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> Inference in chains

» Inference in tree structures
» Factor graphs
» Sum-product algorithm
» Max-sum algorithm

» Inference in general graphs
» Junction tree algorithm
» Loopy belief propagation
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Inference on chains (1)

O0—0
What is the marginal distribution on Y?

X y
P(Y) = szxp(x, Y = ZX:xP(YIX)P(X) O @

Now that we know P(Y), what is P(X|Y)?

b'¢ Y
PX|Y) = P(YILQI;(X) O‘ Q

Given P(X|Y) and P(Y), we can find P(X,Y) (the joint distribution)
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Inference on chains (2)

Directed chain can easily be converted into equivalent (w.r.t. conditional
independence properties) undirected chain (by omitting arrows)

X, : Xz: X, :
1
P(X) = E‘/J1,2(X1»X2)¢2,3(X2:X3) w1 (X1, Xn)

Marginal distribution at a given X;:

P(X,) =ZX S‘X N ZX P(X)

- ZXI ZX > ...zXn%wl,z(xl,xz)nbzg,(xz,xg) W10 K1, X))

Observations: 1. Summations depend on certain factors

2. Summations can be rearranged by distribution law, i.e., ab+ac=a(b+c)
4

Xit1

Xit1
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Inference on chains (3)

X1:: Xi—1 Xit1 XQ:

i (X;) r (X;)

1
P(X) = E¢1,2(X1»X2)¢2,3(X2:X3) W10 (Xno1, Xn)

Marginal distribution at a given X;:

P(X) =2 [Ty, YicriKim1, X0 o [Ty 1, (X0, X)) -]
|

w (X;)

1Xx,,, Vi1 Kiz1, X0 o | Zx, Yn—1.0Xn—1, Xn) | -]

|
.ur(Xi)
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Inference on chains (4)

ch : Xi—1 Xiv1 XQ:

i (X;) r (X;)

1
P(X;) = Eﬂl(Xi)ﬂr(Xi)

Recurrence:

u(X;) = Vi1 (X1, Xp) [ (Xi—1)] Note: each message comprises
Xi-1 k values (where k is the number

of states of X;), one for every
i) = ) YK X) [ (Kis)] value of X
i+1
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Inference on chains (5)

X1C: Xi—1 Xit1 XQ:

i (X;) r (X;)

1
P(X;) = E.ul(Xi)ﬂr(Xi)

Recurrence:

w(X;) = . Yim1,i (Xi—1, X)) [y (Xi—1)]

Start with u;(X3) = Xx, ¥1,2(X1, X2) and compute ;(X;) forwards on the chain

XD = D s, X9 [y (i)

i+1
Start with u;(X,—1) = 2Xx, Wn—1,n(Xn-1,Xn) and compute y;(X;) backwards
on the chain
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Inference on chains (6)

ch Xi-1 Xi+1 XQC

i (X;) r (X;)

1
P(X;) = Eﬂl(Xi)ﬂr(Xi)

What about Z?
Z = X#Z(Xi)#r(Xi)

Forward-backward algorithm

(1) Start with wu(Xy) =Xy, ¥12(X;,X;) and compute u;(Xy,)
forwards on the chain (store w(X;) for each variable X;)
(2) Start with p(X,_1) :Zanpn—l,n(Xn—l:Xn) and compute p;(X;)
backwards on the chain (store u,.(X;) for each variable X;)

8
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Inference in trees (1)

» Examples from C.Bishop: PRML

Undirected tree Directed tree Polytree

Joint distribution:

P(X) = P(X1)P(X2|X1)P(X3|X1)
P(X4|X2)P(X5|X3)
P(Xg|X3)P(X|X3)

Generally:

Pex) = | | £
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Inference in trees: Factor graphs (1)

P(X) = P(X1)P(X2|X1)P(X3|X1)P(X4|X2)P(X5|X2)P(X6|X3)P(X7|X3)

P(X) = fa(X1)fp (X1, X2) fe (X1, X3) fa(X2, Xa) fe(Xp, X5) fr (X3, X6) fg (X3, X7)

X, X, Xs X. X5 X¢ X,

10
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Inference in trees: Factor graphs (2)

» Factor graph: bipartite graph G(V U F, E), where {v, f} € E if and only if
variable v € V occurs in factor f € F

» Examples:

From C.Bishop: PRML

C \ / |:> fa Je
g f

11
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Inference in trees: Sum-product algorithm (1)

» Exact inference for finding marginal distributions based on message passing in
factor graphs

P.'S'(X; XS)

P(X) = P(X) = [ Fs(X,Xs)]
X\X 41 1seNE(X) Xs
— :ufs—>X(X)
41 1seNE(X)
:ufs—>X(X) = ES(XJXS)

Xs
12
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Inference in trees: Sum-product algorithm (2)

» Exact inference for finding marginal distributions based on message passing in
factor graphs

.ufs—>X(X)

P.'S'(X; XS)

