
Distributed Data Management
Distributed Query Optimization Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Presenter
Presentation Notes
Hamburger Hafen

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Distributed Query Execution

A Distributed Query

Slide 3
ThorstenPapenbrock

Given

 Relations R, S, T, U each on a different host (= site)

 Query Q issued by an arbitrary sink node

Task

 Calculate the answer
for Q on R,S,T,U
in an efficient way.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

Q

Distributed Query Execution

Set Operations

Slide 4
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ᴜ S ᴜ T ᴜ U

Distributed Query Execution

Set Operations

Slide 5
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

Distributed Query Execution

Set Operations

Slide 6
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

In case:
R ∩ S ∩ T < U

Distributed Query Execution

Set Operations

Slide 7
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

In case:
R ∩ S ∩ T > U

Distributed Query Execution

Projections and Selections

Slide 8
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

ΠNameR ᴜ σName=‘Nick’S

Distributed Query Execution

Projections and Selections

Slide 9
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ᴜ S

ΠNameR σName=‘Nick’S

Distributed Query Execution

Groupings

Slide 10
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation
down (if possible) and
send the results
to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)R ᴜ S

Distributed Query Execution

Groupings

Slide 11
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation
down (if possible) and
send the results
to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

ᴜ S

γName,sum(Salary)R

Distributed Query Execution

Groupings

Slide 12
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation
down (if possible) and
send the results
to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)(R ᴜ S)

Distributed Query Execution

Groupings

Slide 13
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation
down (if possible) and
send the results
to the sink.

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)(R ᴜ S)

ΠName,SalaryR ΠName,SalaryS

A general optimization:

Insert and push-down projections
to decrease the amount of send data.

Distributed Query Execution

Joins

Slide 14
ThorstenPapenbrock

Join Operations

 Naïve approach: “Ship whole”

 Send all relations

 Few but large messages

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R⋈S⋈T⋈U

We can do much better:
Calculate the join on only the join attributes

and then fetch the data afterwards.

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Distributed Join Execution

Naïve Join

Slide 16
ThorstenPapenbrock

 A join R⋈S over two relations R and S with

 There are |R| and |S| many attributes in R and S, respectively.

 There are #R and #S many values in R and S, respectively.

 Each attribute value in R and S has a size of a.

 Both R and S are stored on different hosts.

 Assume that one side can be the sink node.

 Two kinds of attributes:

a. join-attributes
(denoted as R.ID and S.ID
but can have arbitrary names)

b. data-attributes
(denoted as R\ID and S\ID;
= information that should be joined)

 Naïve join on third node

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2

Site 3

R S

⋈

receive receive

send send

Distributed Join Execution

Site Join

Slide 17
ThorstenPapenbrock

 Naïve join on third node

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2

Site 3

R S

⋈

receive receive

send send

 Site join on one of the data nodes

 Costs: |R| ∙ #R ∙ a

|S| ∙ #S ∙ a|R| ∙ #R ∙ a

Site 1

R

send

Site 2
⋈

receive S

|R| ∙ #R ∙ a

Distributed Join Execution

Projection Join

Slide 18
ThorstenPapenbrock

 Site join on one of the data nodes

 Costs: |R| ∙ #R ∙ a

Distributed Query
Optimization

Distributed Data
Management

 Projection join based on join attributes

 Costs: |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a
= |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a

Site 1

R

send

Site 2

⋈

receive
S

send

ΠID

receive

⋈

ΠID

send receive

⋈

|ID| ∙ #R ∙ a

|ID| ∙ #(R⋈S) ∙ a

|R| ∙ #(R⋈S) ∙ a

ΠID

Site 1

R

send

Site 2
⋈

receive S

|R| ∙ #R ∙ a

Distributed Join Execution

Comparison

Slide 19
ThorstenPapenbrock

 Naïve join: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

 Site join: |R| ∙ #R ∙ a

 Projection join: |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a

 When is the side join better than the projection join?

|R| ∙ #R ∙ a > |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a | Attribute size does not matter
<=> |R| ∙ #R > |ID| ∙ #R + (|ID| + |R|) ∙ #(R⋈S)

 If #R >> #(R⋈S) „If the join selectivity is high“

 If |R| >> |ID| „If many data-attributes exist“
Distributed Query
Optimization

Distributed Data
Management

Distributed Join Execution

Projection Join (2)

Slide 20
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 1

R

send

Site 2

⋈

receive
S

send

ΠID

receive

⋈

ΠID

send receive

⋈

ΠID

Site 2

S

send

Site 1

⋈

receiveR

send

ΠID

receive

⋈

|ID| ∙ #S ∙ a

|R| ∙ #(R⋈S) ∙ a

 (1): |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a

 (2): |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a

 If #R << #S, then (1) is likely better; otherwise (2)
(with S being the relation on the site that should answer Q).

