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» Bayesian networks
» Generative models
» Discriminative models
» Markov chains
» D-separation
» Hidden Markov Models

» Undirected models
» Factorization
» Hammersley-Clifford Theorem
» Moralization
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Intro

» What is a graphical model?
» Graph G(V,E)
» V:Set of random variables
» E(SV xV):Set of dependence relationships

» Why graphical models?
» Visualize the structure of probabilistic models

» Obtain insights into properties of variables and their interdependencies (e.g.
conditional independence, causality) through graph-theoretic means

» Perform probabilistic inference through graphical manipulations

» Types of graphical models

» Directed graphical models = Bayesian networks (coined by Judea Pearl 1985)
» Undirected graphical models = Markov random fields
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Bayesian networks (1)

» Represent conditional dependencies between random variables

Example from
C. Bishop: PRML book

P(a,b,c) = P(c|la,b)P(a,b) = P(cla,b)P(b|la)P(a)

P(Xl, ...,Xk) - P(Xk|X1, ""Xk—l) P(X2|X1)P(X1)
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Bayesian networks (2)

» Represent causal dependencies between random variables

» Local Markov Property: Each variable is conditionally independent of its
non-descendants given its parents

P(Xy, ., X7) = P(X)P(X)P(X3)P(Xa| Xy, Xz, X3)P (X5 | X1, X2)P(Xs| X0, Xs)P (X5 X0)

= Generally: P(X) = [[X., P(X;|par;), where par; denote the parents of X;
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Bayesian network example

SPRINKLER RAIN

T G e D
F 0.4 0.6 0.2 0.8
T 0.01 0.99

GRASS WET
SPRINKLER RAIN| T F
F F 0.0 1.0
F T 0.8 0.2
i F 0.9 0.1
i T 0.99 0.01

P(S,R,G) = P(R)P(S|R)P(G|S, R)

» What is the probability that the sprinkler was on given that the grass is wet?
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Generative models

; T
Q e.g. discrete topic variable

e.g. observed i.i.d. feature
variables (binary)

k
P(X,, ..., X, T) = P(2) ﬂp(xim
i=1

... we need to estimate k + 1 parameters
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Discriminative models

Xi Xl XZ Xk
e.g. discrete feature
variables
i=1,..,k JuN
T T e.g. binary variable

P(t = 1|X1, ... Xy)
... we need to estimate [ parameters, if each X; has [ states

The trick is to parameterize each X; with a weight ; and estimate

1 .
... we need to estimate k + 1
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Markov chains

» Generally, for the joint distribution of k discrete variables X1, ..., X}, with [
states each, we need to estimate (¥ — 1 parameters

» For k-node Markov chain: | — 1+ (k — 1)I(l — 1) parameters
X1 X7 Xk

» A Markov chain is a Bayesian network in which each variable has at most
one predecessor
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Conditional independence

X is independent of Y given Z (we write: X 1 Y|Z)
=3
P(X|Y,Z) = P(X|Z)
=3
P(X,Y|Z) = P(X|Z)P(Y|Z)

X Y X Y
A 7
P(X,Y,Z) = P(X)P(Y)P(Z|X,Y) P(X,Y|Z) = P(X,Y,Z)/P(Z)
L L
P(X,Y) = P(X)P(Y) = X LY|0 P(X,Y|Z) = P(X)P(Y)P(Z|X,Y)/P(Z)

= X LY|Z

10



Hasso

Plattner

Institut
IT Syst Universitat Potsdam

s Engineering

Conditional independence example

» Example from C. Bishop, PRML book
B: battery (0=flat, 1=full)

F: fuel (0O=empty, 1=full) P(R=1B=1,F=1)=0.8
R: Fuel reading (0O=empty, 1=full) P(R=1B=1,F=0)=0.2
P(B=1)=0.9 P(R=1B=0,F=1)=0.2
P(F=1)=09 P(R=1B=0,F=0)=0.1
B E B E B E

We can calculate:
P(R=0|F =0) = ZBE{O,l}P(R = 0|B,F = 0)P(B) = 0.81

P(F=0|R=0) = P(R=OILIZ;=02)1)3(F=O) ~ 0.257 (probability of F = 0 increases)

P(F =0/R=0,B=0) =~ 0.111 (prob. of F = 0 decreases, is “explained away”)

11
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D-separation

» Let A, B, C be disjoint subsets of nodes from a Bayesian network
» A path from A to B is blocked if it contains node v such that either

a) arrows on the path meet head-to-tail (= v =) or tail-to tail (< v =) at vand
vis from C, or

b) arrows on the path meet head-to-head at v (— v <) and neither v nor any of
its descendants are in C

» Ais d-separated from B by C if all paths from A to B are blocked

» Theorem: If A is d-separated from B by C then A L B|C

12
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D-separation examples

ALEID X
ALE|IC X
ALEB
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Bayesian networks as distribution filters

= =

From C. Bishop: PRML book

» Any joint probability distribution P(X) that factorizes according to the graphical
model passes through the filter

» The set of distributions P(X) that pass through the filter is denoted by DF;
this is exactly the set of distributions that respect all conditional independencies
implied by the d-separation

14
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Markov blanket

 P(Xy, e Xp)
P(Xil{Xjxi}) = [P(Xq, ..., Xy) dX;

_ [1; P(XjIpary)
JI1; P(X;lpary) dX;

Factors independent of X; cancel out!

