

UNSUPERVISED LEARNING – CLUSTERING

- \triangleright Clustering overview
- \triangleright Internal and external clustering criteria
- \triangleright Impossibility Theorem for clustering
- \triangleright Hierarchical clustering
- \triangleright Single-link, complete-link heuristics
- \triangleright Partitional/flat clustering algorithms

\triangleright Why clustering?

- \triangleright ... no labels available \rightarrow group by similarity (unsupervised learning scenario)
- \triangleright ... to hopefully detect "intrinsic" structure in the data ("natural clusters")
- \triangleright ... to hopefully better understand/analyze the data through reduction to important patterns
- \triangleright ... to detect outliers

Clustering search results

Finding communities in social networks

<http://hci.stanford.edu/jheer/projects/vizster/>

Hierarchical vs. partitional/flat clustering

\triangleright Hierarchical

- \triangleright Detailed, insightful hierarchies/dendrograms
- \triangleright Simple but expensive algorithms
	- Top-down (divisive)
	- \triangleright Bottom-up (agglomerative)

\triangleright Partitional/flat

- \triangleright Coarse data overview
- \triangleright Level of detail depends on number of clusters
- \triangleright Relatively efficient algorithms
	- \triangleright K-means
	- \triangleright EM on mixture models

…

 Similarity is typically based on a metric distance: A data space M with distance function $d: M \times M \rightarrow \mathbb{R}$ is called a metric space if for any $x, y, z \in M$:

1. $d(x, y) = 0$ iff $x = y$

- 2. $d(x, y) = d(y, x)$ (symmetry)
- 3. $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality)

In a metric space M with distance function d the similarity between any

 $x, y \in M$ can be defined as $sim(x, y) \coloneqq \frac{1}{1 + d(x)}$ $\frac{1}{1+d(x,y)}$ or $sim(x,y)\coloneqq\frac{1}{e^{d(x)}}$ $e^{d(x,y)}$

Metric distance	Definition
Euclidean	$\ \mathbf{x} - \mathbf{y}\ = \sqrt{\sum_i (x_i - y_i)^2}$
Manhattan	$ \mathbf{x} - \mathbf{y} _1 = \sum_i x_i - y_i $
Maximum	$\ \mathbf{x} - \mathbf{y}\ _{\infty} = \max_{i} x_i - y_i $
Mahalanobis	$d_{maha}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_i \left(\frac{x_i - y_i}{\sigma_i}\right)^2}$ (for normally distributed data)

Other popular similarity and distance measures

\triangleright Pearson correlation

Hasso Plattner stitut

$$
\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2} \sqrt{\sum_{i} (y_i - \bar{y})^2}}
$$
 (similarity measure)

$$
d_{\rho}(\mathbf{x}, \mathbf{y}) = \frac{1 - \rho(\mathbf{x}, \mathbf{y})}{2}
$$
 (distance metric)

 \triangleright Cosine similarity

$$
csim(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{||\mathbf{x}|| ||\mathbf{y}||}
$$

$$
d_{csim}(\mathbf{x}, \mathbf{y}) = 1 - csim(\mathbf{x}, \mathbf{y})
$$
(distance measure)

\triangleright Jaccard similarity

 $J(c, c') = \frac{|c \cap c'|}{|c| + |c'|}$ $\frac{C\cap C}{C\cup C'}$ (similarity measure) $d_j(\mathbf{c}, \mathbf{c}') = 1 - J(\mathbf{c}, \mathbf{c}')$ (distance metric)

 \triangleright General goal: For objects $x_1, ..., x_n$ with pair-wise similarities, construct $k \leq n$ clusters $c_1, ..., c_k$ such that