Compute recursively:

iy x(X) = FS(X,XS)=z z ;g(x,xl,...,xm)l_[ iy, g (X))
Xs X1 Xm | LENE(f)\X

|
Local marginal distribution
at X with respect to f

\

13
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Inference in trees: Sum-product algorithm (3)

» Exact inference for finding marginal distributions based on message passing in
factor graphs

Gi(Xi Xsi) x,
.ufs — X(X)

fs X

Bp (D =) GlXs)  GOGXD =] | F(X X)
\ Xsi | LENE(X)\Ss

Margina‘ distribution
of X; with respect to G;

Compute recursively:

MUx; —>fS(Xi) = 1_[ [Z Fl(Xi,XSi)] = 1_[ Ur, —>Xi(Xi)
IENE(X)\fs Xg; LENE(X)\fs

14
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Inference in trees: Sum-product algorithm (4)

First message ux (X)) =1 ur - x(X) = f(X)
from leaves O 2 = O
X fo 7 X

(1) Pick arbitrary node as root

(2) Propagate messages from the leaves to root and store
recelved messages at every node

(3) Propagate messages from root to leaves and store
received messages at every node.

Compute the product of received messages at a given node
for which the marginal is required (normalize 1if
necessary)

15
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» From C. Bishop, PRML

by, — 5, (X)) =1

Hf,—X, (X3) = fa (X1, X3)
X1

.uX4—>fC(X4) =1

nr—x,(Xp) = . fe(X2, X4)
4

Hx, — f}, (X3) = U, —x, (XZ).qu—>X2 (X2)
Hfp—Xs (X3) = . fo (X2, X3) Hx,—fp (X2)
2

Sum-product algorithm example

X1 X7 X3
O 20s 00
fa fb
fe
Xy
.UX3—>fb(X3) =1
Hfp—x, (Xz) = Y fo (X2, X3)

Hx, —>fa(X2) = HUfp—x, (Xz)ﬂfc—>xz (X2)
Hf,—x, (X1) = Y fa(X1, X2) Hx,—fp (X3)
2

tx, — 7. (X2) = s, x, (XZ).ufb—>X2 (X2)
.Ufc—>X4(X4) = Y fe(X2,X4) .uXZ—>fC(X2)
3

16
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Inference in trees: Max-sum algorithm (1)

» Finds X that maximizes P (X)
» Computes m)?xP(X)

Generally: argmax P (X, X,) #argmax P(X;)

The value of X; that maximizes the joint probability distribution over X;, X5 is not
the same as the value of X; that maximizes the marginal distribution over X;.

For any tree-structured factor graph:
m)?XP X) = rr}(?lx HfSENE(Xn) rr)l&Xﬁq(Xn; Xs)

=» Max-product (...so, what about the max-sum algorithm)

17
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Inference in trees: Max-sum algorithm (2)

» Numerically it is safer to compute In (m)?x P(X))

» We know that: argmax P(X) = argmax In P(X)
X X

Fact: In (m)?x P(X)) = max In P(X)

Moreover: max(a + b, a + ¢) = a + max(b, c¢) (distributive law)

Analogous message passing as in sum-product algorithm ...

18
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Inference in trees: Max-sum algorithm (3)

» Analogously to sum-product...
Initialization at leaf nodes:
Hx—r(X) =0, if X is a leaf

tr—x(X) =Inf(X), if fis a leaf

Recurrence:
Iifs—>X(X) = g{nz\a;(((ln]g(xs) + ZYEXS\X HY—>fS(Y))

Store argmax(lnfs(Xs) + Dyex\x by £, (Y)) for each of these
X\ X

messages (this is the best configuration of the other variables in f;)

Ux—r(X) = X reneonf Kf—x (X)

Termination at root node X:
max InP(X) = m)?x(ZfSENE(X) ufs_>X(X)), and remember

argmaX(ZfSENE(X) .Ufs—>x(X)) (the best configuration of X)
X
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“Inference in general graphs: Junction tree algorithm

If graph 1s directed make 1t undirected through
moralization

Triangulate the undirected graph

Let the maximal cliques be the nodes of a new graph, where
two cliques are connected i1f they have at least one node
1in common

In this new clique graph, let the weight on an edge
between two cliques be the number of nodes they have in
common

Return the maximum spanning tree on the clique graph

» Exact inference through the max-sum or sum-product algorithm
» Intractable when the given graph contains large cliques... 50



‘ Hasso
Plattner
Instltu

“Loopy belief propagation for approximate inference

» Sum-product and Max-sum algorithms can be also applied to general graphs
by “looping” through the cycles of nodes

» The algorithm is then called "loopy" belief propagation

» Initialization and scheduling of message updates must be adjusted slightly
because graphs might not contain any leaves

» E.g., initialize all variable messages to 1 and use the same message passing
strategies as above in every iteration

» The precise conditions under which loopy belief propagation will converge are
still not well understood (on graphs containing a single loop it converges in
most cases, but the probabilities obtained might be incorrect)

» There are other approximate methods for marginalization including,
Expectation Propagation, Variational Bayes, Markov Chain Monte Carlo
methods, etc.

21



