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Inference on chains (1) 

𝑋 𝑌 

What is the marginal distribution on 𝑌? 
 

𝑃 𝑌 = 𝑃(𝑋, 𝑌)
𝑋=𝑥

= 𝑃 𝑌 𝑋 𝑃(𝑋)
𝑋=𝑥

 

 
Now that we know 𝑃 𝑌 , what is 𝑃(𝑋|𝑌)? 
 

𝑃 𝑋 𝑌 =
𝑃 𝑌 𝑋 𝑃(𝑋)

𝑃(𝑌)
 

 
Given 𝑃 𝑋 𝑌  and 𝑃 𝑌 , we can find 𝑃 𝑋, 𝑌  (the joint distribution) 

𝑋 𝑌 

𝑋 𝑌 
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Inference on chains (2) 

Directed chain can easily be converted into equivalent (w.r.t. conditional 
independence properties) undirected chain (by omitting arrows) 

 

𝑋1 𝑋2 𝑋𝑛 
… 

𝑃 𝐗 =
1

𝑍
𝜓1,2 𝑋1, 𝑋2 𝜓2,3 𝑋2, 𝑋3 …𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛  

Marginal distribution at a given 𝑋𝑖: 
 

𝑃 𝑋𝑖 = …  …
𝑋𝑖+1𝑋𝑖−1𝑋1

 𝑃 𝐗
𝑋𝑛

 

 

= …  …
𝑋𝑖+1𝑋𝑖−1𝑋1

 
1

𝑍
𝜓1,2 𝑋1, 𝑋2 𝜓2,3 𝑋2, 𝑋3 …𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛

𝑋𝑛

 

Observations: 1. Summations depend on certain factors  
         2. Summations can be rearranged by distribution law, i.e., ab+ac=a(b+c) 
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Inference on chains (3) 

𝑃 𝐗 =
1

𝑍
𝜓1,2 𝑋1, 𝑋2 𝜓2,3 𝑋2, 𝑋3 …𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛  

Marginal distribution at a given 𝑋𝑖: 
 

𝑃 𝑋𝑖 =
1

𝑍
 𝜓𝑖−1,𝑖 𝑋𝑖−1, 𝑋𝑖𝑋𝑖−1

…  𝜓1,2 𝑋1, 𝑋2𝑋1
…   

 
 
 
    𝜓𝑖,𝑖+1 𝑋𝑖+1, 𝑋𝑖𝑋𝑖+1

…  𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛𝑋𝑛
…  

𝑋1 𝑋𝑖−1 
… … 

𝑋𝑛 
𝑋𝑖  𝑋𝑖+1 

𝜇𝑙 𝑋𝑖  

𝜇𝑟 𝑋𝑖  

𝜇𝑟 𝑋𝑖  𝜇𝑙 𝑋𝑖  
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Inference on chains (4) 

𝑃 𝑋𝑖 =
1

𝑍
𝜇𝑙 𝑋𝑖 𝜇𝑟 𝑋𝑖  

Recurrence: 
 

𝜇𝑙 𝑋𝑖 = 𝜓𝑖−1,𝑖 𝑋𝑖−1, 𝑋𝑖
𝑋𝑖−1

𝜇𝑙 𝑋𝑖−1  

 

𝜇𝑟 𝑋𝑖 = 𝜓𝑖+1,𝑖 𝑋𝑖+1, 𝑋𝑖
𝑋𝑖+1

𝜇𝑟 𝑋𝑖+1  

𝑋1 𝑋𝑖−1 
… … 

𝑋𝑛 
𝑋𝑖  𝑋𝑖+1 

𝜇𝑟 𝑋𝑖  𝜇𝑙 𝑋𝑖  

Note: each message comprises 
𝑘 values (where 𝑘 is the number 
of states of 𝑋𝑖), one for every 
value of 𝑋𝑖  
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Inference on chains (5) 

Recurrence: 
 

𝜇𝑙 𝑋𝑖 = 𝜓𝑖−1,𝑖 𝑋𝑖−1, 𝑋𝑖
𝑋𝑖−1

𝜇𝑙 𝑋𝑖−1  

Start with 𝜇𝑙 𝑋2 =  𝜓1,2 𝑋1, 𝑋2𝑋1
 and compute 𝜇𝑙 𝑋𝑖  forwards on the chain  

 

𝜇𝑟 𝑋𝑖 = 𝜓𝑖+1,𝑖 𝑋𝑖+1, 𝑋𝑖
𝑋𝑖+1

𝜇𝑟 𝑋𝑖+1  

Start with 𝜇𝑙 𝑋𝑛−1 =  𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛𝑋𝑛
 and compute 𝜇𝑙 𝑋𝑖  backwards  

on the chain  
 

𝑋1 𝑋𝑖−1 
… … 

𝑋𝑛 
𝑋𝑖  𝑋𝑖+1 

𝜇𝑟 𝑋𝑖  𝜇𝑙 𝑋𝑖  

𝑃 𝑋𝑖 =
1

𝑍
𝜇𝑙 𝑋𝑖 𝜇𝑟 𝑋𝑖  
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Inference on chains (6) 

What about 𝑍? 

