

GRAPHICAL MODELS

1

\triangleright Bayesian networks

- \triangleright Generative models
- \triangleright Discriminative models
- \triangleright Markov chains
- \triangleright D-separation
- \triangleright Hidden Markov Models

\triangleright Undirected models

- \triangleright Factorization
- Hammersley-Clifford Theorem
- \triangleright Moralization

- \triangleright What is a graphical model?
	- \triangleright Graph $G(V, E)$
	- \triangleright V: Set of random variables
	- $\triangleright E (\subseteq V \times V)$: Set of dependence relationships
- \triangleright Why graphical models?
	- \triangleright Visualize the structure of probabilistic models
	- \triangleright Obtain insights into properties of variables and their interdependencies (e.g. conditional independence, causality) through graph-theoretic means
	- \triangleright Perform probabilistic inference through graphical manipulations
- \triangleright Types of graphical models
	- Directed graphical models \equiv Bayesian networks (coined by Judea Pearl 1985)
	- \triangleright Undirected graphical models \equiv Markov random fields

\triangleright Represent conditional dependencies between random variables

Example from C. Bishop: PRML book

 $P(a, b, c) = P(c|a, b)P(a, b) = P(c|a, b)P(b|a)P(a)$

 $P(X_1, ..., X_k) = P(X_k | X_1, ..., X_{k-1}) ... P(X_2 | X_1) P(X_1)$

 \triangleright Represent causal dependencies between random variables \triangleright Local Markov Property: Each variable is conditionally independent of its non-descendants given its parents

 $P(X_1, ..., X_7) = P(X_1)P(X_2)P(X_3)P(X_4|X_1, X_2, X_3)P(X_5|X_1, X_2)P(X_6|X_4, X_5)P(X_7|X_4)$

 \rightarrow Generally: $P(X) = \prod_{i=1}^{k} P(X_i | part_i)$ $_{i=1}^{k}$ $P(X_i|par_i)$, where par_i denote the parents of X_i

Bayesian network example

 $P(S, R, G) = P(R)P(S|R)P(G|S, R)$

 \triangleright What is the probability that the sprinkler was on given that the grass is wet?

Generative models

$$
P(X_1, ..., X_k, \tau) = P(\tau) \prod_{i=1}^k P(X_i | \tau)
$$

... we need to estimate $k + 1$ parameters

Discriminative models

 $P(\tau = 1|X_1, ..., X_k)$

... we need to estimate l^k parameters, if each X_i has l states

The trick is to parameterize each X_i with a weight β_i and estimate

$$
\frac{1}{1 + \exp(-\beta_0 - \beta_1 X_1 - \dots - \beta_k X_k)}
$$

... we need to estimate $k + 1$ parameters

- \triangleright Generally, for the joint distribution of k discrete variables $X_1, ..., X_k$, with l states each, we need to estimate l^k-1 parameters
- For k-node Markov chain: $l-1+(k-1)l(l-1)$ parameters

 \triangleright A Markov chain is a Bayesian network in which each variable has at most one predecessor

X is independent of Y given Z (we write: $X \perp Y|Z$) \Longleftrightarrow $P(X|Y, Z) = P(X|Z)$ \Leftrightarrow $P(X, Y|Z) = P(X|Z)P(Y|Z)$

$$
P(R = 0|F = 0) = \sum_{B \in \{0,1\}} P(R = 0|B, F = 0)P(B) = 0.81
$$

$$
P(F = 0|R = 0) = \frac{P(R = 0|F = 0)P(F = 0)}{P(R = 0)} \approx 0.257
$$
 (probability of $F = 0$ increases)

 $P(F = 0 | R = 0, B = 0) \approx 0.111$ (prob. of $F = 0$ decreases, is "explained away")

- \triangleright Let A, B, C be disjoint subsets of nodes from a Bayesian network
- A path from A to B is blocked if it contains node ν such that either
	- a) arrows on the path meet head-to-tail $(\rightarrow v \rightarrow)$ or tail-to tail $(\leftarrow v \rightarrow)$ at v and v is from C , or
	- b) arrows on the path meet head-to-head at $v \rightarrow v \leftarrow$) and neither v nor any of its descendants are in $\mathcal C$
- \triangleright A is d-separated from B by C if all paths from A to B are blocked
- Figure Theorem: If A is d-separated from B by C then $A \perp B | C$

D-separation examples

Bayesian networks as distribution filters

From C. Bishop: PRML book

- Any joint probability distribution $P(x)$ that factorizes according to the graphical model passes through the filter
- \triangleright The set of distributions $P(x)$ that pass through the filter is denoted by \mathcal{DF} ; this is exactly the set of distributions that respect all conditional independencies implied by the d-separation

Markov blanket

$$
P(X_i | \{X_{j \neq i}\}) = \frac{P(X_1, ..., X_k)}{\int P(X_1, ..., X_k) \, dX_i}
$$

= $\prod_j P(X_j | par_j)$ $\int \prod_j P(X_j | part_j)\, dX_i$

Factors independent of X_i cancel out!

