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Intro 

 What is a graphical model? 

 Graph 𝐺 𝑉, 𝐸  

 𝑉: Set of random variables 

 𝐸 ⊆ 𝑉 × 𝑉 : Set of dependence relationships 

 

 Why graphical models? 

 Visualize the structure of probabilistic models 

 Obtain insights into properties of variables and their interdependencies (e.g. 
conditional independence, causality) through graph-theoretic means 

 Perform probabilistic inference through graphical manipulations 

 

 Types of graphical models 

 Directed graphical models ≡ Bayesian networks (coined by Judea Pearl 1985) 

 Undirected graphical models ≡ Markov random fields 
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Bayesian networks (1)  

 Represent conditional dependencies between random variables 

𝑎 
𝑏 

𝑐 

𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑐 𝑎, 𝑏 𝑃 𝑎, 𝑏 = 𝑃 𝑐 𝑎, 𝑏 𝑃 𝑏 𝑎 𝑃 𝑎  
 
𝑃 𝑋1, … , 𝑋𝑘 = 𝑃 𝑋𝑘|𝑋1, … , 𝑋𝑘−1 …𝑃 𝑋2|𝑋1 𝑃 𝑋1  

Example from  
C. Bishop: PRML book 
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Bayesian networks (2) 

 Represent causal dependencies between random variables 

 Local Markov Property: Each variable is conditionally independent of its 
non-descendants given its parents 

 

𝑃 𝑋1, … , 𝑋7 = 𝑃 𝑋1 𝑃 𝑋2 𝑃 𝑋3 𝑃 𝑋4|𝑋1, 𝑋2, 𝑋3 𝑃 𝑋5|𝑋1, 𝑋2 𝑃 𝑋6|𝑋4, 𝑋5 𝑃 𝑋7|𝑋4  
 

    Generally: 𝑃 𝐗 =  𝑃 𝑋𝑖|𝑝𝑎𝑟𝑖
𝑘
𝑖=1 , where 𝑝𝑎𝑟𝑖 denote the parents of 𝑋𝑖  

     
    

𝑋1 

𝑋2 

𝑋3 

𝑋5 

𝑋4 

𝑋6 

𝑋7 
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Bayesian network example 

𝑃 𝑆, 𝑅, 𝐺 = 𝑃 𝑅 𝑃 𝑆|𝑅 𝑃 𝐺|𝑆, 𝑅  
 
 What is the probability that the sprinkler was on given that the grass is wet? 
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Generative models 

𝑋1 𝑋2 𝑋𝑘 

𝜏 

⋯ 

e.g. discrete topic variable 

e.g. observed i.i.d. feature  
variables (binary) 

𝑃 𝑋1, … , 𝑋𝑘 , 𝜏 = 𝑃 𝜏  𝑃 𝑋𝑖|𝜏

𝑘

𝑖=1

 

… we need to estimate 𝑘 + 1 parameters  

𝑋𝑖  

𝜏 

𝑖 = 1,… , 𝑘 
⟺ 
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Discriminative models 

𝑋1 𝑋2 𝑋𝑘 

𝜏 

⋯ 

e.g. binary variable 

e.g. discrete feature  
variables 

𝑃 𝜏 = 1|𝑋1, … , 𝑋𝑘  

… we need to estimate 𝑙𝑘 parameters, if each 𝑋𝑖  has 𝑙 states 
 
The trick is to parameterize each 𝑋𝑖  with a weight 𝛽𝑖  and estimate 
  

1

1 + exp −𝛽0 − 𝛽1𝑋1 −⋯− 𝛽𝑘𝑋𝑘
 … we need to estimate 𝑘 + 1 

parameters 

𝑋𝑖  

𝜏 

𝑖 = 1,… , 𝑘 
⟺ 
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Markov chains 

 Generally, for the joint distribution of 𝑘 discrete variables 𝑋1, … , 𝑋𝑘, with 𝑙 
states each, we need to estimate 𝑙𝑘 − 1 parameters 

 

 For 𝑘-node Markov chain:  𝑙 − 1 + 𝑘 − 1 𝑙(𝑙 − 1) parameters 

 

 

 

 

 

 A Markov chain is a Bayesian network in which each variable has at most 
one predecessor 

 

 

 

𝑋1 𝑋2 𝑋𝑘 

… 
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Conditional independence 

 

