
UNSUPERVISED LEARNING – TOPIC MODELS 
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Outline 

 

 Latent topics  

 

 Basics of Linear Algebra 

 

 Latent Semantic Analysis 

 

 Probabilistic Latent Semantic Analysis 

 

 Latent Dirichlet Allocation 
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Latent topics (1) 

D1 D2 D3 D4 D5 D6 

champion 3 2 0 0 0 0 

football 2 0 0 0 0 0 

goal 4 3 0 1 0 0 

law 0 0 2 3 0 0 

party 0 0 6 5 0 0 

politician 0 0 4 4 0 0 

rain 0 0 0 0 3 3 

score 4 5 0 0 0 0 

soccer 0 3 0 0 0 0 

weather 0 0 0 0 5 4 

wind 0 1 0 0 2 3 

Sports? 

Politics? Weather? Sports? 

Politics? 

Weather? 
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Latent topics (2) 

 

 

 

If two documents  
have high overlap  
of words they are  
probably about the 
same topic 
 
Can we model this? 
 

Typically very sparse 
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Possible approaches to topic models 

 Algebraic approach 

 

 Given: 𝑚 × 𝑛 word-document 
matrix (𝑚 words, 𝑛 documents) 

 

 Question: Is it possible to map 
documents from high-dim. (i.e., 
𝑚-dim. vector space into 𝑘-dim. 
vector space, with 𝑘 ≪ 𝑚 and 
preserve, or even reinforce their 
similarity? 

 

 

 Probabilistic approach 

 

 Given: 𝑚 × 𝑛 word-document 
matrix (𝑚 words, 𝑛 documents) 

 

 Question: Is it possible to 
estimate the joint probability of 
terms and docs as a 
decomposition of term-doc 
distributions over 𝑘 ≪ 𝑚 topics? 
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Basics: Linear independence, rank, and basis 

 Vectors 𝐯1, … , 𝐯𝑘 are linearly independent if   𝛼𝑖𝐯𝑖
𝑘
𝑖=1 = 0 is only 

possible for 𝛼𝑖 = 0, ∀ 𝑖 
 

 The rank of a matrix is the maximal number of independent row or 
column vectors 

 

 The basis of an 𝑛 × 𝑛 matrix is the set S of row (column) vectors such that 
all rows (columns) are linear combinations of vectors from S  

 

 S is an orthonormal basis if for all 𝐯𝑖 , 𝐯𝑗 ∈ 𝑆: 𝐯𝑖 2 = 1 = 𝐯𝑗 2
 and 

𝐯𝑖
𝑇𝐯𝑗 = 0 
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Basics: Eigenvectors and Eigenvalues 

 For an 𝑛 × 𝑛 matrix 𝐴, 𝑛 × 1 vector 𝐯 and a scalar 𝜆 that satisfy 𝐴𝐯 = 𝜆𝐯 
are called Eigenvector and Eigenvalue of 𝐴 

 

 Eigenvalues are the roots of the characteristic function 

 𝑓 𝜆 = det 𝐴 − 𝜆𝐼 , with  

det 𝐴 = (−1)(𝑖+𝑗)𝑎𝑖𝑗 det(𝐴
\ij )

𝑖=𝑛

𝑖=1
𝑗=1

 

 

 

 

 Furthermore, if 𝐴 is symmetric, all Eigenvalues are real! 
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 𝐴 \ij  is 𝐴 without the 𝑖’th  
row and the 𝑗’th column 



Spectral (or principal components) theorem 

 

 For an 𝑛 × 𝑛 symmetric matrix 𝐴 with Eigenvalues 𝜆1, … , 𝜆𝑛 and 
Eigenvectors 𝐯1, … , 𝐯𝑛 forming an orthonormal basis of 𝐴 ( 𝐯𝑖 2 = 1, ∀𝑖) 
the following holds: 

  𝐷 = 𝐯1…𝐯𝑛
𝑇𝐴(𝐯1…𝐯𝑛) and 𝐴 = (𝐯1…𝐯𝑛)𝐷 𝐯1…𝐯𝑛

𝑇,  

where 𝐷 is the diagonal matrix holding 𝜆1, … , 𝜆𝑛 

 

 

 

 

 

 

 

 

 
 

 Can we generalize this for 𝑚 × 𝑛 matrices?   

 For orthogonal Eigenvectors, each 
Eigenvector represents the variability of the 
data in one dimension!  