 Intra-cluster similarity is high 1 \boldsymbol{k} $\sum_{i}\left(\frac{1}{1-\left|\frac{1}{2}\right|}\right)$ $c_i | (|c_i|-1)$ $\frac{1}{i\left(\frac{1}{|\mathbf{c}_i|(|\mathbf{c}_i|-1)}\sum_{\mathbf{x},\mathbf{x}\prime\in\mathbf{c}_i}sim(\mathbf{x},\mathbf{x}')\right)}$ or $\frac{1}{k}$ \boldsymbol{k} $\sum_{i}\left(\frac{1}{1}\right)$ $\frac{1}{\vert \mathbf{c}_i \vert} \sum_{\mathbf{x} \in \mathbf{c}_i} sim(\mathbf{x}, \mathbf{c}_i^*)$ $i\left(\overline{|c_i|}\right)$ Δ xec_i \triangleright Inter-cluster similarity is low 1 $\sum_{\mathbf{c}_i, \mathbf{c}_j}|\mathbf{c}_i||\mathbf{c}_j$ $\sum_{\mathbf{x}\in\mathbf{c}_i,\mathbf{x}\prime\in\mathbf{c}_j} sim(\mathbf{x}, \mathbf{x}')$ or $\frac{1}{k(k-1)}$ $\frac{1}{k(k-1)}{\sum_{\mathbf{c}_i}^*}_{,\mathbf{c}_j}$ * sim $\left(\mathbf{c}_i$ *, \mathbf{c}_j * ${c_i}^*$, ${c_j}^*$ **Cluster** centroids or clustroids Centroid: element representing the center of the cluster, e.g. in vector space: $c_i^* = \frac{1}{|c_i|}$ $\frac{1}{|c_i|} \sum_{x \in c_i} x$ Clustroid: cluster point that is closest to all cluster points

- \triangleright How well does the clustering of N elements $\mathbf{C} = \{c_1, ..., c_k\}$ represent the ground truth classes $\boldsymbol{G} = \{\boldsymbol{c}_1', ..., \boldsymbol{c}_l'\}$
	- \triangleright Purity (each cluster should possibly contain only elements from one class) $Purity(\mathbf{C}, \mathbf{G}) =$ 1 \overline{N} > max $\max_{j}\{|c_i \cap c'_j|\}$ \boldsymbol{k} $i=1$

Note: purity is 1 if each element is in its own cluster

 \triangleright Normalized mutual information (each cluster should possibly contain only elements from one class and possibly all the elements from that class)

$$
NMI(\mathbf{C}, \mathbf{G}) = \frac{\sum_{i} \sum_{j} \frac{|\mathbf{c}_{i} \cap \mathbf{c}'_{j}|}{N} \log \frac{N|\mathbf{c}_{i} \cap \mathbf{c}'_{j}|}{|\mathbf{c}_{i}||\mathbf{c}'_{j}|}}{\frac{1}{2} \left(\sum_{i} \frac{|\mathbf{c}_{i}|}{N} \log \frac{N}{|\mathbf{c}_{i}|} + \sum_{i} \frac{|\mathbf{c}'_{i}|}{N} \log \frac{N}{|\mathbf{c}'_{i}|} \right)}
$$

- \triangleright How well does the clustering of N elements $\mathbf{C} = \{c_1, ..., c_k\}$ represent the ground truth classes $\boldsymbol{G} = \{\boldsymbol{c}_1', ..., \boldsymbol{c}_l'\}$
	- \triangleright Rand index (accuracy, i.e., percentage of agreements with ground truth) $Rand(C, G) =$ $TP + TN$ $TP + TN + FP + FN$

where

 $TP:$ # pairs in same group in C and in G

 TN : # pairs in different groups in C and in G

 $FP:$ # pairs in same group in C but in different groups in G

 FN : # pairs in same group in G but in different groups in C

 \triangleright Precision, Recall, F-measure can be defined analogously

Exect $f_d: D \mapsto 2^D$ be a partitioning function on the dataset D based on a (metric or non-metric) distance function $d: D \times D \mapsto \mathbb{R}_0$ that satisfies $d(x, y) = 0 \Leftrightarrow x = y$

The following axioms cannot be satisfied simultaneously:

 $Scale-invariance$:

for any d and any $\alpha > 0$: $f_d = f_{\alpha d}$

 \triangleright Expressiveness (control over the data): for any partitioning $\Pi \subseteq 2^D$ there exists a d , such that f_d produces Π

Consistency:

for any d, let d' be such that $d'(x, y) < d(x, y)$ if x, y are in the same cluster created by f_d and $d'(x, y) > d(x, y)$ otherwise, then $f_{d'} = f_d$

