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MapReduce: Hacco
Introduction ﬂ it

= MapReduce ...
= is a paradigm derived from functional programming.
= is implemented as framework.
= operates primarily data-parallel (not task-parallel).
= scales-out on multiple nodes of a cluster.
= uses the Hadoop distributed filesystem.
= s designed for Big Data Analytics:
= Log-files
= Weather-statistics
= Sensor-data
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= Who is using Hadoop?
= Yahoo!

= Biggest cluster: 2000 nodes, used to support research for
Ad Systems and Web Search.

= Amazon

= Process millions of sessions daily for analytics, using both
the Java and streaming APIs. Clusters vary from 1 to 100
nodes.

= Facebook

= Use Hadoop to store copies of internal log and dimension
data sources and use it as a source for reporting/analytics.
600 machine cluster.

http://wiki.apache.org/hadoop/PoweredBy
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MAP REDUCE

Big Data
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= map-task:
= record reader\
= mapper
l combinex
. partitionelk

= reduce-task:
= shuffle and sort—
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= map-task:
P = Input: <data entry> (row/split/item)

= record reader = Qutput: <key, record>

= mapper
= “key" is usually positional information

= combiner W ®
= “pecord" represents a raw data record

= partitioner

= Translates a given input into records
= Parses data into records but not the

" reduce-task: records itself

= shuffle and sort
= reducer
= output formater

Maximilian Jenders | Ubung Datenbanksysteme II - WSDM



MapReduce:
Phases

map-task:

mapper

Hasso
Plattner
Institut

Input: <key, record>
Output: <key*, value>

“key*" is a problem-specific key

= e.g. the word for the word-count-task
“value" is a problem-specific value

= e.g. “1" for the occurence of a word

Executes user defined code that starts
solving the given task
Defines the grouping of the data

A single mapper can emit multiple
<key*, value> output pairs for a single
<key, record> input pair
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map-task:

combiner
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Input: <key*, values>
Output: <key*, value>

“key*" is a problem-specific key

= e.g. the word for the word-count-task
“value" is a problem-specific value

= e.g. “1" for the occurence of a word

Executes user defined code that merges
a set of values

Pre-aggregates values to reduce network
traffic

Is an optional, localized reducer
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= map-task:
= Input: <key*, value>

" record reader = Qutput: <key*, value> + reducer
= mapper
= “reducer" is the reducer number that should

handle this key/value pair; reducer might
= partitioner be located on other compute nodes

= combiner

= Distributes the keyspace randomly to the
reducers

= shuffle and sort | = Calculates the reducer by e.g.

key*.hashCode() % (number of reducers)

= reduce-task:

= reducer
= output formater
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= map-task:
= record reader
= mapper
= combiner
= partitioner

= reduce-task:
= shuffle and sort
= reducer
= output formater

Input:
Output:

Downloa

reducers

<key*, value> + reducer
<key*, value> + reducer

ds the <key*, value> data to the
local machines that run the corresponding
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= map-task:
= record reader
= mapper
= combiner
= partitioner

= reduce-task:
= shuffle and sort
= reducer
= output formater
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Input: <key*, values>
Output: <key*, result>

“result" is the solution/answer for the
given “key*"

Executes user defined code that merges

a set of values

Calculates the final solution/answer to the
problem statement for the given key
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= map-task:
» Input: <key*, result>

" record reader = Qutput: <key*, result>
= mapper
= Writes the key/result pairs to disk

= Formates the final result and writes it
= partitioner record-wise to disk

= combiner

= reduce-task:
= shuffle and sort
= reducer
= output formater

Maximilian Jenders | Ubung Datenbanksysteme II - WSDM



MapReduce: ﬂ Hasso
Phases Institut

15

= map-task:
useful to increase

= record reader
the performance

= mapper

= combiner
( helpful to build a
L sorting algorithm

= partitioner

= reduce-task:
basic building blocks

* shuffle and sort with user defined code

= reducer

= output formater
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= map-task:
= Input:
" record reader = A relational table instance
= mapper Car(name, vendor, color, speed, price)
= Qutput:

" combiner = A distinct list of all vendors

= partitioner

map (key, record) {

emit (record.vendor, null);

= reduce-task: }
= shuffle and sort

reduce (key, values) {

= reducer
write (key);

= output formater |y
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= map-task:
= Input:
" record reader = A relational table instance
= mapper Car(name, vendor, color, speed, price)
= Qutput:

= combiner .
= An index on Car.vendor

= partitioner
map (key, record) {
emit (record.vendor, key);
= reduce-task: }
= shuffle and sort
reduce (key, values) {

String refs = concat(values);
= output formater write (key, refs);

= reducer
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= map-task:

= record reader
= mapper

= combiner

= partitioner

= reduce-task:
= shuffle and sort
= reducer
= output formater

= Input:
= Two relational table instances
Car(name, vendor, color, speed, price)
Plane(id, weight, length, speed, seats)
= Qutput:
= All pairs of cars and planes with the
same speed
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= map-task:
= record reader
= mapper
= combiner
= partitioner

= reduce-task:
= shuffle and sort
= reducer
= output formater

Car(name, vendor, color, speed, price)
Plane(id, weight, length, speed, seats)

map (key, record) {
emit (record.speed,
{‘table® => table(record),
‘record® => record});

}

reduce (key, values) {
cars = valuesWhere(‘table‘, ‘car‘);
planes = valuesWhere(‘table‘, ‘plane€);
for (car : cars)
for (plane : planes)
write (car.record, plane.record);