 
 If Eigenvectors form orthonormal basis, 

they have equal length their importance is 
encoded in the corresponding Eigenvalues! 
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Source: Wikipedia 



Singular value decomposition (SVD) theorem 

 For every real-valued 𝑚 × 𝑛 matrix 𝐴 with rank 𝑟, there exists a 
decomposition (i.e., factorization) 𝐴 = 𝑈𝐷𝑉𝑇 with 

 

 𝑈:𝑚 × 𝑟 matrix with orthonormal column vectors 

 𝐷: 𝑟 × 𝑟 diagonal matrix  

 𝑉: 𝑛 × 𝑟 matrix with orthonormal column vectors 

 

 The SVD is unique if the elements of 𝐷, i.e. the singular values of 𝐴, are 
sorted 

 

 Based on the Spectral Theorem the SVD of a real-valued 𝑚 × 𝑛 matrix 𝐴  
(i.e., 𝐴 = 𝑈𝐷𝑉𝑇) can be achieved as follows: 

 𝐷 contains the positive roots of the Eigenvalues of 𝐴𝑇𝐴, i.e. singular values of 𝐴, 
(these exist because 𝐴𝑇𝐴 is symmetric and positive definite:                      

 𝐯𝑇𝐴𝑇𝐴𝐯 > 0, ∀ 𝐯 ≠ 0)  

 𝑈 contains the Eigenvectors of 𝐴𝐴𝑇as columns 

 𝑉 contains the Eigenvectors of 𝐴𝑇𝐴 as columns 
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Low-rank approximation theorem  

 

 For an 𝑚 × 𝑛 matrix 𝐴 with rank 𝑟, let 𝐴′ ≔ 𝑈𝑘𝐷𝑘𝑉𝑘
𝑇 be an approximation 

of 𝐴, with 𝑘 ≤ 𝑟, 𝐷𝑘 containing the top-k largest values of 𝐷, 𝑈𝑘 and 
𝑉𝑘  containing the corresponding Eigenvectors. Among all 𝑚 × 𝑛 matrices 

𝑀, 𝐴′ minimizes 𝐴 −𝑀 𝐹
2
=   𝐴𝑖𝑗 −𝑀𝑖𝑗

2𝑛
𝑗

𝑚
𝑖=1  

𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 𝑁𝑜𝑟𝑚 
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Algebraic topic model: Latent Semantic Analysis (LSA) 

holds orthonormal  
Eigenvectors of 𝐴𝐴𝑇  
(term-term-similarity) 

holds orthonormal  
Eigenvectors of 𝐴𝑇𝐴  
(doc-doc similarity) 

positive roots of  
the Eigenvalues  
(singular values) 
of 𝐴𝑇𝐴  

Mapping existing docs 𝑑 𝑖 , 𝑑 𝑗 into latent space:  

𝑑 𝑖⟼ 𝐷𝑘
−1𝑈𝑘
𝑇
𝑑 𝑖 = 𝑑 𝑖

′ = 𝐷𝑘𝑉𝑘
𝑇
𝑖

 

𝑑 𝑗⟼ 𝐷𝑘
−1𝑈𝑘
𝑇
𝑑 𝑗 = 𝑑 𝑗

′ = 𝐷𝑘𝑉𝑘
𝑇
𝑗

 

          𝑞 ⟼ 𝐷𝑘
−1𝑈𝑘
𝑇
𝑞 = 𝑞 ′ (mapping of query) 

                        … and measure cosine-similarity 

Mapping of new doc 𝑑′ into latent space: 

𝑑 ⟼ 𝐷𝑘
−1𝑈𝑘
𝑇
𝑑 = 𝑑 ′ 

Add  𝑑 ′ as last column of 𝑉𝑘
𝑇 
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Impact of dimensions on term-term relatedness in LSA 

 LSA: Projection of data onto top-k Eigenvectors  𝐴 ≈ 𝑈𝑘𝐷𝑘𝑉𝑘
𝑇  

 What about term-term similarity??? 