Source: [J. Kleinberg, NIPS 2002](http://books.nips.cc/papers/files/nips15/LT17.pdf)

\triangleright Divisive/top-down

- \triangleright Start with a single cluster containing the whole dataset
- \triangleright In each iteration:

identify the cluster **with lowest intra-cluster similarity**

- divide it into two clusters c_1 , c_2 with minimal $sim(c_1, c_2)$
- stop when each cluster has only one element

```
With exhaustive search O(2^n)
```
\triangleright Agglomerative/bottom-up

- \triangleright Start with a cluster for each element in the dataset
- \triangleright In each iteration:

identify the two clusters \mathbf{c}_1 , \mathbf{c}_2 with maximal $sim(\mathbf{c}_1, \mathbf{c}_2)$

merge $\mathbf{c}_1, \mathbf{c}_2$ into $\mathbf{c} = \mathbf{c}_1 \cup \mathbf{c}_2$

stop when there is single cluster

 $O(n^3)$ (at best $O(n^2)$ for special cases) Best known methods: SLINK, CLINK

Hasso Plattner **Hierarchical clustering: Single-link vs. complete-link**

> Let max $\{d(c, c'), d(c, c'')\} \geq d(c, c' \cup c'')$ for all partitions c, c', c''

- Single-link method: $d(c, c') = d(x, x')$, such that $x \in c$ and $x' \in c'$ have the minimum distance of all elements from c, c'
- \triangleright Complete-link method: $d(c, c') = d(x, x')$, such that $x \in c$ and $x' \in c'$ have the maximum distance of all elements from c, c' (merge the two clusters with smallest maximum pairwise distance)

Partitional clustering approaches

K-means (1)

For given data records $x_1, ..., x_n \in \mathbb{R}^m$, find $k \leq n$ clusters $c_1, ..., c_k$ according to some similarity measure sim and a cluster stability threshold t

Randomly choose prototype clusters c_1 , ..., c_k , by choosing random centroids and assigning a point to its closest centroid

While there exists \mathbf{c}_i with $\sum_{\mathbf{x}\in \mathbf{c}_i} \lVert \mathbf{x}-\mathbf{c}_i\rVert^2 > t$

For $j \coloneqq 1$ to n do

Assign \mathbf{x}_j to \mathbf{c}_l with the highest $sim(\mathbf{c}_l^*,\mathbf{x}_j)$ For $i \coloneqq 1$ to k do

> Recompute \mathbf{c}_j^* //where $\mathbf{c}_j^* = \frac{1}{|\mathbf{c}_j|^2}$ $\frac{1}{|c_j|}\sum_{X \in c_j} X$

K-means (2)

 \triangleright Example

From <http://astrostatistics.psu.edu/su09/lecturenotes/clus2.html>

- \triangleright In practice, runtime is polynomial
- > Theoretical complexity is exponential $(2^{\Omega(n)})$
- \triangleright k can be determined experimentally or based on the minimum-descriptionlength (MDL) principle
- \triangleright Choice of initial prototype vectors influences the result; often k-means is re-run multiple times with random choices
- \triangleright Initial prototype vectors could be chosen by using another $-$ very efficient – clustering method (on random sample of the data records)
- \triangleright Any arbitrary metric can be used

1) For increasing values of k estimate the change of the average distance to the centroid

Choose k for which average distance changes very little

2) MDL criterion: Check whether cost of encoding the information of the current cluster configuration exceeds the cost of the previous configuration

 Resolving mixtures through expectation maximization (EM) for clustering $L(\mu_A, \sigma_A, \mu_B, \sigma_B, p_A; x_1, ..., x_n) = | (p_A P(x_i | A) + p_B P(x_i | B))$ i Ά \mathcal{B}

- **1. Expectation step:** Estimate the expected membership value of each point x_i given the current estimations of μ_A , σ_A , μ_B , σ_B , p_A , p_B
- 2. Maximization step: Maximize the likelihood of μ_A , σ_A , μ_B , σ_B , p_A , p_B in light of the observations (i.e., use the expected membership values to re-estimate the parameters)