          𝑋 is independent of 𝑌 given 𝑍 (we write: 𝑋 ⊥ 𝑌|𝑍) 
⟺ 

𝑃 𝑋 𝑌, 𝑍 = 𝑃 𝑋 𝑍   
⟺ 

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃(𝑌|𝑍) 

 

          

 
𝑋 𝑌 

𝑍 

𝑃 𝑋, 𝑌, 𝑍 = 𝑃 𝑋 𝑃 𝑌 𝑃 𝑍 𝑋, 𝑌  
⟺ 

𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌) ⇔ 𝑋 ⊥ 𝑌|∅ 

𝑋 𝑌 

𝑍 

𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋, 𝑌, 𝑍 /𝑃 𝑍  
⟺ 

𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋 𝑃 𝑌 𝑃 𝑍 𝑋, 𝑌 /𝑃(𝑍) 
⟹ 𝑋 ⊥ 𝑌|𝑍 
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Conditional independence example 

 Example from C. Bishop, PRML book  

 𝐵: battery (0=flat, 1=full) 
 𝐹: fuel (0=empty, 1=full) 

 𝑅: Fuel reading (0=empty, 1=full) 

 𝑃 𝐵 = 1 = 0.9  

 𝑃 𝐹 = 1 = 0.9  

   
     

 

 

 

 

We can calculate: 

 𝑃 𝑅 = 0 =   𝑃 𝑅 = 0 𝐵, 𝐹 𝑃 𝐵 𝑃(𝐹)𝐹∈{0,1}𝐵∈{0,1} = 0.315  

 𝑃 𝑅 = 0|𝐹 = 0 =  𝑃 𝑅 = 0 𝐵, 𝐹 = 0 𝑃(𝐵)𝐵∈{0,1} = 0.81  

 𝑃 𝐹 = 0 𝑅 = 0 =
𝑃 𝑅=0 𝐹=0 𝑃 𝐹=0

𝑃 𝑅=0
≈ 0.257 (probability of 𝐹 = 0 increases) 

 𝑃 𝐹 = 0 𝑅 = 0, 𝐵 = 0 ≈ 0.111  (prob. of 𝐹 = 0 decreases, is “explained away”) 

𝐵 𝐹 

𝑅 

 𝑃 𝑅 = 1 𝐵 = 1, 𝐹 = 1 = 0.8  
 𝑃 𝑅 = 1 𝐵 = 1, 𝐹 = 0 = 0.2  
 𝑃 𝑅 = 1 𝐵 = 0, 𝐹 = 1 = 0.2  
 𝑃 𝑅 = 1 𝐵 = 0, 𝐹 = 0 = 0.1  

𝐵 𝐹 

𝑅 

𝐵 𝐹 

𝑅 
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D-separation 

 Let 𝑨,𝑩, 𝑪 be disjoint subsets of nodes from a Bayesian network 

 A path from 𝑨 to 𝑩 is blocked if it contains node 𝑣 such that either 
 

a) arrows on the path meet head-to-tail (→ 𝑣 →) or tail-to tail (← 𝑣 →) at 𝑣 and 
𝑣 is from 𝑪, or 

 

b) arrows on the path meet head-to-head at 𝑣 (→ 𝑣 ←) and neither 𝑣 nor any of 
its descendants are in 𝑪 

 

 𝑨 is d-separated from 𝑩 by 𝑪 if all paths from 𝑨 to 𝑩 are blocked 

 

 Theorem: If 𝑨 is d-separated from 𝑩 by 𝑪 then 𝑨 ⊥ 𝑩|𝑪 
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D-separation examples 

𝐴 𝐵 

𝐶 

𝐷 

𝐸 𝐴 𝐵 

𝐶 

𝐷 

𝐸 

𝐴 ⊥ 𝐸|𝐷   
𝐴 ⊥ 𝐸|𝐶   
𝐴 ⊥ 𝐸|𝐵  
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Bayesian networks as distribution filters 

From C. Bishop: PRML book 
 
 
 Any joint probability distribution 𝑃(𝐱) that factorizes according to the graphical  
     model passes through the filter 

 
 The set of distributions 𝑃(𝐱) that pass through the filter is denoted by 𝒟ℱ;  
      this is exactly the set of distributions that respect all conditional independencies 
      implied by the d-separation 
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Markov blanket 

𝑋𝑖  

𝑃 𝑋𝑖| 𝑋𝑗≠𝑖 =
𝑃 𝑋1, … , 𝑋𝑘

 𝑃 𝑋1, … , 𝑋𝑘  𝑑𝑋𝑖
 

 

=
 𝑃(𝑋𝑗|𝑝𝑎𝑟𝑗)𝑗

  𝑃(𝑋𝑗|𝑝𝑎𝑟𝑗)𝑗 𝑑𝑋𝑖
 

Factors independent of 𝑋𝑖  cancel out! 