 

 Typical behavior of term-term relatedness as a function of 𝑘 

      𝑈𝑘𝑈𝑘
𝑇 : 𝑚 ×𝑚 term-term similarity matrix 

relatedness 

# dimensions 

400 200 

relatedness 

# dimensions 

400 200 

Related  
terms 

Unrelated  
terms 

12 



Pros and cons of LSA 

 

 Principled versatile mathematical model that may reveal 

 Latent topics (i.e., “semantic” clusters) 

 Word-word similarities (synonymy, polysemy) 

 Relevant docs to a query 

 

 Computational and storage overhead 

 

 Unrealistic assumptions on the distribution of data (LSA works best for 
normally distributed data) 

 

 Principal Component Analysis (PCA) is very similar but more principled for 
normally distributed data; it employs data centering before applying SVD 
(complexity of SVD: 𝑂 𝑛2𝑘3 ) 

 

 How to choose 𝑘 appropriately? 
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Probabilistic topic models: Probabilistic LSA (PLSA) 

 View word-doc pairs as generated from topic: 𝑃 𝑤𝑑𝜏 = 𝑃 𝜏 𝑃(𝑤𝑑|𝜏) 

 Assume word and doc independence given topic: 
𝑃 𝑤𝑑𝜏 = 𝑃 𝜏 𝑃 𝑤 𝜏 𝑃(𝑑|𝜏) 

 

 

 

 

 

 

 

 

 With multinomial 𝑃 ∗ 𝜏  

 

𝜏 

𝑑 𝑤 

𝑃 𝜏 : probability distr.  
over topics 

𝑃(𝑑|𝜏): probability distr.  
over docs given topic 

𝑃(𝑤|𝜏): probability distr.  
over words given topic 

𝑃 𝑤𝑑    =         𝑃 𝑤 𝜏       𝑃 𝜏            𝑃(𝑑|𝜏)
𝜏
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latent topic 



Main difference between PLSA and LSA 

 Matrix factorization in PLSA is non-negative 
 

 Values represent probabilities (and are thus 𝐿1-normalized) 

 

 

Column vectors of 𝑈 in LSA 
(Eigenvectors  are orthonormal)  

𝑃(𝑤|𝜏1) 

𝑃(𝑤|𝜏2) 

Column vectors of 𝑈 in PLSA  
(non-negative matrix factorization) 
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Expectation Maximization for PLSA  

 𝑃 𝑤𝑑 =  𝑃 𝑤 𝜏 𝑃(𝑑|𝜏)𝑃 𝜏𝜏  

 𝑃 𝑤𝑗 , 𝑑𝑙 1≤𝑗≤𝑚,1≤𝑙≤𝑛
|𝜽 =   𝑃(𝑤𝑗|𝜏)𝑃(𝑑𝑙|𝜏)𝑃 𝜏𝜏𝑗,𝑙   

 Maximize log of above function (i.e., log likelihood) 
 

 Expectation (responsibilities of latent topics under current parameters): 
 

𝑃 𝜏 = 𝜏𝑖 𝑤𝑗 , 𝑑𝑙 =
𝑃 𝜏𝑖 𝑃 𝑤𝑗 𝜏𝑖 𝑃(𝑑𝑙|𝜏𝑖)

 𝑃 𝜏 𝑃 𝑤𝑗 𝜏 𝑃(𝑑𝑙|𝜏)𝜏

 

 

 Maximization (update parameters based on responsibilities): 
 

𝑃 𝑤𝑗 𝜏𝑖 ∝
 𝑓𝑟𝑒𝑞 𝑤𝑗 , 𝑑 𝑃 𝜏𝑖 𝑤𝑗 , 𝑑𝑑

 𝑓𝑟𝑒𝑞 𝑤, 𝑑 𝑃 𝜏𝑖|𝑤, 𝑑𝑑,𝑤

,  

 

𝑃 𝑑𝑙 𝜏𝑖 ∝
 𝑓𝑟𝑒𝑞 𝑤, 𝑑𝑙 𝑃 𝜏𝑖 𝑤, 𝑑𝑙𝑤

 𝑓𝑟𝑒𝑞 𝑤, 𝑑 𝑃 𝜏𝑖 𝑤, 𝑑𝑑,𝑤

, 

 

  𝑃 𝜏𝑖 ∝
  𝑓𝑟𝑒𝑞 𝑤, 𝑑 𝑃 𝜏𝑖 𝑤, 𝑑𝑤𝑑

 𝑓𝑟𝑒𝑞 𝑤, 𝑑𝑑,𝑤
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Tempered EM for PLSA 

 Example of tempered EM for regularization parameter 𝜆 < 1: 

 

