
GRAPHICAL MODELS 
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Outline 

 

 Bayesian networks 

 Generative models 

 Discriminative models 

 Markov chains 

 D-separation 

 Hidden Markov Models 

 

 Undirected models 

 Factorization 

 Hammersley-Clifford Theorem 

 Moralization 
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Intro 

 What is a graphical model? 

 Graph 𝐺 𝑉, 𝐸  

 𝑉: Set of random variables 

 𝐸 ⊆ 𝑉 × 𝑉 : Set of dependence relationships 

 

 Why graphical models? 

 Visualize the structure of probabilistic models 

 Obtain insights into properties of variables and their interdependencies (e.g. 
conditional independence, causality) through graph-theoretic means 

 Perform probabilistic inference through graphical manipulations 

 

 Types of graphical models 

 Directed graphical models ≡ Bayesian networks (coined by Judea Pearl 1985) 

 Undirected graphical models ≡ Markov random fields 
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Bayesian networks (1)  

 Represent conditional dependencies between random variables 

𝑎 
𝑏 

𝑐 

𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑐 𝑎, 𝑏 𝑃 𝑎, 𝑏 = 𝑃 𝑐 𝑎, 𝑏 𝑃 𝑏 𝑎 𝑃 𝑎  
 
𝑃 𝑋1, … , 𝑋𝑘 = 𝑃 𝑋𝑘|𝑋1, … , 𝑋𝑘−1 …𝑃 𝑋2|𝑋1 𝑃 𝑋1  

Example from  
C. Bishop: PRML book 
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Bayesian networks (2) 

 Represent causal dependencies between random variables 

 Local Markov Property: Each variable is conditionally independent of its 
non-descendants given its parents 

 

𝑃 𝑋1, … , 𝑋7 = 𝑃 𝑋1 𝑃 𝑋2 𝑃 𝑋3 𝑃 𝑋4|𝑋1, 𝑋2, 𝑋3 𝑃 𝑋5|𝑋1, 𝑋2 𝑃 𝑋6|𝑋4, 𝑋5 𝑃 𝑋7|𝑋4  
 

    Generally: 𝑃 𝐗 =  𝑃 𝑋𝑖|𝑝𝑎𝑟𝑖
𝑘
𝑖=1 , where 𝑝𝑎𝑟𝑖 denote the parents of 𝑋𝑖  

     
    

𝑋1 

𝑋2 

𝑋3 

𝑋5 

𝑋4 

𝑋6 

𝑋7 

5 



Bayesian network example 

𝑃 𝑆, 𝑅, 𝐺 = 𝑃 𝑅 𝑃 𝑆|𝑅 𝑃 𝐺|𝑆, 𝑅  
 
 What is the probability that the sprinkler was on given that the grass is wet? 
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Generative models 

𝑋1 𝑋2 𝑋𝑘 

𝜏 

⋯ 

e.g. discrete topic variable 

e.g. observed i.i.d. feature  
variables (binary) 

𝑃 𝑋1, … , 𝑋𝑘 , 𝜏 = 𝑃 𝜏  𝑃 𝑋𝑖|𝜏

𝑘

𝑖=1

 

… we need to estimate 𝑘 + 1 parameters  

𝑋𝑖  

𝜏 

𝑖 = 1,… , 𝑘 
⟺ 
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Discriminative models 

𝑋1 𝑋2 𝑋𝑘 

𝜏 

⋯ 

e.g. binary variable 

e.g. discrete feature  
variables 

𝑃 𝜏 = 1|𝑋1, … , 𝑋𝑘  

… we need to estimate 𝑙𝑘 parameters, if each 𝑋𝑖  has 𝑙 states 
 
The trick is to parameterize each 𝑋𝑖  with a weight 𝛽𝑖  and estimate 
  

1

1 + exp −𝛽0 − 𝛽1𝑋1 −⋯− 𝛽𝑘𝑋𝑘
 … we need to estimate 𝑘 + 1 

parameters 

𝑋𝑖  

𝜏 

𝑖 = 1,… , 𝑘 
⟺ 
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Markov chains 

 Generally, for the joint distribution of 𝑘 discrete variables 𝑋1, … , 𝑋𝑘, with 𝑙 
states each, we need to estimate 𝑙𝑘 − 1 parameters 

 

 For 𝑘-node Markov chain:  𝑙 − 1 + 𝑘 − 1 𝑙(𝑙 − 1) parameters 

 

 

 

 

 

 A Markov chain is a Bayesian network in which each variable has at most 
one predecessor 

 

 

 

