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Distributed Query Execution

A Distributed Query 
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Given

 Relations R, S, T, U each on a different host (= site)

 Query Q issued by an arbitrary sink node

Task

 Calculate the answer 
for Q on R,S,T,U
in an efficient way.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

Q



Distributed Query Execution

Set Operations 
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Easy Operations

 Union: Send entire relations.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ᴜ S ᴜ T ᴜ U
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Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U
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Set Operations
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Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

In case:
R ∩ S ∩ T < U
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Set Operations
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Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

In case:
R ∩ S ∩ T > U



Distributed Query Execution

Projections and Selections

Slide 8
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

ΠNameR ᴜ σName=‘Nick’S
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Projections and Selections
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Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R ᴜ S

ΠNameR σName=‘Nick’S
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Groupings

Slide 10
ThorstenPapenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation 
down (if possible) and 
send the results 
to the sink.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)R ᴜ S
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Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation 
down (if possible) and 
send the results 
to the sink.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

ᴜ S

γName,sum(Salary)R
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Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation 
down (if possible) and 
send the results 
to the sink.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)(R ᴜ S)
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Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation 
down (if possible) and 
send the results 
to the sink.

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)(R ᴜ S)

ΠName,SalaryR ΠName,SalaryS

A general optimization:

Insert and push-down projections 
to decrease the amount of send data.
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Joins
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Join Operations

 Naïve approach: “Ship whole”

 Send all relations

 Few but large messages

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2 Site 3 Site 4

Sink

R S T U

R⋈S⋈T⋈U

We can do much better:
Calculate the join on only the join attributes 

and then fetch the data afterwards.
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Distributed Join Execution

Naïve Join
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 A join R⋈S over two relations R and S with

 There are |R| and |S| many attributes in R and S, respectively.

 There are #R and #S many values in R and S, respectively.

 Each attribute value in R and S has a size of a.

 Both R and S are stored on different hosts.

 Assume that one side can be the sink node.

 Two kinds of attributes:

a. join-attributes 
(denoted as R.ID and S.ID
but can have arbitrary names)

b. data-attributes 
(denoted as R\ID and S\ID; 
= information that should be joined)

 Naïve join on third node

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2

Site 3

R S

⋈

receive receive

send send
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Site Join
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 Naïve join on third node

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2

Site 3

R S

⋈

receive receive

send send

 Site join on one of the data nodes

 Costs: |R| ∙ #R ∙ a

|S| ∙ #S ∙ a|R| ∙ #R ∙ a

Site 1

R

send

Site 2
⋈

receive S

|R| ∙ #R ∙ a
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Projection Join
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 Site join on one of the data nodes

 Costs: |R| ∙ #R ∙ a

Distributed Query 
Optimization

Distributed Data 
Management

 Projection join based on join attributes

 Costs: |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a
= |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a

Site 1

R

send

Site 2

⋈

receive
S

send

ΠID

receive

⋈

ΠID

send receive

⋈

|ID| ∙ #R ∙ a

|ID| ∙ #(R⋈S) ∙ a

|R| ∙ #(R⋈S) ∙ a

ΠID

Site 1

R

send

Site 2
⋈

receive S

|R| ∙ #R ∙ a
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Comparison

Slide 19
ThorstenPapenbrock

 Naïve join: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

 Site join: |R| ∙ #R ∙ a

 Projection join: |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a

 When is the side join better than the projection join?

|R| ∙ #R ∙ a > |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a | Attribute size does not matter
<=>  |R| ∙ #R     > |ID| ∙ #R      + (|ID| + |R|) ∙ #(R⋈S)

 If #R >> #(R⋈S) „If the join selectivity is high“

 If |R| >> |ID| „If many data-attributes exist“
Distributed Query 
Optimization

Distributed Data 
Management



Distributed Join Execution

Projection Join (2)
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Distributed Query 
Optimization

Distributed Data 
Management

Site 1

R

send

Site 2

⋈

receive
S

send

ΠID

receive

⋈

ΠID

send receive

⋈

ΠID

Site 2

S

send

Site 1

⋈

receiveR

send

ΠID

receive

⋈

|ID| ∙ #S ∙ a

|R| ∙ #(R⋈S) ∙ a

 (1): |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a

 (2): |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a

 If #R << #S, then (1) is likely better; otherwise (2)
(with S being the relation on the site that should answer Q).

 If we can choose the site for Q, then choose the smaller
relation and strategy (2).

(2)

(1)
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Three Sites
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 Best solution so far:

 Projection join (2): |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a

 Costs if the result is needed on some third site:
|ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a + (|R| + |S|) ∙ #(R⋈S) ∙ a

 Which can be worse than the Naïve join on a third node if #(R⋈S) is large 
(i.e. if the join selectivity is small).