𝑃 𝜏 = 𝜏𝑖 𝑤𝑗 , 𝑑𝑙 =
𝑃 𝜏𝑖 𝑃 𝑤𝑗 𝜏𝑖 𝑃 𝑑𝑙 𝜏𝑖

𝜆

 𝑃 𝜏 𝑃 𝑤𝑗 𝜏 𝑃 𝑑𝑙 𝜏𝜏
𝜆

 

 

 Dampens probabilities in M step and mitigates overfitting  
 

 Yields faster estimation procedure compared to other methods  
 

 How to get a good 𝜆? 
I. Set 𝜆 ≔ 1 and perform EM until the performance on test data deteriorates 

(early stopping) 

II. Decrease 𝜆, e.g., 𝜆 ← 𝜂𝜆,  𝜂 < 1 

III. As long as the performance on held-out data improves continue TEM 
iterations at this value and stop when decreasing does not yield further 
improvements, otherwise go to step (II.) 

IV. Perform some final iterations using both, training and held-out data 
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 Precision-recall curve for retrieval task on different corpora 

Retrieval performance of PLSA 

From: Thomas Hofmann, Probabilistic Latent Semantic Analysis, UAI’99   
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Predictive perplexity of PLSA 

 Perplexity: Measure of generalization (i.e., how well is overfitting mitigated?) 
 

 For different values of 𝑘, compute on a test corpus of 𝐷 docs: 

 

From: Thomas Hofmann, Probabilistic Latent Semantic Analysis, UAI’99   
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Model parameters 



Pros and cons of PLSA 

 Better empirical performance than LSA  
 

 Mitigates overfitting better than LSA 
 

 Different techniques can be used for estimation of probabilities (EM, 
tempered EM, Markov Chain Monte Carlo, …)  

 

 Computationally expensive 
 

 Selecting the right 𝑘 still remains a  problem 
 

 Overfitting is still a problem 
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Probabilistic topic models: Latent Dirichlet Allocation (LDA) 

 

 

 

 
 

 

 

 Each document is random mixture over latent topics 
 

 Generative model: 

Choose 𝑛~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜉  // length of doc 

Choose 𝛉𝑖~𝐷𝑖𝑟 𝛂  // where 1 ≤ 𝑖 ≤ 𝑚 and 𝛉𝑖  is a 𝑘-dimensional vector 

For each 𝑤𝑖𝑗 , 𝑗 = 1…𝑛 

 Choose 𝜏𝑖𝑗~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝛉𝑖  

 Choose 𝑤𝑖𝑗 from 𝑃 𝑤𝑖𝑗|𝜏𝑖𝑗 , 𝛃  // a multinomial distribution on 𝜏𝑖𝑗 

 // 𝛃 is a 𝑘 × 𝑊  matrix with 𝛽𝑢,𝑣 = 𝑃 𝑤𝑣 = 1|𝜏𝑢 = 1  

 

 

𝜏𝑖𝑗 𝑤𝑖𝑗 

𝛃 

𝑗 = 1…𝑛 

𝛉𝑖  𝛂 

𝑖 = 1…𝑚 
Per doc 
Per word in doc 

Plate notation 

Dirichlet prior on per-topic  
word distribution 

Dirichlet prior on per-doc  
topic distribution 
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Grounded version of the LDA model 

 

 

𝜏𝑖𝑗 𝑤𝑖𝑗 

𝛃 

𝑗 = 1…𝑛 

𝛉𝑖  𝛂 

𝑖 = 1…𝑚 
Per doc 
Per word in doc 

Plate notation 

𝛂 

𝛉1 
𝛉𝑚 

𝜏11 𝜏1𝑛 𝜏𝑚1 𝜏𝑚𝑛 

𝑤11 𝑤1𝑛 𝑤𝑚1 𝑤𝑚𝑛 

𝛃𝜏 𝛃𝜏′ 

⋯ 

𝒅𝒐𝒄𝒎 𝒅𝒐𝒄𝟏 

⋯ 
⋯ 

⋯ 

⋯ 

⋯ 
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Geormetric visualization of LDA 

 𝑘 topics are placed in a (𝑘 − 1)-dimensional probability simplex 
(spanned by the Dirichlet distribution) 