𝑍 = 𝜇𝑙 𝑋𝑖 𝜇𝑟 𝑋𝑖
𝑋𝑖

 

 
Forward-backward algorithm 
 

(1) Start with 𝜇𝑙 𝑋2 =  𝜓1,2 𝑋1, 𝑋2𝑋1
 and compute 𝜇𝑙 𝑋𝑛  

forwards on the chain (store 𝜇𝑙 𝑋𝑖  for each variable 𝑋𝑖) 
(2) Start with 𝜇𝑙 𝑋𝑛−1 =  𝜓𝑛−1,𝑛 𝑋𝑛−1, 𝑋𝑛𝑋𝑛

 and compute 𝜇𝑙 𝑋1  

backwards on the chain (store  𝜇𝑟 𝑋𝑖  for each variable 𝑋𝑖) 

𝑋1 𝑋𝑖−1 
… … 

𝑋𝑛 
𝑋𝑖  𝑋𝑖+1 

𝜇𝑟 𝑋𝑖  𝜇𝑙 𝑋𝑖  

𝑃 𝑋𝑖 =
1

𝑍
𝜇𝑙 𝑋𝑖 𝜇𝑟 𝑋𝑖  
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Inference in trees (1) 

 Examples 

 

Undirected tree Directed tree Polytree 

𝑋1 

𝑋2 

𝑋4 
𝑋5 

𝑋3 

𝑋6 𝑋7 

  Joint distribution: 
𝑃 𝐗 = 𝑃 𝑋1 𝑃 𝑋2|𝑋1 𝑃 𝑋3|𝑋1  

 𝑃 𝑋4|𝑋2 𝑃 𝑋5|𝑋2  
 𝑃 𝑋6|𝑋3 𝑃 𝑋7|𝑋3  
  Generally: 

𝑃 𝐗 = 𝑓𝑠 𝐗𝑠
𝑠

 

from C.Bishop: PRML 
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Inference in trees: Factor graphs (1) 

𝑋1 

𝑋2 

𝑋4 
𝑋5 

𝑋3 

𝑋6 𝑋7 

            𝑃 𝐗 = 𝑃 𝑋1 𝑃 𝑋2|𝑋1 𝑃 𝑋3|𝑋1 𝑃 𝑋4|𝑋2 𝑃 𝑋5|𝑋2 𝑃 𝑋6|𝑋3 𝑃 𝑋7|𝑋3  

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 

𝑃 𝐗 = 𝑓𝒂 𝑋1 𝑓𝒃 𝑋1, 𝑋2 𝑓𝒄 𝑋1, 𝑋3  𝑓𝒅 𝑋2, 𝑋4 𝑓𝒆 𝑋2, 𝑋5 𝑓𝑓 𝑋3, 𝑋6 𝑓𝑔 𝑋3, 𝑋7    
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Inference in trees: Factor graphs (2) 

 Factor graph: bipartite graph 𝐺 𝑉 ∪ 𝐹, 𝐸 , where 𝑣, 𝑓 ∈ 𝐸 if and only if 
variable 𝑣 ∈ 𝑉 occurs in factor 𝑓 ∈ 𝐹 

 

 Examples: 

 

From C.Bishop: PRML 
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Inference in trees: Sum-product algorithm (1) 

 

 Exact inference for finding marginal distributions based on message passing in 
factor graphs 

 

𝑃 𝐗 = 𝐹𝑠 𝑋, 𝐗𝑠  
𝑠∈𝑁𝐸(𝑋)

 

 

𝑃 𝑋 = 𝑃 𝐗
𝐗\𝑋

=  𝐹𝑠 𝑋, 𝐗𝑠
𝐗𝑠𝑠∈𝑁𝐸(𝑋)

  

                            = 𝜇𝑓𝑠 ⟶ 𝑋 𝑋
𝑠∈𝑁𝐸(𝑋)

 

 

𝜇𝑓𝑠 ⟶ 𝑋 𝑋 ≡ 𝐹𝑠 𝑋, 𝐗𝑠
𝐗𝑠

 

𝑋 𝑓𝑠 

⋮ ⋮ 𝐹𝑠 𝑋, 𝐗𝑠  

𝜇𝑓𝑠 ⟶ 𝑋 𝑋  
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Inference in trees: Sum-product algorithm (2) 

 

 Exact inference for finding marginal distributions based on message passing in 
factor graphs 

 

 