 Naïve join: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query 
Optimization

Distributed Data 
Management
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Three Site Join
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Distributed Query 
Optimization

Distributed Data 
ManagementSite 1 Site 2

Site 3

R S

⋈

receive receive

send send

|S| ∙ #S ∙ a|R| ∙ #R ∙ a

Site 0

R

send

Site 2

⋊

receive S

send

ΠID

receive

⋉

Site 1
⋈

receive receive

ΠID

send

send

|ID| ∙ #R ∙ a

|ID| ∙ #(R⋈S) ∙ a

|R| ∙ #(R⋈S) ∙ a |S| ∙ #(R⋈S) ∙ aAgain: If #(R⋈S) is much smaller 
than #R and #S, the pre-filtering 
improves the query performance.



Distributed Join Execution

Semi-Join

Slide 23
ThorstenPapenbrock

Definition:
Given relation R with attribute set A and relation S with attribute set B. 
The Semi-Join R ⋉ S is definied as

R ⋉ S := ΠA(R⋈A∩BS)
= ΠA(R) ⋈A∩B ΠA∩B(S)
= R⋈A∩B  ΠA∩B(S)

 Remarks
 The join is a natural join (over common attributes A∩B).
 For theta joins between R.X and S.Y it is: R ⋉ S := R⋈X=Y  ΠY (S)

 S functions as a filter on R‘s tuples.
 The semi-join is asymmetric.

Distributed Query 
Optimization

Distributed Data 
Management



Distributed Join Execution

Semi-Join
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 Semi-joins function as filters.
 They can be used like selections and projections to minimize

intermediate results before these are send to other sites.
 Rules:

R⋈FS = 
 (R ⋉F S) ⋈F S

 Filter R, then join with S
 R⋈F (S ⋉F R)

 Filter S, then join with R
 (R ⋉F S) ⋈F (S ⋉F R)

 Filter R and S, then join both results

Distributed Query 
Optimization

Distributed Data 
Management
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Bloom filter Optimized Joins

From a Database Exercise
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 “Find all titles and directors of films that are younger than 1980.”
SELECT F1.Titel, F2.Regie
FROM Movie1.Filme1 F1, Movie2.Filme2 F2
WHERE F1.Titel = F2.Titel
AND F1.Jahr > 1980 

 Task: Minimize the number of transmitted bytes.

 Tricks:

 Transfer only necessary bytes: Rtrim()

 Use better join order: Filme2 is smaller

 Insert projections where possible

 Use compression: Eliminate duplicates

 DISTINCTs after semi-joins and projections

 Bloom filter

Distributed Query 
Optimization

Distributed Data 
Management
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Tabelle1
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A Bloom filter is a probabilistic data structure that answers set containment 
questions in constant time and with constant memory consumption.

 “Does element X appear in the set?”

 Answer “no” is guaranteed to be correct.

 Answer “yes” has a certain probability to be wrong (hence, “maybe”).

 But then the concrete look-up will just fail.

 Very nice property that allows the use of Bloom filters in exact systems.

 Structure

 Bitset of fixed size (typically a long array)

 One (or more) hash functions

Fast Storage and Retrieval

Bloom filter (Recap)

Burton H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors", 
Communications of the ACM, volume 13, number 7, pages 422-426, 1970

maybe no

Slide 27
ThorstenPapenbrock

Distributed Query 
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Distributed Data 
Management

> 6,000 citations



Bloom filter Optimized Joins

Bloom filter
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 Problem: Is f an element of column A?

 Column A is large – must be stored on disk

 Idea: Store small representation of A in main memory

 Bloom filter H

 Use H to probabilistically mark whether an element f is in A.

 Test can fail, but only in one direction:

 If k∈T, we cannot be sure whether k∈A.

 If k∉T, we know that k∉A.

 Use H for a probabilistic semi-join implementation!
Distributed Query 
Optimization

Distributed Data 
Management



Bloom filter Optimized Joins

Bloom filter for Semi-Joins
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Bloom filter-based (semi-)joins
 Also called hash-filter-joins
 Use Bloom filter to calculate R⋉FS:

1. Hash all values in R.F with funktion h into (small) hash tabelle H
2. Transmit only H to S
3. ∀ f∈S.F with H(h(f))=0: f does not have a join partner in R; ignore local record.
4. ∀ f∈S.F with H(h(f))=1: f does probably have a join-partner in R; send local record.

 The higher the join selectivity…
 the lower the risk of false positives.
 the smaller we can make H.

Distributed Query 
Optimization

Distributed Data 
Management



Bloom filter Optimized Joins

Bloom filter for 
Semi-Joins

Example

1
1
1
1
0
0

1
1
1
1
0
0

6 Bit

Quelle: VL-Folien, Alfons Kemper, TU München

⋈C

Hashfunktion: 
mod 6

Falsch
Positiv



Bloom filter Optimized Joins

Bloom filters as universal Trick
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 Always use Bloom filters if …
 sets of values need to be compared and
 only a few hits are expected and
 data transfer is expensive.

 Examples:
 „Normal“ hash joins
 Star joins in data warehouses
 Intersect and minus set operations

Distributed Query 
Optimization

Distributed Data 
Management
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Multi-Relation Joins

The Semi-Join Trick for Multi-Relation Joins
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Task

 Calculate the join across arbitrary many relations.