𝑋1 𝑋2 𝑋𝑘 

… 
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Conditional independence 

 

          𝑋 is independent of 𝑌 given 𝑍 (we write: 𝑋 ⊥ 𝑌|𝑍) 
⟺ 

𝑃 𝑋 𝑌, 𝑍 = 𝑃 𝑋 𝑍   
⟺ 

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃(𝑌|𝑍) 

 

          

 
𝑋 𝑌 

𝑍 

𝑃 𝑋, 𝑌, 𝑍 = 𝑃 𝑋 𝑃 𝑌 𝑃 𝑍 𝑋, 𝑌  
⟺ 

𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌) ⇔ 𝑋 ⊥ 𝑌|∅ 

𝑋 𝑌 

𝑍 

𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋, 𝑌, 𝑍 /𝑃 𝑍  
⟺ 

𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋 𝑃 𝑌 𝑃 𝑍 𝑋, 𝑌 /𝑃(𝑍) 
⟹ 𝑋 ⊥ 𝑌|𝑍 
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Conditional independence example 

 Example from C. Bishop, PRML book  

 𝐵: battery (0=flat, 1=full) 
 𝐹: fuel (0=empty, 1=full) 

 𝑅: Fuel reading (0=empty, 1=full) 

 𝑃 𝐵 = 1 = 0.9  

 𝑃 𝐹 = 1 = 0.9  

   
     

 

 

 

 

We can calculate: 

 𝑃 𝑅 = 0 =   𝑃 𝑅 = 0 𝐵, 𝐹 𝑃 𝐵 𝑃(𝐹)𝐹∈{0,1}𝐵∈{0,1} = 0.315  

 𝑃 𝑅 = 0|𝐹 = 0 =  𝑃 𝑅 = 0 𝐵, 𝐹 = 0 𝑃(𝐵)𝐵∈{0,1} = 0.81  

 𝑃 𝐹 = 0 𝑅 = 0 =
𝑃 𝑅=0 𝐹=0 𝑃 𝐹=0

𝑃 𝑅=0
≈ 0.257 (probability of 𝐹 = 0 increases) 

 𝑃 𝐹 = 0 𝑅 = 0, 𝐵 = 0 ≈ 0.111  (prob. of 𝐹 = 0 decreases, is “explained away”) 

𝐵 𝐹 

𝑅 

 𝑃 𝑅 = 1 𝐵 = 1, 𝐹 = 1 = 0.8  
 𝑃 𝑅 = 1 𝐵 = 1, 𝐹 = 0 = 0.2  
 𝑃 𝑅 = 1 𝐵 = 0, 𝐹 = 1 = 0.2  
 𝑃 𝑅 = 1 𝐵 = 0, 𝐹 = 0 = 0.1  

𝐵 𝐹 

𝑅 

𝐵 𝐹 

𝑅 
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D-separation 

 Let 𝑨,𝑩, 𝑪 be disjoint subsets of nodes from a Bayesian network 

 A path from 𝑨 to 𝑩 is blocked if it contains node 𝑣 such that either 
 

a) arrows on the path meet head-to-tail (→ 𝑣 →) or tail-to tail (← 𝑣 →) at 𝑣 and 
𝑣 is from 𝑪, or 

 

b) arrows on the path meet head-to-head at 𝑣 (→ 𝑣 ←) and neither 𝑣 nor any of 
its descendants are in 𝑪 

 

 𝑨 is d-separated from 𝑩 by 𝑪 if all paths from 𝑨 to 𝑩 are blocked 

 

 Theorem: If 𝑨 is d-separated from 𝑩 by 𝑪 then 𝑨 ⊥ 𝑩|𝑪 
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D-separation examples 

𝐴 𝐵 

𝐶 

𝐷 

𝐸 𝐴 𝐵 

𝐶 

𝐷 

𝐸 

𝐴 ⊥ 𝐸|𝐷   
𝐴 ⊥ 𝐸|𝐶   
𝐴 ⊥ 𝐸|𝐵  
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Bayesian networks as distribution filters 

From C. Bishop: PRML book 
 
 
 Any joint probability distribution 𝑃(𝐱) that factorizes according to the graphical  
     model passes through the filter 

 
 The set of distributions 𝑃(𝐱) that pass through the filter is denoted by 𝒟ℱ;  
      this is exactly the set of distributions that respect all conditional independencies 
      implied by the d-separation 
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Markov blanket 

𝑋𝑖  

𝑃 𝑋𝑖| 𝑋𝑗≠𝑖 =
𝑃 𝑋1, … , 𝑋𝑘

 𝑃 𝑋1, … , 𝑋𝑘  𝑑𝑋𝑖
 

 

=
 𝑃(𝑋𝑗|𝑝𝑎𝑟𝑗)𝑗

  𝑃(𝑋𝑗|𝑝𝑎𝑟𝑗)𝑗 𝑑𝑋𝑖
 

Factors independent of 𝑋𝑖  cancel out! 