 If we can choose the site for Q, then choose the smaller
relation and strategy (2).

(2)

(1)

Distributed Join Execution

Three Sites

Slide 21
ThorstenPapenbrock

 Best solution so far:

 Projection join (2): |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a

 Costs if the result is needed on some third site:
|ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a + (|R| + |S|) ∙ #(R⋈S) ∙ a

 Which can be worse than the Naïve join on a third node if #(R⋈S) is large
(i.e. if the join selectivity is small).

 Naïve join: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query
Optimization

Distributed Data
Management

Distributed Join Execution

Three Site Join

Slide 22
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
ManagementSite 1 Site 2

Site 3

R S

⋈

receive receive

send send

|S| ∙ #S ∙ a|R| ∙ #R ∙ a

Site 0

R

send

Site 2

⋊

receive S

send

ΠID

receive

⋉

Site 1
⋈

receive receive

ΠID

send

send

|ID| ∙ #R ∙ a

|ID| ∙ #(R⋈S) ∙ a

|R| ∙ #(R⋈S) ∙ a |S| ∙ #(R⋈S) ∙ aAgain: If #(R⋈S) is much smaller
than #R and #S, the pre-filtering
improves the query performance.

Distributed Join Execution

Semi-Join

Slide 23
ThorstenPapenbrock

Definition:
Given relation R with attribute set A and relation S with attribute set B.
The Semi-Join R ⋉ S is definied as

R ⋉ S := ΠA(R⋈A∩BS)
= ΠA(R) ⋈A∩B ΠA∩B(S)
= R⋈A∩B ΠA∩B(S)

 Remarks
 The join is a natural join (over common attributes A∩B).
 For theta joins between R.X and S.Y it is: R ⋉ S := R⋈X=Y ΠY (S)

 S functions as a filter on R‘s tuples.
 The semi-join is asymmetric.

Distributed Query
Optimization

Distributed Data
Management

Distributed Join Execution

Semi-Join

Slide 24
ThorstenPapenbrock

 Semi-joins function as filters.
 They can be used like selections and projections to minimize

intermediate results before these are send to other sites.
 Rules:

R⋈FS =
 (R ⋉F S) ⋈F S

 Filter R, then join with S
 R⋈F (S ⋉F R)

 Filter S, then join with R
 (R ⋉F S) ⋈F (S ⋉F R)

 Filter R and S, then join both results

Distributed Query
Optimization

Distributed Data
Management

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Bloom filter Optimized Joins

From a Database Exercise

Slide 26
ThorstenPapenbrock

 “Find all titles and directors of films that are younger than 1980.”
SELECT F1.Titel, F2.Regie
FROM Movie1.Filme1 F1, Movie2.Filme2 F2
WHERE F1.Titel = F2.Titel
AND F1.Jahr > 1980

 Task: Minimize the number of transmitted bytes.

 Tricks:

 Transfer only necessary bytes: Rtrim()

 Use better join order: Filme2 is smaller

 Insert projections where possible

 Use compression: Eliminate duplicates

 DISTINCTs after semi-joins and projections

 Bloom filter

Distributed Query
Optimization

Distributed Data
Management

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Naive solution

Best solution

Diagramm1

		404987

		628271

		648495

		760271

		1027714

		1046596

		1224194

		1253151

		1838172

		1879817

		1886682

		1886811

		2353392

		2708484

		2733584

		13409893

Tabelle1

		404987

		628271

		648495

		760271

		1027714

		1046596

		1224194

		1253151

		1838172

		1879817

		1886682

		1886811

		2353392

		2708484

		2733584

		13409893

Tabelle1

		

Tabelle2

		

Tabelle3

		

A Bloom filter is a probabilistic data structure that answers set containment
questions in constant time and with constant memory consumption.

 “Does element X appear in the set?”

 Answer “no” is guaranteed to be correct.

 Answer “yes” has a certain probability to be wrong (hence, “maybe”).

 But then the concrete look-up will just fail.

 Very nice property that allows the use of Bloom filters in exact systems.

 Structure

 Bitset of fixed size (typically a long array)

 One (or more) hash functions

Fast Storage and Retrieval

Bloom filter (Recap)

Burton H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors",
Communications of the ACM, volume 13, number 7, pages 422-426, 1970

maybe no

Slide 27
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

> 6,000 citations

Bloom filter Optimized Joins

Bloom filter

Slide 28
ThorstenPapenbrock

 Problem: Is f an element of column A?

 Column A is large – must be stored on disk

 Idea: Store small representation of A in main memory

 Bloom filter H

 Use H to probabilistically mark whether an element f is in A.

