric distance:

A data space M with distance function $d: M \times M \to \mathbb{R}$ is called a **metric space** if for any $x, y, z \in M$:

1.
$$d(x, y) = 0$$
 iff $x = y$

2.
$$d(x,y) = d(y,x)$$
 (symmetry)

3.
$$d(x, z) \le d(x, y) + d(y, z)$$
 (triangle inequality)

In a metric space M with distance function d the similarity between any

$$x,y \in M$$
 can be defined as $sim(x,y) \coloneqq \frac{1}{1+d(x,y)}$ or $sim(x,y) \coloneqq \frac{1}{e^{d(x,y)}}$

Metric distance	Definition	
Euclidean	$\ \mathbf{x} - \mathbf{y}\ = \sqrt{\sum_{i} (x_i - y_i)^2}$	
Manhattan	$\ \mathbf{x} - \mathbf{y}\ _1 = \sum_i x_i - y_i $	
Maximum	$\ \mathbf{x} - \mathbf{y}\ _{\infty} = \max_{i} x_i - y_i $	
Mahalanobis	$d_{maha}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} \left(\frac{x_{i-}y_{i}}{\sigma_{i}}\right)^{2}}$	(for normally distributed data)

Other popular similarity and distance measures

Pearson correlation

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}$$
 (similarity measure)
$$d_{\rho}(\mathbf{x}, \mathbf{y}) = \frac{1 - \rho(\mathbf{x}, \mathbf{y})}{2}$$
 (distance metric)

Cosine similarity

$$csim(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

$$d_{csim}(\mathbf{x}, \mathbf{y}) = 1 - csim(\mathbf{x}, \mathbf{y}) \text{ (distance measure)}$$

Jaccard similarity

$$J(\mathbf{c}, \mathbf{c}') = \frac{|\mathbf{c} \cap \mathbf{c}'|}{|\mathbf{c} \cup \mathbf{c}'|} \text{ (similarity measure)}$$
$$d_I(\mathbf{c}, \mathbf{c}') = 1 - J(\mathbf{c}, \mathbf{c}') \text{ (distance metric)}$$

Internal clustering criteria

- General goal: For objects $\mathbf{x}_1, \dots, \mathbf{x}_n$ with pair-wise similarities, construct $k \leq n$ clusters $\mathbf{c}_1, \dots, \mathbf{c}_k$ such that
 - Intra-cluster similarity is high

$$\frac{1}{k} \sum_{i} \left(\frac{1}{|\mathbf{c}_{i}|(|\mathbf{c}_{i}|-1)} \sum_{\mathbf{x},\mathbf{x}' \in \mathbf{c}_{i}} sim(\mathbf{x},\mathbf{x}') \right) \text{ or } \frac{1}{k} \sum_{i} \left(\frac{1}{|\mathbf{c}_{i}|} \sum_{\mathbf{x} \in \mathbf{c}_{i}} sim(\mathbf{x},\mathbf{c}_{i}^{*}) \right)$$

> Inter-cluster similarity is low

$$\frac{1}{\sum_{\mathbf{c}_i,\mathbf{c}_j}|\mathbf{c}_i|\left|\mathbf{c}_j\right|}\sum_{\mathbf{x}\in\mathbf{c}_i,\mathbf{x}'\in\mathbf{c}_j}sim(\mathbf{x},\mathbf{x}') \text{ or } \frac{1}{k(k-1)}\sum_{\mathbf{c}_i^*,\mathbf{c}_j^*}sim(\mathbf{c}_i^*,\mathbf{c}_j^*)$$

Centroid: element representing the center of the cluster, e.g. in vector space:

$$\mathbf{c}_i^* = \frac{1}{|\mathbf{c}_i|} \sum_{\mathbf{x} \in \mathbf{c}_i} \mathbf{x}$$

Clustroid: cluster point that is closest to all cluster points

External clustering criteria (1)

- How well does the clustering of N elements $C = \{c_1, ..., c_k\}$ represent the ground truth classes $G = \{c'_1, ..., c'_l\}$
 - Purity (each cluster should possibly contain only elements from one class)

$$Purity(\boldsymbol{c}, \boldsymbol{G}) = \frac{1}{N} \sum_{i=1}^{k} \max_{j} \{ |\boldsymbol{c}_{i} \cap \boldsymbol{c}'_{j}| \}$$

Note: purity is 1 if each element is in its own cluster

Normalized mutual information (each cluster should possibly contain only elements from one class and possibly all the elements from that class)

$$NMI(\boldsymbol{C}, \boldsymbol{G}) = \frac{\sum_{i} \sum_{j} \frac{|\boldsymbol{c}_{i} \cap \boldsymbol{c}'_{j}|}{N} \log \frac{N|\boldsymbol{c}_{i} \cap \boldsymbol{c}'_{j}|}{|\boldsymbol{c}_{i}||\boldsymbol{c}'_{j}|}}{\frac{1}{2} \left(\sum_{i} \frac{|\boldsymbol{c}_{i}|}{N} \log \frac{N}{|\boldsymbol{c}_{i}|} + \sum_{i} \frac{|\boldsymbol{c}'_{i}|}{N} \log \frac{N}{|\boldsymbol{c}'_{i}|}\right)}$$