- Resolving mixtures through expectation maximization (EM) $L(\mu_A, \sigma_A, \mu_B, \sigma_B, p_A; x_1, ..., x_n) = | (p_A P(x_i | A) + p_B P(x_i | B))$ i
- \triangleright EM in practice
	- \triangleright Initialize the parameters μ_A , σ_A , μ_B , σ_B , p_A , p_B to some random values (note: $p_A + p_B = 1$)
	- E-step: Compute expected membership values $P(A|x_i)$, $P(B|x_i)$
	- \triangleright M-step: Re-estimate the parameters
	- \triangleright Iterate steps 2 and 3 until convergence (i.e., until changes of log likelihood are negligible)

 \triangleright Method to locate the maxima of a density function

Select $X_1, ..., X_k$ of the *n* sample points (at random) as modes While $\mathbf{x}_1, ..., \mathbf{x}_k$ not converged

For each X_i

$$
m(\mathbf{x}_i) := \frac{\sum_{\mathbf{y} \in Nb(\mathbf{x}_i)} K(\mathbf{y}, \mathbf{x}_i) \mathbf{y}}{\sum_{\mathbf{y} \in Nb(\mathbf{x}_i)} K(\mathbf{y}, \mathbf{x}_i)}, \text{ with: } K(\mathbf{y}, \mathbf{x}) = e^{c||\mathbf{y} - \mathbf{x}||}
$$

$$
\mathbf{x}_i := m(\mathbf{x}_i)
$$

Mean-Shift visualization

 \triangleright Mean shift vector always points toward the direction of maximum increase in density

DBSCAN: density-based clustering for applications with noise

Hasso

```
For each data point x do
   Insert x into (spatial) index //(e.g. R-tree)
For each data point x do
   Locate all points with distance less than d max to x If these points form a single cluster then 
       Add x to this cluster
    Else 
        If there are at least min_{\theta} pts data points (that
       do not yet belong to a cluster) such that for all 
       point pairs the distance is less than d max then
```
Construct a new cluster with these points

- \triangleright Mode-seeking algorithm with average run-time: $O(n \log n)$
- \triangleright Data points that are added later can be easily assigned to a cluster
- \triangleright Points that do not belong to any cluster are considered "noise"

 \triangleright Typically used derive a lower-dimensional representation of the data

\triangleright Variant 1

- \triangleright Map each data point into k-dimensional space
- \triangleright Assign each point to its highest-value dimension (strongest spectral component)

\triangleright Variant 2

- \triangleright Compute k clusters for the data points (using any clustering algorithm)
- \triangleright Project data points onto k centroid vectors ("axes" of k-dim. space)

\triangleright Spectral clustering algorithm for variant 1

Construct similarity graph of n data points Construct graph Laplacian $L = D - W / D$: diagonal with // D_{ii} =degree of *i*'th node $1/W$ weighted adjacency matrix Compute smallest k Eigenvalues and Eigenvectors $//\mathbf{L}\mathbf{x} = \lambda D\mathbf{x}$ $1/\lambda$: Eigenvalue Let M be the $n \times k$ matrix with these Eigenvectors as columns Treat the n rows of M as k -dim. data points Run k -means with these points

Runtime: $\Theta(|L|^2)$

Theorem

- \triangleright All Eigenvalues of a graph Laplacian are non-negative reals.
- \triangleright The multiplicity k of the smallest Eigenvalue 0 is the number of connected components of the graph.
- \triangleright The corresponding Eigenvectors $x_1, ..., x_k$ are indicator vectors of the components $\mathbf{x}_i(j) = 1$ if node *j* is in the *i*'th component, and 0 otherwise.

Source: U. von Luxburg, [A Tutorial](http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf) [on Spectral](http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf) [Clustering](http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/luxburg06_TR_v2_4139[1].pdf)

Summary

\triangleright Clustering goals

- \triangleright Internal criteria
- \triangleright External criteria
- \triangleright Impossibility theorem
- \triangleright Hierarchical clustering
	- \triangleright Divisive
	- \triangleright Agglomerative
	- Merging based on single-link, complete-link heuristics

\triangleright Flat clustering

- \triangleright K-means (getting k right)
- \triangleright Mean-shift
- \triangleright DBSCAN
- \triangleright Spectral clustering