𝜇𝑓𝑠 ⟶ 𝑋 𝑋 ≡ 𝐹𝑠 𝑋, 𝐗𝑠
𝐗𝑠

= … 𝑓𝑠 𝑋, 𝑋1, … , 𝑋𝑚
𝑋𝑚𝑋1

 𝜇𝑋𝑖 ⟶𝑓𝑠 𝑋𝑖
𝑖∈𝑁𝐸 𝑓𝑠 \𝑋

 

𝑋 𝑓𝑠 

⋮ ⋮ 𝐹𝑠 𝑋, 𝐗𝑠  

𝜇𝑓𝑠 ⟶ 𝑋 𝑋  

Local marginal distribution  
at 𝑋 with respect to 𝑓𝑠 

Compute recursively: 
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Inference in trees: Sum-product algorithm (3) 

𝑋 𝑓𝑠 
⋮ 

𝜇𝑓𝑠 ⟶ 𝑋 𝑋  
𝑋𝑖  

𝐺𝑖 𝑋𝑖 , 𝐗𝑠𝑖  

 

𝜇𝑋𝑖 ⟶𝑓𝑠 𝑋𝑖 = 𝐺𝑖 𝑋𝑖 , 𝐗𝑠𝑖
𝐗𝑠𝑖

 

Marginal distribution  
of 𝑋𝑖  with respect to 𝐺𝑖  

 

𝐺𝑖 𝑋𝑖 , 𝐗𝑠𝑖 = 𝐹𝑙 𝑋𝑖 , 𝐗𝑠𝑖
𝑙∈𝑁𝐸 𝑋𝑖 \𝑓𝑠

 

𝜇𝑋𝑖 ⟶𝑓𝑠 𝑋𝑖 =  𝐹𝑙 𝑋𝑖 , 𝐗𝑠𝑖
𝐗𝑠𝑖𝑙∈𝑁𝐸 𝑋𝑖 \𝑓𝑠

= 𝜇𝑓𝑙 ⟶𝑋𝑖 𝑋𝑖
𝑙∈𝑁𝐸 𝑋𝑖 \𝑓𝑠

 

Compute recursively: 
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 Exact inference for finding marginal distributions based on message passing in 
factor graphs 

 



Inference in trees: Sum-product algorithm (4) 

 

 

 

 

(1) Pick arbitrary node as root 

(2) Propagate messages from the leaves to root and store 

received messages at every node 

(3) Propagate messages from root to leaves and store 

received messages at every node. 

 

Compute the product of received messages at a given node 

for which the marginal is required (normalize if 

necessary) 

𝑋 𝑓 

𝜇𝑓 ⟶ 𝑋 𝑋 = 𝑓(𝑋) 

𝑋 𝑓 

𝜇𝑋 ⟶𝑓 𝑋 = 1 First message 
from leaves 
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𝜇𝑋1 ⟶ 𝑓𝑎 𝑋1 = 1 

𝜇𝑓𝑎⟶𝑋2 𝑋2 = 𝑓𝑎 𝑋1, 𝑋2
𝑋1

 

 

𝜇𝑋4 ⟶ 𝑓𝑐 𝑋4 = 1 

𝜇𝑓𝑐⟶𝑋2 𝑋2 = 𝑓𝑐 𝑋2, 𝑋4
𝑋4

 

 

𝜇𝑋2 ⟶ 𝑓𝑏 𝑋2 = 𝜇𝑓𝑎⟶𝑋2 𝑋2 𝜇𝑓𝑐⟶𝑋2 𝑋2  

𝜇𝑓𝑏⟶𝑋3 𝑋3 = 𝑓𝑏 𝑋2, 𝑋3
𝑋2

𝜇𝑋2⟶𝑓𝑏 𝑋2  

 

Sum-product algorithm example 

 From C. Bishop, PRML 

  

𝑋1 𝑋2 𝑋3 

𝑋4 

𝑓𝑎 𝑓𝑏 

𝑓𝑐 

𝑋1 𝑋2 𝑋3 

𝑋4 

𝑓𝑎 𝑓𝑏 

𝑓𝑐 

𝜇𝑋3 ⟶ 𝑓𝑏 𝑋3 = 1 

𝜇𝑓𝑏⟶𝑋2 𝑋2 = 𝑓𝑏 𝑋2, 𝑋3
𝑋3

 

 

𝜇𝑋2 ⟶ 𝑓𝑎 𝑋2 = 𝜇𝑓𝑏⟶𝑋2 𝑋2 𝜇𝑓𝑐⟶𝑋2 𝑋2  

𝜇𝑓𝑎⟶𝑋1 𝑋1 = 𝑓𝑎 𝑋1, 𝑋2
𝑋2

𝜇𝑋2⟶𝑓𝑏 𝑋2  

 