 In a Bayesian network, a variable is independent of all other variables given  
      its Markov blanket 
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Hidden Markov models (HMMs)  

 Useful for explaining sequential data, e.g., arising from 

 Measurements of time series 

 Observations of sequential nucleotide base pairs along a DNA strand 

 Sequential tokens in a sentence/speech 

 

 Simplest way to model the probability of an observed sequence 𝑦1, … , 𝑦𝑛 is 
to assume pairwise independence between the observations:  

 

 

 

 

 Above assumption may be too strong; if it is relaxed such that every 
observation is dependent only on the (most) recent observations we 
obtain a Markov model 

𝑦1 𝑦2 𝑦𝑛 
… 𝑃 𝐲 =  𝑃 𝑦𝑖

𝑛
𝑖=1   
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From Markov models to HMMs 

 

 

 

 

 

 

 

 

 

 

 More powerful model assumes latent variables (unknown states) for each 𝑦𝑖: 

  

𝑦1 𝑦2 𝑦𝑛 
… 𝑃 𝐲 = 𝑃 𝑦1  𝑃 𝑦𝑖|𝑦𝑖−1

𝑛
𝑖=2   

First-order Markov chain 

𝑦1 𝑦2 𝑦4 

… 
𝑃 𝐲 = 𝑃 𝑦1 𝑃 𝑦2 𝑦1  
                𝑃 𝑦𝑖|𝑦𝑖−1, 𝑦𝑖−2

𝑛
𝑖=3   

Second-order Markov chain 

𝑦3 

𝑦1 𝑦2 𝑦𝑛 
… 

𝑥1 𝑥2 𝑥𝑛 
… 

𝑃 𝐲, 𝐱 = 𝑃 𝑥1  𝑃 𝑥𝑖|𝑥𝑖−1
𝑛
𝑖=2   

                               𝑃 𝑦𝑖|𝑥𝑖
𝑛
𝑖=1   
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Extending Markov chains to HMMs 

 If the latent variables are discrete the above model is an HMM 

 

 

 

 

      

 

 

 Inference 

 1) Find the most likely state at a given 𝑥𝑖: max
𝑠
 𝑃 𝑥𝑖 = 𝑠|𝑦1, … , 𝑦𝑖  

       (can be solved with the forward-backward algorithm) 

 2) Find the most likely sequence of states: max
𝐬
𝑃 𝐱 = 𝐬, 𝑦1, … , 𝑦𝑖  

                            (can be solved with the Viterbi algorithm) 

 

 

𝑦1 𝑦2 𝑦𝑛 
… 

𝑥1 𝑥2 𝑥𝑛 
… 

𝑃 𝐲, 𝐱 = 𝑃 𝑥1  𝑃 𝑥𝑖|𝑥𝑖−1
𝑛
𝑖=2   

                               𝑃 𝑦𝑖|𝑥𝑖
𝑛
𝑖=1   

 
Emission probabilities 

𝑥𝑖+1 ⊥ 𝑥𝑖−1|𝑥𝑖 
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The Viterbi (dynamic programming) algorithm 

 Input: observation space 𝑂 = 𝑜1, … , 𝑜𝑁 , observations 𝑌 = 𝑦1, … , 𝑦𝑛 , 
state space 𝑆 = 𝑠1, … , 𝑠𝑘 , 𝑘 × 𝑘-dim. state transition matrix 𝑨, 𝑘 × 𝑁-
dim. emission matrix 𝑩, two  𝑘 × 𝑛-dim. matrices 𝑇1, 𝑇2, array 𝝅 of size 𝑘 
(with prior probabilities for each state) 

 

For each 𝑠𝑖 do 

 𝑇1 𝑖, 1 = ln 𝜋𝑖 ∗ 𝐵𝑖,𝑦1 ;  𝑇2 𝑖, 1 = 0; 