 In a Bayesian network, a variable is independent of all other variables given  
      its Markov blanket 
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Hidden Markov models (HMMs)  

 Useful for explaining sequential data, e.g., arising from 

 Measurements of time series 

 Observations of sequential nucleotide base pairs along a DNA strand 

 Sequential tokens in a sentence/speech 

 

 Simplest way to model the probability of an observed sequence 𝑦1, … , 𝑦𝑛 is 
to assume pairwise independence between the observations:  

 

 

 

 

 Above assumption may be too strong; if it is relaxed such that every 
observation is dependent only on the (most) recent observations we 
obtain a Markov model 

𝑦1 𝑦2 𝑦𝑛 
… 𝑃 𝐲 =  𝑃 𝑦𝑖

𝑛
𝑖=1   
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From Markov models to HMMs 

 

 

 

 

 

 

 

 

 

 

 More powerful model assumes latent variables (unknown states) for each 𝑦𝑖: 

  

𝑦1 𝑦2 𝑦𝑛 
… 𝑃 𝐲 = 𝑃 𝑦1  𝑃 𝑦𝑖|𝑦𝑖−1

𝑛
𝑖=2   

First-order Markov chain 

𝑦1 𝑦2 𝑦4 

… 
𝑃 𝐲 = 𝑃 𝑦1 𝑃 𝑦2 𝑦1  
                𝑃 𝑦𝑖|𝑦𝑖−1, 𝑦𝑖−2

𝑛
𝑖=3   

Second-order Markov chain 

𝑦3 

𝑦1 𝑦2 𝑦𝑛 
… 

𝑥1 𝑥2 𝑥𝑛 
… 

𝑃 𝐲, 𝐱 = 𝑃 𝑥1  𝑃 𝑥𝑖|𝑥𝑖−1
𝑛
𝑖=2   

                               𝑃 𝑦𝑖|𝑥𝑖
𝑛
𝑖=1   
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Extending Markov chains to HMMs 

 If the latent variables are discrete the above model is an HMM 

 

 

 

 

      

 

 

 Inference 

 1) Find the most likely state at a given 𝑥𝑖: max
𝑠
 𝑃 𝑥𝑖 = 𝑠|𝑦1, … , 𝑦𝑖  

       (can be solved with the forward-backward algorithm) 

 2) Find the most likely sequence of states: max
𝐬
𝑃 𝐱 = 𝐬, 𝑦1, … , 𝑦𝑖  

                            (can be solved with the Viterbi algorithm) 

 

 

𝑦1 𝑦2 𝑦𝑛 
… 

𝑥1 𝑥2 𝑥𝑛 
… 

𝑃 𝐲, 𝐱 = 𝑃 𝑥1  𝑃 𝑥𝑖|𝑥𝑖−1
𝑛
𝑖=2   

                               𝑃 𝑦𝑖|𝑥𝑖
𝑛
𝑖=1   

 
Emission probabilities 

𝑥𝑖+1 ⊥ 𝑥𝑖−1|𝑥𝑖 
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The Viterbi (dynamic programming) algorithm 

 Input: observation space 𝑂 = 𝑜1, … , 𝑜𝑁 , observations 𝑌 = 𝑦1, … , 𝑦𝑛 , 
state space 𝑆 = 𝑠1, … , 𝑠𝑘 , 𝑘 × 𝑘-dim. state transition matrix 𝑨, 𝑘 × 𝑁-
dim. emission matrix 𝑩, two  𝑘 × 𝑛-dim. matrices 𝑇1, 𝑇2, array 𝝅 of size 𝑘 
(with prior probabilities for each state) 

 

For each 𝑠𝑖 do 

 𝑇1 𝑖, 1 = ln 𝜋𝑖 ∗ 𝐵𝑖,𝑦1 ;  𝑇2 𝑖, 1 = 0; 

For 𝑖 = 2…𝑛 do 

 For each 𝑠𝑗 do 

  𝑇1 𝑗, 𝑖 = max
𝑙
𝑇1 𝑙, 𝑖 − 1 + ln 𝐴𝑙,𝑗 ∗ 𝐵𝑗,𝑦𝑖  

  𝑇2 𝑗, 𝑖 = arg max
𝑙
𝑇1 𝑙, 𝑖 − 1 + ln 𝐴𝑙,𝑗 ∗ 𝐵𝑗,𝑦𝑖  

Assign the right state label to each observation by 

using 𝑇2 

Complexity: 𝑂(𝑛𝑘2) 