𝜇𝑋2 ⟶ 𝑓𝑐 𝑋2 = 𝜇𝑓𝑎⟶𝑋2 𝑋2 𝜇𝑓𝑏⟶𝑋2 𝑋2  

𝜇𝑓𝑐⟶𝑋4 𝑋4 = 𝑓𝑐 𝑋2, 𝑋4
𝑋3

𝜇𝑋2⟶𝑓𝑐 𝑋2  
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Inference in trees: Max-sum algorithm (1) 

 Finds 𝐗 that maximizes 𝑃(𝐗)  

 Computes max
𝐗
𝑃(𝐗)   

 

Generally: argmax
𝑋1

𝑃(𝑋1, 𝑋2) ≠ argmax
𝑋1

𝑃(𝑋1) 

 

The value of 𝑋1 that maximizes the joint probability distribution over 𝑋1, 𝑋2 is not 
the same as the value of 𝑋1 that maximizes the marginal distribution over 𝑋1. 

 

 

For any tree-structured factor graph: 

 max
𝐗
𝑃(𝐗) = max

𝑋𝑛
 max

𝐗𝑠
𝑓𝑠 𝑋𝑛, 𝐗𝑠𝑓𝑠∈𝑁𝐸(𝑋𝑛)

 

  Max-product (…so, what about the max-sum algorithm) 

17 



Inference in trees: Max-sum algorithm (2) 

 Numerically it is safer to compute ln max
𝐗
𝑃(𝐗)  

 We know that: argmax
𝐗
𝑃(𝐗) = argmax

𝐗
  ln 𝑃(𝐗) 

 

 Fact:    ln max
𝐗
𝑃(𝐗) =max  

𝐗
ln 𝑃(𝐗) 

 Moreover: max 𝑎 + 𝑏, 𝑎 + 𝑐 = 𝑎 + max(𝑏, 𝑐) (distributive law) 

 

 

 Analogous message passing as in sum-product algorithm …  
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Inference in trees: Max-sum algorithm (3) 

 Analogously to sum-product…   

     Initialization at leaf nodes: 

      𝜇𝑋⟶𝑓 𝑋 = 0,  if 𝑋 is a leaf 

      𝜇𝑓⟶𝑋 𝑋 = ln 𝑓 𝑋 ,  if 𝑓 is a leaf 

 

     Recurrence: 

      𝜇𝑓𝑠⟶𝑋 𝑋 = max𝐗𝑠\𝑋
ln 𝑓𝑠 𝐗𝑠 +  𝜇𝑌⟶𝑓𝑠 𝑌𝑌∈𝐗𝑠\𝑋

 

      Store argmax
𝐗𝑠\𝑋
ln 𝑓𝑠 𝐗𝑠 +  𝜇𝑌⟶𝑓𝑠 𝑌𝑌∈𝐗𝑠\𝑋

 for each of these       

      messages (this is the best configuration of the other variables in 𝑓𝑠) 

      𝜇𝑋⟶𝑓𝑠 𝑋 =  𝜇𝑓𝑠⟶𝑋 𝑋𝑓𝑡∈𝑁𝐸(𝑋)\𝑓𝑠
  

  

     Termination at root node 𝑋: 

             max
𝐗
ln 𝑃(𝐗) = max

𝑋
 𝜇𝑓𝑠⟶𝑋 𝑋𝑓𝑠∈𝑁𝐸(𝑋)

, and remember  

      argmax
𝑋
 𝜇𝑓𝑠⟶𝑋 𝑋𝑓𝑠∈𝑁𝐸(𝑋)

 (the best configuration of 𝑋) 
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Inference in general graphs: Junction tree algorithm 

 

If graph is directed make it undirected through 

moralization 

 

Triangulate the undirected graph 

 

Let the maximal cliques be the nodes of a new graph, where 

two cliques are connected if they have at least one node 

in common 

 

In this new clique graph, let the weight on an edge 

between two cliques be the number of nodes they have in 

common 

 

Return the maximum spanning tree on the clique graph 

 

 Exact inference through the max-sum or sum-product algorithm 

 Intractable when the given graph contains large cliques… 20 



Loopy belief propagation for approximate inference 

 Sum-product and Max-sum algorithms can be also applied to general graphs 
by “looping” through the cycles of nodes 
 

 The algorithm is then called "loopy" belief propagation 
 

 Initialization and scheduling of message updates must be adjusted slightly 
because graphs might not contain any leaves 
 

 E.g., initialize all variable messages to 1 and use the same message passing 
strategies as above in every iteration  
 

 The precise conditions under which loopy belief propagation will converge are 
still not well understood (on graphs containing a single loop it converges in 
most cases, but the probabilities obtained might be incorrect) 
 

 There are other approximate methods for marginalization including, 
Expectation Propagation, Variational Bayes, Markov Chain Monte Carlo 
methods, etc.  

21 