 Test can fail, but only in one direction:

 If k∈T, we cannot be sure whether k∈A.

 If k∉T, we know that k∉A.

 Use H for a probabilistic semi-join implementation!
Distributed Query
Optimization

Distributed Data
Management

Bloom filter Optimized Joins

Bloom filter for Semi-Joins

Slide 29
ThorstenPapenbrock

Bloom filter-based (semi-)joins
 Also called hash-filter-joins
 Use Bloom filter to calculate R⋉FS:

1. Hash all values in R.F with funktion h into (small) hash tabelle H
2. Transmit only H to S
3. ∀ f∈S.F with H(h(f))=0: f does not have a join partner in R; ignore local record.
4. ∀ f∈S.F with H(h(f))=1: f does probably have a join-partner in R; send local record.

 The higher the join selectivity…
 the lower the risk of false positives.
 the smaller we can make H.

Distributed Query
Optimization

Distributed Data
Management

Bloom filter Optimized Joins

Bloom filter for
Semi-Joins

Example

1
1
1
1
0
0

1
1
1
1
0
0

6 Bit

Quelle: VL-Folien, Alfons Kemper, TU München

⋈C

Hashfunktion:
mod 6

Falsch
Positiv

Bloom filter Optimized Joins

Bloom filters as universal Trick

Slide 36
ThorstenPapenbrock

 Always use Bloom filters if …
 sets of values need to be compared and
 only a few hits are expected and
 data transfer is expensive.

 Examples:
 „Normal“ hash joins
 Star joins in data warehouses
 Intersect and minus set operations

Distributed Query
Optimization

Distributed Data
Management

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Multi-Relation Joins

The Semi-Join Trick for Multi-Relation Joins

Slide 38
ThorstenPapenbrock

Task

 Calculate the join across arbitrary many relations.

 Example with three relations:

R ⋈F S ⋈G T =

(R ⋉F S) ⋈F (S ⋉G T) ⋈G T =

(R ⋉F (S ⋉G T)) ⋈F (S ⋉G T) ⋈G T =

…

Approach

 Use semi-joins on any relation that needs to be transmitted.

 Semi-joins reduce the relations to only necessary tuples.

 Hence, they are called “reducer”.

 A relation is called “reduced” if it does not contain any tuple
that is not needed for the final result.

 Global property, because also remote relations reduce needed tuples.

Distributed Query
Optimization

Distributed Data
Management

Multi-Relation Joins

Full Reducer

Slide 39
ThorstenPapenbrock

Semi-Join Program

 Given the realtions R1,…,Rn, a semi-join program is a sequence of semi-joins
Ri:=Ri⋉Rj

 Comments:

 We omit join attributes, because they result from the join query.

 The effect of the semi-join is a reduction of the tuples in Ri.

Full Reducer

 Given a query Q=R1⋈…⋈Rn, a reducer for Ri in Q is a semi-join programm that removes
all tuples from Ri that are not needed to calculate result(Q).

 A full reducer for Q is a semi-join programm that is a reducer for all Ri in Q.

 Comments:

 The Ri do not need t be different (self-joins)

 Intuition: reducer for relations – full reducer for queries

Distributed Query
Optimization

Distributed Data
Management

Multi-Relation Joins

Full Reducer

Slide 40
ThorstenPapenbrock

R ⋈F S ⋈G T =
(R ⋉F (S ⋉G T)) ⋈F (S ⋉G T) ⋈G T

 Is this a full reducer?

 No, because S and T are not „reduced“.

 But it is enough to minimize network traffic, i.e., R is minimized before sending to S
and S is minimized after its join with T before sending to T, right?

 Yes, but only if the join ⋈F is calculated on S’s node and ⋈G on T’s node.

 If the join is evaluated elsewhere, we transmit (S ⋉G T) and T.

 Calculate full reducer first!

Distributed Query
Optimization

Distributed Data
Management

Multi-Relation Joins

Full Reducer for linear Joins

Slide 41
ThorstenPapenbrock

 Given: Q = R1 ⋈A R2 ⋈B ... ⋈Y R(n-1) ⋈Z Rn

 Task: Find a full reducer for Q that reduces all Ri.

 Two-Phase Approach:

 Forward:

 R2‘ = R2 ⋉ R1

 R3‘ = R3 ⋉ R2‘ = R3 ⋉ (R2 ⋉ R1)

 ...

 Rn‘ = Rn ⋉ R(n-1)‘ = ...

 Backward:

 R(n-1)‘‘ = R(n-1)‘⋉ Rn‘

 R(n-2)‘‘ = R(n-2)‘⋉ R(n-1)‘

 ...