 \triangleright In a Bayesian network, a variable is independent of all other variables given its Markov blanket

- \triangleright Useful for explaining sequential data, e.g., arising from
	- \triangleright Measurements of time series
	- \triangleright Observations of sequential nucleotide base pairs along a DNA strand
	- \triangleright Sequential tokens in a sentence/speech
- Simplest way to model the probability of an observed sequence $y_1, ..., y_n$ is to assume pairwise independence between the observations:

$$
\bigcirc^{y_1} \bigcirc^{y_2} \bigcirc \qquad \qquad \dots \qquad \bigcirc^{y_n} \bigcirc^{y_n} \bigcirc^{p(y)} = \prod_{i=1}^n P(y_i)
$$

 \triangleright Above assumption may be too strong; if it is relaxed such that every observation is dependent only on the (most) recent observations we obtain a Markov model

From Markov models to HMMs

Second-order Markov chain

 \triangleright More powerful model assumes latent variables (unknown states) for each y_i :

If the latent variables are discrete the above model is an HMM

\triangleright Inference

1) Find the most likely state at a given x_i : max $\overline{\mathcal{S}}$ $P(x_i = s | y_1, ..., y_i)$ (can be solved with the forward-backward algorithm) 2) Find the most likely sequence of states: max S $P(\mathbf{x} = \mathbf{s}, y_1, ..., y_i)$ (can be solved with the Viterbi algorithm)

The Viterbi (dynamic programming) algorithm

Input: observation space $O = \{o_1, ..., o_N\}$, observations $Y = \{y_1, ..., y_n\}$, state space $S = \{s_1, ..., s_k\}, k \times k$ -dim. state transition matrix $A, k \times N$ dim. emission matrix **B**, two $k \times n$ -dim. matrices T_1, T_2 , array π of size k (with prior probabilities for each state)

```
For each S_i do
     T_1[i, 1] = \ln(\pi_i * B_{i,y_1}); T_2[i, 1] = 0;
For i=2...n do
     For each S_i do
                T_1[j, i] = \max_l T_1[l, i-1] + \ln(A_{l,j} * B_{j, y_i})T_2[j, i] = \argmax\mathfrak lT_1[l, i-1] + \ln(A_{l,j} * B_{j,y_i})Assign the right state label to each observation by 
using T<sub>2</sub>
```


The set of nodes A is independent of B given C if and only if all paths from A to B lead though C; we write: $A \perp B|C$

Markov blanket of variable node X is given by all direct neighbors $Nb(X)$ of X $P(X_i|X_1, ..., X_{i-1}, X_{i+1}, ..., X_n) = P(X_i|Nb(X_i))$

The joint distribution can be factorized according to above separation rule

 \triangleright Observation: If two nodes X_i , X_j are not directly connected, they are independent given all other nodes \rightarrow they should not occur in same factor

 \triangleright Hammersley-Clifford Theorem: Factorization through graph separation and factorization through maximal cliques lead to the same sets of distributions

Example: Image de-noising

From C.Bishop: PRML

$$
E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_i - \beta \sum_{\{i, j\}} x_i x_j
$$

$$
-\eta \sum_{i} x_i y_i
$$

$$
P(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp{-E(\mathbf{x}, \mathbf{y})}
$$

 \triangleright Converting directed into undirected graphical models: chains

Converting directed into undirected graphical models: general graphs

Take care that each conditional probability factor in the directed graph is represented by at least one of the maximal cliques in the undirected graph!

Theorem: No other technique of turning a directed into an undirected graph retains more independence information than moralization

Directed vs. undirected graphical models

Independence properties cannot be represented by an undirected graph Independence properties cannot be represented by a directed graph

Summary

\triangleright Bayesian networks (directed graphical models)

- \triangleright Local Markov property
- \triangleright D-separation
- \triangleright Distribution filters
- Example: HMMs
- \triangleright Markov random fields (undirected graphical models)
	- \triangleright Graph separation
	- \triangleright Hammersley-Clifford Theorem
	- \triangleright Moralization