𝑃 𝜃𝑗1, … , 𝜃𝑗𝑘 =
1

𝐵𝑒𝑡𝑎 𝒂
 𝜃𝑗𝑖

𝑎𝑖−1
𝑘

𝑖=1
 

PLSA can place docs only at  
certain points in topic simplex 
 
 
LDA imposes smooth 
distribution on topic simplex 
and can place docs at 
arbitrary points in the simplex 

Source: D. Bleiet al.: Latent Dirichlet Allocation, JMLR 2003 
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Estimation of LDA parameters (1) 

 

 

 
 

 

        

 

 By Markov Condition: In a Bayesian network a node is conditionally 
independent of all its non-descendants given its parents 

 𝑃 𝒅1, … , 𝒅𝑚, 𝛕, 𝛉 𝛂, 𝛃 =  𝑃 𝛉𝑖|𝛂
𝑚
𝑖=1  𝑃 𝜏𝑖𝑗 𝛉𝑖 𝑃(𝑤𝑖𝑗|𝜏𝑖𝑗 , 𝛃)

𝑛𝑖
𝑗=1  

 

 

 Target function (analytically intractable)  

𝑃 𝒅1, … , 𝒅𝑚 𝛂, 𝛃 =  𝑃 𝛉𝑖|𝛂
𝑚

𝑖=1
  𝑃 𝜏𝑖𝑗 𝛉𝑖 𝑃(𝑤𝑖𝑗|𝜏𝑖𝑗 , 𝛃)

𝜏𝑖𝑗

𝑛𝑖

𝑗=1

𝑑𝛉𝑖 

 
 

 

𝜏𝑖𝑗 𝑤𝑖𝑗 

𝛃 

𝑗 = 1…𝑛 

𝛉𝑖  𝛂 

𝑖 = 1…𝑚 
Per doc 
Per word in doc 

Plate notation 

Observed word vectors for each doc 
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Estimation of LDA parameters (2) 

 Inference problem 

     Given doc 𝒅 = 𝑤1, … , 𝑤𝑛 , what topics does it belong to? 

     Estimate hidden parameters: 

𝑃 𝛉𝒅, 𝛕𝒅 𝒅, 𝛂, 𝛃) =
𝑃(𝛉𝒅, 𝛕𝒅, 𝒅|𝛂, 𝛃)

𝑃(𝒅|𝛂, 𝛃)
 

 Variational inference: Approximate 𝑃 𝛉𝒅, 𝛕𝒅 𝒅, 𝛂, 𝛃) with simpler     

      distribution 𝑄 𝛉𝒅, 𝛕𝒅 𝝂𝒅, 𝛟) and find: 

 
𝝂′𝒅, 𝛟′𝒅 = argmin

𝝂𝒅,𝛟𝒅

𝐾𝐿 𝑄 𝛉𝒅, 𝛕𝒅 𝝂𝒅, 𝛟𝒅) ∥ 𝑃 𝛉𝒅, 𝛕𝒅 𝒅, 𝛂, 𝛃)  

 

Multinomial Dirichlet 𝛟𝑗  

𝑗 = 1…𝑛 
𝛉𝑖  

𝑖 = 1…𝑚 

𝝂𝑖  𝜏𝑗 
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Optimization problem that yields  
tight lower-bound on log likelihood! 



LDA example 
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From: D. Blei et al.: 
Latent Dirichlet 
Allocation, JMLR 2003 



Perplexity of LDA 
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Pros and cons of LDA 

 Principled probabilistic model and inference (widely used, e.g., in 
Information Retrieval, Machine Learning, Natural Language Processing, …) 

 

 Better empirical behaviour than PLSA 
 

 Mitigates overfitting better than other topic models 

 

 High computational complexity, even with approximate inference 
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Summary 

 Latent topic models 

 

      LSA 

 Deerwester, S., et al., Improving Information Retrieval with Latent Semantic 
Indexing, Proceedings of the 51st Annual Meeting of the American Society for 
Information Science 25, 1988, pp. 36–40. 

      PLSA 

 T. Hofmann, Probabilistic Latent Semantic Analysis, Proceedings of the 
Twenty-Second Annual International SIGIR Conference on Research and 
Development in Information Retrieval (SIGIR-99), 1999. 

 

     LDA 

 D. Blei, A. Ng, and M. Jordan, Latent Dirichlet Allocation, Journal of Machine 
Learning Research, 3:993-1022, January 2003.  

 

     Also see Wikipedia articles on LSA, PLSA and LDA 
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