 R1‘‘ = R1 ⋉ R2‘‘

Distributed Query
Optimization

Distributed Data
ManagementReducer für Rn

Reducer für R(n-1)

Reducer für R1

Full
Reducer

for Q

Multi-Relation Joins

Full Reducer for linear Joins

Slide 42
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

ΠA

ΠB ΠC

⋊ ⋊ ⋊

⋉⋉⋉
ΠC

ΠBΠA

Semi-Join/
Reducer

Forward
R2‘ = R2 ⋉ R1
R3‘ = R3 ⋉ R2‘
R4‘ = R4 ⋉ R3‘

Backward
R3‘‘ = R3‘ ⋉ R4‘
R2‘‘ = R2‘ ⋉
R3‘‘
R1‘‘ = R1 ⋉ R2‘‘

Site 3

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 43
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 44
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 45
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 46
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 47
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 48
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3)(5,7)

B C

3 1

1 0

7 2

7 1

5 3

6 0

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 49
ThorstenPapenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3)(5,7)(5,7)

B C

3 1

1 0

7 2

7 1

5 3

6 0

A B

9 3

5 5

7 7

5 3

0 7

3 2

Multi-Relation Joins

Reducer for non-linear Joins

Slide 50
ThorstenPapenbrock

 Given: A non-linear but
acyclic join

 Task: Find a reducer
for each relation.

 Approach:

 Select the relation that needs to be reduced as root node.

 Reduce the relations bottom-up level-wise to the root node.

 Add semi-joins from nodes to their parent. Distributed Query
Optimization

Distributed Data
Management

R1

R2 R3

R4 R5

⋈ ⋈

⋈ ⋈
R1

R2 R3

R4 R5

Multi-Relation Joins

Reducer – Final Notes

Slide 51
ThorstenPapenbrock

 Finding a full reducer for cyclic joins is a problem.

 In many cases, this full reducer simply does not exist.

 Optimizing reducer calculation in practice is challenging:

 Semi-joins also need to send around data.

 Does the minimization even pay off?

 Minimizing intermediate results is challenging.

 Which relation is the best root node?

 Not all nodes may be able to perform query calculation.

 What is the best reduce order?

 Where do we calculate the semi-joins?

 Do we need to calculate a full reducer?

Distributed Query
Optimization

Distributed Data
Management

	Distributed Data Management�Distributed Query Optimization
	Distributed DBMSs�Overview
	Distributed Query Execution�A Distributed Query
	Distributed Query Execution�Set Operations
	Distributed Query Execution�Set Operations
	Distributed Query Execution�Set Operations
	Distributed Query Execution�Set Operations
	Distributed Query Execution�Projections and Selections
	Distributed Query Execution�Projections and Selections
	Distributed Query Execution�Groupings
	Distributed Query Execution�Groupings
	Distributed Query Execution�Groupings
	Distributed Query Execution�Groupings
	Distributed Query Execution�Joins
	Distributed DBMSs�Overview
	Distributed Join Execution�Naïve Join
	Distributed Join Execution�Site Join
	Distributed Join Execution�Projection Join
	Distributed Join Execution�Comparison
	Distributed Join Execution�Projection Join (2)
	Distributed Join Execution�Three Sites
	Distributed Join Execution�Three Site Join
	Distributed Join Execution�Semi-Join
	Distributed Join Execution�Semi-Join
	Distributed DBMSs�Overview
	Bloom filter Optimized Joins�From a Database Exercise
	Fast Storage and Retrieval�Bloom filter (Recap)
	Bloom filter Optimized Joins�Bloom filter
	Bloom filter Optimized Joins�Bloom filter for Semi-Joins
	Bloom filter Optimized Joins�Bloom filter for �Semi-Joins
	Bloom filter Optimized Joins�Bloom filters as universal Trick
	Distributed DBMSs�Overview
	Multi-Relation Joins�The Semi-Join Trick for Multi-Relation Joins
	Multi-Relation Joins�Full Reducer
	Multi-Relation Joins�Full Reducer
	Multi-Relation Joins�Full Reducer for linear Joins
	Multi-Relation Joins�Full Reducer for linear Joins
	Multi-Relation Joins�Full Reducer for linear Joins – Example
	Multi-Relation Joins�Full Reducer for linear Joins – Example
	Multi-Relation Joins�Full Reducer for linear Joins – Example
	Multi-Relation Joins�Full Reducer for linear Joins – Example
	Multi-Relation Joins�Full Reducer for linear Joins – Example
	Multi-Relation Joins�Full Reducer for linear Joins – Example
	Multi-Relation Joins�Full Reducer for linear Joins – Example
	Multi-Relation Joins�Reducer for non-linear Joins
	Multi-Relation Joins�Reducer – Final Notes
	Slide Number 70