 Example with three relations:

R ⋈F   S ⋈G T =

(R ⋉F S)            ⋈F (S ⋉G T) ⋈G T =

(R ⋉F (S ⋉G T)) ⋈F (S ⋉G T) ⋈G T = 

…

Approach

 Use semi-joins on any relation that needs to be transmitted.

 Semi-joins reduce the relations to only necessary tuples.

 Hence, they are called “reducer”.

 A relation is called “reduced” if it does not contain any tuple 
that is not needed for the final result.

 Global property, because also remote relations reduce needed tuples.

Distributed Query 
Optimization

Distributed Data 
Management



Multi-Relation Joins

Full Reducer
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Semi-Join Program

 Given the realtions R1,…,Rn, a semi-join program is a sequence of semi-joins
Ri:=Ri⋉Rj

 Comments:

 We omit join attributes, because they result from the join query.

 The effect of the semi-join is a reduction of the tuples in Ri.

Full Reducer

 Given a query Q=R1⋈…⋈Rn, a reducer for Ri in Q is a semi-join programm that removes
all tuples from Ri that are not needed to calculate result(Q).

 A full reducer for Q is a semi-join programm that is a reducer for all Ri in Q.

 Comments:

 The Ri do not need t be different (self-joins)

 Intuition: reducer for relations – full reducer for queries

Distributed Query 
Optimization

Distributed Data 
Management



Multi-Relation Joins

Full Reducer
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R ⋈F   S ⋈G T =
(R ⋉F (S ⋉G T)) ⋈F (S ⋉G T) ⋈G T

 Is this a full reducer?

 No, because S and T are not „reduced“.

 But it is enough to minimize network traffic, i.e., R is minimized before sending to S 
and S is minimized after its join with T before sending to T, right?

 Yes, but only if the join ⋈F is calculated on S’s node and ⋈G on T’s node.

 If the join is evaluated elsewhere, we transmit (S ⋉G T) and T.

 Calculate full reducer first!

Distributed Query 
Optimization

Distributed Data 
Management



Multi-Relation Joins

Full Reducer for linear Joins
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 Given: Q = R1 ⋈A R2 ⋈B ... ⋈Y R(n-1) ⋈Z Rn

 Task: Find a full reducer for Q that reduces all Ri.

 Two-Phase Approach:

 Forward:

 R2‘ = R2 ⋉ R1

 R3‘ = R3 ⋉ R2‘ = R3 ⋉ (R2 ⋉ R1)

 ...

 Rn‘ = Rn ⋉ R(n-1)‘ = ...

 Backward:

 R(n-1)‘‘ = R(n-1)‘⋉ Rn‘

 R(n-2)‘‘ = R(n-2)‘⋉ R(n-1)‘

 ...

 R1‘‘ = R1 ⋉ R2‘‘

Distributed Query 
Optimization

Distributed Data 
ManagementReducer für Rn

Reducer für R(n-1)

Reducer für R1

Full
Reducer

for Q



Multi-Relation Joins

Full Reducer for linear Joins
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Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

ΠA

ΠB ΠC

⋊ ⋊ ⋊

⋉⋉⋉
ΠC

ΠBΠA

Semi-Join/ 
Reducer

Forward
R2‘ = R2 ⋉ R1
R3‘ = R3 ⋉ R2‘
R4‘ = R4 ⋉ R3‘

Backward
R3‘‘ = R3‘ ⋉ R4‘ 
R2‘‘ = R2‘ ⋉
R3‘‘ 
R1‘‘ = R1 ⋉ R2‘‘
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Multi-Relation Joins

Full Reducer for linear Joins – Example
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Multi-Relation Joins

Full Reducer for linear Joins – Example
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Full Reducer for linear Joins – Example
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Multi-Relation Joins

Full Reducer for linear Joins – Example
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Multi-Relation Joins

Full Reducer for linear Joins – Example
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Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 48
ThorstenPapenbrock

Distributed Query 
Optimization

Distributed Data 
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3)(5,7)

B C

3 1

1 0

7 2

7 1

5 3

6 0



Multi-Relation Joins

Full Reducer for linear Joins – Example
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Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3)(5,7)(5,7)

B C

3 1

1 0

7 2

7 1

5 3

6 0

A B

9 3

5 5

7 7

5 3

0 7

3 2
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 Given: A non-linear but
acyclic join

 Task: Find a reducer
for each relation.

 Approach:

 Select the relation that needs to be reduced as root node.

 Reduce the relations bottom-up level-wise to the root node.

 Add semi-joins from nodes to their parent. Distributed Query 
Optimization

Distributed Data 
Management

R1

R2 R3

R4 R5

⋈ ⋈

⋈ ⋈
R1

R2 R3

R4 R5
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Reducer – Final Notes
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 Finding a full reducer for cyclic joins is a problem.

 In many cases, this full reducer simply does not exist.

 Optimizing reducer calculation in practice is challenging:

 Semi-joins also need to send around data.

 Does the minimization even pay off?

 Minimizing intermediate results is challenging.

 Which relation is the best root node?

 Not all nodes may be able to perform query calculation.

 What is the best reduce order?

 Where do we calculate the semi-joins?

 Do we need to calculate a full reducer?

Distributed Query 
Optimization

Distributed Data 
Management
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