External clustering criteria (2)

- How well does the clustering of N elements $C = \{c_1, ..., c_k\}$ represent the ground truth classes $G = \{c'_1, ..., c'_l\}$
 - > Rand index (accuracy, i.e., percentage of agreements with ground truth)

$$Rand(\mathbf{C}, \mathbf{G}) = \frac{TP + TN}{TP + TN + FP + FN}$$

where

TP: # pairs in same group in C and in G

TN: # pairs in different groups in C and in G

FP: # pairs in same group in C but in different groups in G

FN: # pairs in same group in G but in different groups in C

Precision, Recall, F-measure can be defined analogously

Impossibility Theorem

Let $f_d: D \mapsto 2^D$ be a partitioning function on the dataset D based on a (metric or non-metric) distance function $d: D \times D \mapsto \mathbb{R}_0$ that satisfies $d(x,y) = 0 \Leftrightarrow x = y$

The following axioms cannot be satisfied simultaneously:

Scale-invariance:

for any d and any $\alpha > 0$: $f_d = f_{\alpha d}$

- Expressiveness (control over the data): for any partitioning $\Pi \subseteq 2^D$ there exists a d, such that f_d produces Π
- Consistency:

for any d, let d' be such that d'(x,y) < d(x,y) if x,y are in the same cluster created by f_d and d'(x,y) > d(x,y) otherwise, then $f_{d'} = f_d$

Source: J. Kleinberg, NIPS 2002

Simple taxonomy of generic clustering approaches

Hierarchical clustering

Divisive/top-down

- > Start with a single cluster containing the whole dataset
- In each iteration:

```
identify the cluster \mathbf{c} with lowest intra-cluster similarity divide it into two clusters \mathbf{c}_1, \mathbf{c}_2 with minimal sim(\mathbf{c}_1, \mathbf{c}_2) stop when each cluster has only one element
```

With exhaustive search $O(2^n)$

Agglomerative/bottom-up

- > Start with a cluster for each element in the dataset
- In each iteration:

```
identify the two clusters \mathbf{c}_1, \mathbf{c}_2 with maximal sim(\mathbf{c}_1, \mathbf{c}_2) merge \mathbf{c}_1, \mathbf{c}_2 into \mathbf{c} = \mathbf{c}_1 \cup \mathbf{c}_2 stop when there is single cluster
```

 $O(n^3)$ (at best $O(n^2)$ for special cases) Best known methods: **SLINK**, **CLINK**

Hierarchical clustering: Single-link vs. complete-link

- ightharpoonup Let $\max\{d(\mathbf{c},\mathbf{c}'),d(\mathbf{c},\mathbf{c}'')\}\geq d(\mathbf{c},\mathbf{c}'\cup\mathbf{c}'')$ for all partitions $\mathbf{c},\mathbf{c}',\mathbf{c}''$
 - ➤ Single-link method: $d(\mathbf{c}, \mathbf{c}') = d(\mathbf{x}, \mathbf{x}')$, such that $\mathbf{x} \in \mathbf{c}$ and $\mathbf{x}' \in \mathbf{c}'$ have the minimum distance of all elements from \mathbf{c}, \mathbf{c}'
 - ➤ Complete-link method: $d(\mathbf{c}, \mathbf{c}') = d(\mathbf{x}, \mathbf{x}')$, such that $\mathbf{x} \in \mathbf{c}$ and $\mathbf{x}' \in \mathbf{c}'$ have the maximum distance of all elements from \mathbf{c}, \mathbf{c}' (merge the two clusters with smallest maximum pairwise distance)

Partitional clustering approaches

K-means (1)

For given data records $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^m$, find $k \leq n$ clusters $\mathbf{c}_1, ..., \mathbf{c}_k$ according to some similarity measure sim and a cluster stability threshold t

Randomly choose prototype clusters $\mathbf{c}_1,...,\mathbf{c}_k$, by choosing random centroids and assigning a point to its closest centroid

While there exists
$$\mathbf{c}_i$$
 with $\sum_{\mathbf{x} \in \mathbf{c}_i} \|\mathbf{x} - \mathbf{c}_i^*\|^2 > t$
For $j \coloneqq 1$ to n do
Assign \mathbf{x}_j to \mathbf{c}_l with the highest $sim(\mathbf{c}_l^*, \mathbf{x}_j)$
For $j \coloneqq 1$ to k do
Recompute \mathbf{c}_j^* //where $\mathbf{c}_j^* = \frac{1}{|\mathbf{c}_j|} \sum_{\mathbf{x} \in \mathbf{c}_j} \mathbf{x}$

K-means (2)

> Example

From http://astrostatistics.psu.edu/su09/lecturenotes/clus2.html

K-means (3)