» In a Bayesian network, a variable is independent of all other variables given
its Markov blanket

15



‘ Hasso
Plattner
Institut

T Systems Engineering | Universitit Potsdam

Hidden Markov models (HMMs)

» Useful for explaining sequential data, e.g., arising from
» Measurements of time series
» Observations of sequential nucleotide base pairs along a DNA strand
» Sequential tokens in a sentence/speech

» Simplest way to model the probability of an observed sequence yj4, ..., ¥, is
to assume pairwise independence between the observations:

le y@ 3’"@ P(y) =Tx1 P()

» Above assumption may be too strong; if it is relaxed such that every
observation is dependent only on the (most) recent observations we
obtain a Markov model

16
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From Markov models to HMMs

3’1: j yZC ) y”( > P(y) = P(y) I, Pilyi-1)

First-order Markov chain

Y1 Y2 Ya P(y) = P(y1)P(¥21y1)
i3 Pilyiz1, yi-2)

Second-order Markov chain

» More powerful model assumes latent variables (unknown states) for each y;:

X1 X2 Xn
P(y,x) = P(xq) [Ti=, P(x;|xi—1)
V1 Y2 Yn =1 P(ilx;)

17



Hasso

Plattner

Institut
IT Syst Universitat Potsdam

s Engineering

Extending Markov chains to HMMs

> If the latent variables are discrete the above model is an HMM

X1 Xy Xy, Xiv1 L xi-q]x;

P(y,x) = P(xy) H?:z P(x;|x;—1)
V1 Y2 Yn =1 Pilxp)

Emission probabilities

» Inference

1) Find the most likely state at a given x;: max P(x; = s|yq, ..., Vi)
S

(can be solved with the forward-backward algorithm)

2) Find the most likely sequence of states: maxP(X = S, ¥4, ..., Vi)
S

(can be solved with the Viterbi algorithm)

18
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The Viterbi (dynamic programming) algorithm

> Input: observation space O = {04, ..., oy}, observations Y = {y,, ..., v, },
state space S = {sq, ..., S}, k X k-dim. state transition matrix 4, k X N-

dim. emission matrix B, two k X n-dim. matrices Ty, T,, array 1 of size k
(with prior probabilities for each state)

For each s; do
Ti[i, 1] = In(m; * By, ); Toli, 1] = 0;
For i =2..n do

For each s; do
T,[j,i] = max Ti[Li—1]+ ln(Al,j * j'yi)
T,[j,i] = argmaxTy[l,i — 1] + ln(AlJ- * J',yi)
l
Assign the right state label to each observation by

using T,

Complexity: O(nk?)

19
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Markov random fields

» Graph separation

The set of nodes A is independent of B given C if and only if all paths from A to B
lead though C; we write: 4 L B|C

Markov blanket of variable node X is given by all direct neighbors Nb(X) of X
P(Xl-le, ""Xi—1'Xi+1' ...,Xn) — P(Xlle(Xl) )

=» The joint distribution can be factorized according to above separation rule

20
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Factorization through maximal cliques

» Observation: If two nodes X;, X; are not directly connected, they are
independent given all other nodes = they should not occur in same factor

-----

‘__——------
-
-

*\ maximal cligue
\

\
|
!
[

Partition function

P(Xy, ..., Xy) =% 1_[ Ve(Xe) Z = Z 1_[ Ye(Xe)
X

CeMaxcCliques CeMC
Energy function

Y- (X): Potential over clique C, typically: Y. (X.) = (?xp(—E(XC)),
[

Boltzmann distribution

» Hammersley-Clifford Theorem: Factorization through graph separation and

factorization through maximal cligues lead to the same sets of distributions
21
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Example: Image de-noising

4P

From C.Bishop: PRML

22
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From directed to undirected chains

» Converting directed into undirected graphical models: chains

OO - 0

P(X) =\ P(X1)P(X2|X1,)P(X3|X2) ---P(Xn|Xn—1)

|

!

1
P(X) = E‘/)Lz (X1, X2)Y23(X2, X3) o Y1 n (X1, X))

¥ ¥ What is the value
%$! n of the partition
function Z?

23
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Moralization

» Converting directed into undirected graphical models: general graphs

Take care that each conditional probability factor in the directed graph
is represented by at least one of the maximal cliques in the undirected graph!

X, X; X, X;

Note: that in this

Marrying the parents case information
about conditional

X4 X, independence is

moralization lost!
1
P(X) — P(Xl)P(XZ)P(X3)P(X4|X11XZIXB) — Z¢1,2,3,4(X1IX21X31X4)

Theorem: No other technique of turning a directed into an undirected graph retains
more independence information than moralization

24
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Directed vs. undirected graphical models

From C.Bishop: PRML

X,
X]_ XZ
X, X3
X £ X,|0
X1 X ' .
1 2|(D X X1 1 X3|{X2;X3}
X3 Xl Jf)(Zl)(3 *

Xy L X4 |[{X1, X2}

Independence properties cannot Independence properties cannot
be represented by an undirected graph be represented by a directed graph

25
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Summary

» Bayesian networks (directed graphical models)
» Local Markov property
» D-separation
» Distribution filters
» Example: HMMs

» Markov random fields (undirected graphical models)
» Graph separation
» Hammersley-Clifford Theorem
» Moralization

26