19 



Markov random fields 

 Graph separation 

 

 

 

 

 

𝑨 

𝑪 𝑩 

The set of nodes 𝑨 is independent of 𝑩 given 𝑪 if and only if all paths from 𝑨 to 𝑩 
lead though 𝑪; we write: 𝑨 ⊥ 𝑩|𝑪 
 
Markov blanket of variable node 𝑋 is given by all direct neighbors 𝑁𝑏(𝑋) of 𝑋  

𝑃 𝑋𝑖 𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛 = 𝑃 𝑋𝑖 𝑁𝑏(𝑋𝑖)  
 
 The joint distribution can be factorized according to above separation rule 
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Factorization through maximal cliques 

 Observation: If two nodes 𝑋𝑖 , 𝑋𝑗 are not directly connected, they are 

independent given all other nodes  they should not occur in same factor 

maximal clique 

clique 

𝑃 𝑋1, … , 𝑋𝑛 =
1

𝑍
 𝜓𝐶 𝑿𝐶

𝐶∈𝑀𝑎𝑥𝐶𝑙𝑖𝑞𝑢𝑒𝑠

 

 
 𝜓𝐶 𝑿𝐶 : Potential over clique 𝐶, typically: 𝜓𝐶 𝑿𝐶 = exp −𝐸 𝑿𝐶  

Energy function 

𝑍 =  𝜓𝐶 𝑿𝐶
𝐶∈𝑀𝐶𝑿

 

Boltzmann distribution 

 Hammersley-Clifford Theorem: Factorization through graph separation and  
      factorization through maximal cliques lead to the same sets of distributions 

Partition function 
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Example: Image de-noising 

𝑃(𝐱, 𝐲) 

From C.Bishop: PRML 
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From directed to undirected chains 

 Converting directed into undirected graphical models: chains 

 

 

 

 

 

 

 

 

 

𝑋1 𝑋2 𝑋𝑛 
… 

𝑃 𝐗 = 𝑃 𝑋1 𝑃 𝑋2|𝑋1 𝑃 𝑋3|𝑋2 …𝑃 𝑋𝑛|𝑋𝑛−1  

𝑋1 𝑋2 𝑋𝑛 
… 

𝑃 𝐗 =
1

𝑍
𝜓1,2 𝑋1, 𝑋2 𝜓2,3 𝑋2, 𝑋3 …𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛  

What is the value 
of the partition  
function 𝑍? 
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Moralization 

 Converting directed into undirected graphical models: general graphs 

 

𝑋1 
𝑋2 

𝑋3 

𝑋4 

𝑃 𝐗 = 𝑃 𝑋1 𝑃 𝑋2 𝑃 𝑋3 𝑃 𝑋4|𝑋1, 𝑋2, 𝑋3 =
1

𝑍
𝜓1,2,3,4 𝑋1, 𝑋2, 𝑋3, 𝑋4  

𝑋1 
𝑋2 

𝑋3 

𝑋4 

“Marrying the parents”  
& omitting arrows 

moralization 

Take care that each conditional probability factor in the directed graph  
is represented by at least one of the maximal cliques in the undirected graph!  

Note: that in this 
case information  
about conditional 
independence is 
lost! 

Theorem: No other technique of turning a directed into an undirected graph retains  
more independence information than moralization 
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Directed vs. undirected graphical models 

𝑋1 𝑋2 

𝑋3 

𝑋1 

𝑋2 

𝑋3 

𝑋4 
𝑋1 ⊥ 𝑋2|∅ 
𝑋1 ⊥ 𝑋2|𝑋3 

𝑋1 ⊥ 𝑋2|∅ 
𝑋1 ⊥ 𝑋3 {𝑋2, 𝑋3  
𝑋2 ⊥ 𝑋4|{𝑋1, 𝑋2} 

Independence properties cannot  
be represented by an undirected graph 

Independence properties cannot  
be represented by a directed graph 

From C.Bishop: PRML 
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Summary 

 Bayesian networks (directed graphical models) 

 Local Markov property 

 D-separation 

 Distribution filters 

 Example: HMMs 

 

 Markov random fields (undirected graphical models) 

 Graph separation 

 Hammersley-Clifford Theorem 

 Moralization 
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