- In practice, runtime is polynomial
- \triangleright Theoretical complexity is exponential $(2^{\Omega(n)})$
- \blacktriangleright k can be determined experimentally or based on the minimum-description-length (MDL) principle
- \triangleright Choice of initial prototype vectors influences the result; often k-means is re-run multiple times with random choices
- ➤ Initial prototype vectors could be chosen by using another very efficient
 clustering method (on random sample of the data records)
- Any arbitrary metric can be used

Getting *k* right

1) For increasing values of k estimate the change of the average distance to the centroid

Choose k for which average distance changes very little

2) MDL criterion: Check whether cost of encoding the information of the current cluster configuration exceeds the cost of the previous configuration

Mixture models for clustering (1)

Resolving mixtures through expectation maximization (EM) for clustering

- 1. Expectation step: Estimate the expected membership value of each point x_i given the current estimations of μ_A , σ_A , μ_B , σ_B , p_A , p_B
- 2. Maximization step: Maximize the likelihood of μ_A , σ_A , μ_B , σ_B , p_A , p_B in light of the observations (i.e., use the expected membership values to re-estimate the parameters)

Mixture models for clustering (2)

Resolving mixtures through expectation maximization (EM)

$$L(\mu_A, \sigma_A, \mu_B, \sigma_B, p_A; x_1, \dots, x_n) = \prod_i (p_A P(x_i|A) + p_B P(x_i|B))$$

- > EM in practice
 - Initialize the parameters μ_A , σ_A , μ_B , σ_B , p_A , p_B to some random values (note: $p_A + p_B = 1$)
 - \triangleright E-step: Compute expected membership values $P(A|x_i)$, $P(B|x_i)$
 - ➤ M-step: Re-estimate the parameters
 - ➤ Iterate steps 2 and 3 until convergence (i.e., until changes of log likelihood are negligible)

Mode-seeking clustering with Mean-Shift

Method to locate the maxima of a density function

Select $\mathbf{x}_1, ..., \mathbf{x}_k$ of the n sample points (at random) as modes While $\mathbf{x}_1, ..., \mathbf{x}_k$ not converged

For each \mathbf{x}_i

$$m(\mathbf{x}_i) := \frac{\sum_{\mathbf{y} \in Nb(\mathbf{x}_i)} K(\mathbf{y}, \mathbf{x}_i) \mathbf{y}}{\sum_{\mathbf{y} \in Nb(\mathbf{x}_i)} K(\mathbf{y}, \mathbf{x}_i)}, \text{ with: } K(\mathbf{y}, \mathbf{x}) = e^{c \|\mathbf{y} - \mathbf{x}\|}$$
$$\mathbf{x}_i := m(\mathbf{x}_i)$$

Mean-Shift visualization

Mean shift vector always points toward the direction of maximum increase

in density

Efficient mode-seeking clustering with DBSCAN

DBSCAN: density-based clustering for applications with noise

```
For each data point x do
    Insert x into (spatial) index //(e.g. R-tree)
For each data point x do
    Locate all points with distance less than d_max to x
    If these points form a single cluster then
        Add x to this cluster

Else
    If there are at least min_pts data points (that do not yet belong to a cluster) such that for all point pairs the distance is less than d_max then
        Construct a new cluster with these points
```

- ightharpoonup Mode-seeking algorithm with average run-time: $O(n \log n)$
- Data points that are added later can be easily assigned to a cluster
- Points that do not belong to any cluster are considered "noise"

Spectral clustering techniques

- Typically used derive a lower-dimensional representation of the data
- Variant 1
 - \triangleright Map each data point into k-dimensional space
 - Assign each point to its highest-value dimension (strongest spectral component)
- Variant 2
 - \triangleright Compute k clusters for the data points (using any clustering algorithm)
 - \triangleright Project data points onto k centroid vectors ("axes" of k-dim. space)

Spectral clustring

Spectral clustering algorithm for variant 1

```
Construct similarity graph of n data points
Construct graph Laplacian L = D - W // D: diagonal with
                               //D_{ii} =degree of i'th node
                        //W weighted adjacency matrix
Compute smallest k Eigenvalues and Eigenvectors
                                       //Lx = \lambda Dx
                                         //\lambda: Eigenvalue
Let M be the n \times k matrix with these Eigenvectors
as columns
Treat the n rows of M as k-dim. data points
Run k-means with these points
```

Runtime: $\Theta(|L|^2)$

27

Spectral clustering – choosing k

> Theorem

- All Eigenvalues of a graph Laplacian are non-negative reals.
- \triangleright The multiplicity k of the smallest Eigenvalue 0 is the number of connected components of the graph.
- The corresponding Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ are indicator vectors of the components $\mathbf{x}_i(j) = 1$ if node j is in the i'th component, and 0 otherwise.

Source: U. von Luxburg, <u>A Tutorial on Spectral Clustering</u>

Summary

- Clustering goals
 - > Internal criteria
 - > External criteria
 - > Impossibility theorem
- Hierarchical clustering
 - Divisive
 - Agglomerative
 - Merging based on single-link, complete-link heuristics
- Flat clustering
 - K-means (getting k right)
 - Mean-shift
 - > DBSCAN
 - Spectral clustering