For 𝑖 = 2…𝑛 do 

 For each 𝑠𝑗 do 

  𝑇1 𝑗, 𝑖 = max
𝑙
𝑇1 𝑙, 𝑖 − 1 + ln 𝐴𝑙,𝑗 ∗ 𝐵𝑗,𝑦𝑖  

  𝑇2 𝑗, 𝑖 = arg max
𝑙
𝑇1 𝑙, 𝑖 − 1 + ln 𝐴𝑙,𝑗 ∗ 𝐵𝑗,𝑦𝑖  

Assign the right state label to each observation by 

using 𝑇2 

Complexity: 𝑂(𝑛𝑘2) 
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Markov random fields 

 Graph separation 

 

 

 

 

 

𝑨 

𝑪 𝑩 

The set of nodes 𝑨 is independent of 𝑩 given 𝑪 if and only if all paths from 𝑨 to 𝑩 
lead though 𝑪; we write: 𝑨 ⊥ 𝑩|𝑪 
 
Markov blanket of variable node 𝑋 is given by all direct neighbors 𝑁𝑏(𝑋) of 𝑋  

𝑃 𝑋𝑖 𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛 = 𝑃 𝑋𝑖 𝑁𝑏(𝑋𝑖)  
 
 The joint distribution can be factorized according to above separation rule 
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Factorization through maximal cliques 

 Observation: If two nodes 𝑋𝑖 , 𝑋𝑗 are not directly connected, they are 

independent given all other nodes  they should not occur in same factor 

maximal clique 

clique 

𝑃 𝑋1, … , 𝑋𝑛 =
1

𝑍
 𝜓𝐶 𝑿𝐶

𝐶∈𝑀𝑎𝑥𝐶𝑙𝑖𝑞𝑢𝑒𝑠

 

 
 𝜓𝐶 𝑿𝐶 : Potential over clique 𝐶, typically: 𝜓𝐶 𝑿𝐶 = exp −𝐸 𝑿𝐶  

Energy function 

𝑍 =  𝜓𝐶 𝑿𝐶
𝐶∈𝑀𝐶𝑿

 

Boltzmann distribution 

 Hammersley-Clifford Theorem: Factorization through graph separation and  
      factorization through maximal cliques lead to the same sets of distributions 

Partition function 
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Example: Image de-noising 

𝑃(𝐱, 𝐲) 

From C.Bishop: PRML 
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From directed to undirected chains 

 Converting directed into undirected graphical models: chains 

 

 

 

 

 

 

 

 

 

𝑋1 𝑋2 𝑋𝑛 
… 

𝑃 𝐗 = 𝑃 𝑋1 𝑃 𝑋2|𝑋1 𝑃 𝑋3|𝑋2 …𝑃 𝑋𝑛|𝑋𝑛−1  

𝑋1 𝑋2 𝑋𝑛 
… 

𝑃 𝐗 =
1

𝑍
𝜓1,2 𝑋1, 𝑋2 𝜓2,3 𝑋2, 𝑋3 …𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛  

What is the value 
of the partition  
function 𝑍? 
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Moralization 

 Converting directed into undirected graphical models: general graphs 

 

𝑋1 
𝑋2 

𝑋3 

𝑋4 

𝑃 𝐗 = 𝑃 𝑋1 𝑃 𝑋2 𝑃 𝑋3 𝑃 𝑋4|𝑋1, 𝑋2, 𝑋3 =
1

𝑍
𝜓1,2,3,4 𝑋1, 𝑋2, 𝑋3, 𝑋4  

𝑋1 
𝑋2 

𝑋3 

𝑋4 

“Marrying the parents”  
& omitting arrows 

moralization 

Take care that each conditional probability factor in the directed graph  
is represented by at least one of the maximal cliques in the undirected graph!  

Note: that in this 
case information  
about conditional 
independence is 
lost! 

Theorem: No other technique of turning a directed into an undirected graph retains  
more independence information than moralization 
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Directed vs. undirected graphical models 

𝑋1 𝑋2 

𝑋3 

𝑋1 

𝑋2 

𝑋3 

𝑋4 
𝑋1 ⊥ 𝑋2|∅ 
𝑋1 ⊥ 𝑋2|𝑋3 

𝑋1 ⊥ 𝑋2|∅ 
𝑋1 ⊥ 𝑋3 {𝑋2, 𝑋3  
𝑋2 ⊥ 𝑋4|{𝑋1, 𝑋2} 

Independence properties cannot  
be represented by an undirected graph 

Independence properties cannot  
be represented by a directed graph 

From C.Bishop: PRML 
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Summary 

 Bayesian networks (directed graphical models) 

 Local Markov property 

 D-separation 

 Distribution filters 

 Example: HMMs 

 

 Markov random fields (undirected graphical models) 

 Graph separation 

 Hammersley-Clifford Theorem 

 Moralization 
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