
Automatically Integrating Life Science Data Sources

Jana Bauckmann ∗

Hasso-Plattner-Institut, University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

jana.bauckmann@hpi.uni-potsdam.de

ABSTRACT
Data integration in the life sciences is currently implemented
by very costly manually curated projects or by schema-
driven approaches that require knowledge of the data sources
and knowledge about schema integration techniques. We
propose Aladin – an entirely different, almost automatic
approach based on the database instances and domain knowl-
edge on life science data sources.

We focus on two main tasks in Aladin – detecting intra-
schema relationships and detecting inter-schema relation-
ships. For the first task, we present our algorithm Spider
for detecting inclusion dependencies (INDs) as a precondi-
tion for foreign keys. Spider analyzes a 2.8GB database
in ∼ 24min and a 32GB database in ∼ 6 h, up to an or-
der of magnitude faster than previous approaches. We use
INDs in two ways: (i) as hint for semantically correct for-
eign keys and (ii) for identification of a “primary relation” –
a domain-specific schema construct intended to help in fur-
ther integration. For the second task, we describe ideas and
first results on detecting cross-references between life science
data sources and on detecting duplicate objects.

1. PROJECT IDEA
The project Aladin – ALmost Automatic Data INtegra-

tion – aims at integrating life science data sources almost
automatically. The most special characteristic is the com-
plete renunciation of human interaction. We want to lever-
age domain specific characteristics of data source structures
and data itself. This procedure aims at providing an al-
ternative to manually curated integration projects that are
costly but accepted by biologist and to schema-driven inte-
gration projects that require knowledge on schema matching
and schema mapping [17].

On the one hand, life science data sources deliver an ex-

∗Supervised by Felix Naumann from the Hasso-Plattner-
Institut, University of Potsdam and by Ulf Leser from the
Department for Computer Science, Humboldt-Universität
zu Berlin.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

cellent application area for data integration. First, there is
a large amount of life science data sources and even domain
experts know – and use – only a part of them. Automatic
data integration provides the ability to use information given
in data sources with unknown structure and interfaces. Sec-
ond, the usage of information spread over several life science
sources is dominated by manual interaction: Searching one
data source, finding a keyword or a cross-reference to an-
other data source, and finally searching the other data source
with this information. Thus, automatic integration would
provide a better accessibility, usage, and access to informa-
tion over several known data sources. Third, life science data
sources are heavily overlapping. Thus, there is a real need
to integrate them. Further, life science data sources cross-
reference each other heavily [10]. Finding those references
could enable automatic data integration.

On the other hand there are several domain-specific prob-
lems in this application area. Schemas of life science data
sources are most often modeled insufficiently. Data are pro-
vided in structured flat files or in relational schemas. Data
types are often defined as string although the attribute rep-
resents numeric data. Referential integrity constraints are
often undefined, because they are believed to badly influence
database operation and because until recently they were not
provided by MySQL, which is widely used in life science
projects. Thus, even extremely successful systems, such as
the Ensembl database, with hundreds of tables, is delivered
without foreign key definitions [11].

Further, the terminology is different over several data
sources. There are huge problems related to synonyms and
homonyms in schema names. That is why we decide not to
rely upon schema information for data integration, but the
data itself.

There are several domain-specific characteristics on life
science data sources that we want to leverage for integra-
tion. A data source typically covers information on a single
type of real world objects, e. g., proteins, or genes, or DNA
sequences. These objects are represented in one relation –
called primary relation. All other relations provide addi-
tional information on these objects. We call those relations
secondary relations.

Life science data sources often cross-reference each other
using so called accession numbers. An accession number is a
key that uniquely represents an object of the primary rela-
tion (e. g., a protein) over different data source versions and
over different data sources. The structure of an accession
number has typical characteristics so that we can automat-
ically find it.

1.1 Steps in the ALADIN project
We divide the integration procedure of Aladin into four

steps. At first, the data source must be imported into a rela-
tional database. For many life science data sources a parser
exists to convert the data into a relational form – with all the
problems on missing constraints as mentioned above. To be
able to process as many life science data sources as possible
we decided to make no assumptions on schema structure or
data. This step is the only task requiring human action.

The second step detects intra-schema relationships. We
detect foreign keys or more exactly we detect inclusion de-
pendencies, i. e., pairs of attributes A, B with all values of
A being included in all values of B. This definition relates
to the automatically testable part of a foreign key. Further,
we use this knowledge of structural information to identify
the primary relation.

The third step is to find inter-schema relationships. Data
lineage is very important in life science projects. Thus, we
do not aim to define an integrated schema, but to define
schema and object links, which can be browsed by domain
experts. Therefore, we want to find cross-references between
the data sources – at schema and at object level. The fourth
and last step aims at duplicate detection, i. e., detecting rep-
resentations of the same real world object in several data
sources – probably using different or even conflicting data.
Using the information on cross-references we want to iden-
tify duplicates at object level.

1.2 Structure of this paper
In this paper we show our results on detecting intra-schema

relationships and line out ideas on detecting inter-schema re-
lationships and duplicates. Section 2 gives an overview on
data sources used so far in the project and on further data
sources we plan to use for future work. In Section 3, we give
an algorithm to detect inclusion dependencies efficiently and
use its results to identify the primary relation. In Section 4
we show our ideas on detecting inter-schema relationships
and in Sec. 5 our plans to detect duplicate objects. We
conclude in Section 6.

2. IMPORTING DATA SOURCES
The first step of our work is to import data sources in a

relational database. At the current state we have imported
the following three data sources on proteins, which we use
to test our ideas on detecting intra-schema relationships.

UniProt1 is a database of annotated protein sequences
available in several formats [2]. We chose the BioSQL2

schema and parser, creating a database of 16 tables with
85 attributes. The total size of the database is 900MB,
with the largest attribute having approximately 1 million
different values.

SCOP3 is a database of protein classification available as
a set of files [20]. We wrote our own parser, populating
4 tables with 22 attributes. The total size of the database
is 17MB, with the largest attribute having 94, 441 different
values.

PDB is a large database of protein structures [6]. We
used the OpenMMS software for parsing PDB files into a
relational database. PDB populates 116 tables with 1, 297

1www.pir.uniprot.org
2obda.open-bio.org
3http://scop.mrc-lmb.cam.ac.uk/scop

non-empty attributes in the OpenMMS schema. No foreign
keys are specified. The total database size is 32GB, with the
largest attribute having approximately 152 million different
values.4

For future work on detecting intra-schema relationships
we plan to import data sources on protein-protein-interaction
such as IntAct5 or Reactome6. We know that these data
sources (i) reference each other and (ii) reference proteins in
the already imported data sources.

3. DETECTING INTRA-SCHEMA
RELATIONSHIPS

The first automatic step is the detection of intra-schema
relationships, i. e., finding foreign keys, identifying the pri-
mary relation and the accession number attribute. This
structural information is necessary for understanding the
data and for meaningful querying. Further, we need in-
tra-schema relationships for detecting inter -schema relation-
ships, i. e., the cross-references from one data source to an-
other using accession numbers.

3.1 Inclusion Dependencies
The automatically testable part of a foreign key definition

is an inclusion dependency (IND). An IND requires that the
set of values of attribute A is included in the set of values of
attribute B, i. e., A ⊆ B. We call each attribute pair A, B
an IND candidate.

3.1.1 Limitations of Previous Approaches
Detecting INDs efficiently is not as easy as it seems, be-

cause O(n2) attribute pairs must be tested with n being the
number of attributes. Previous approaches test IND can-
didates by using SQL statements (using one join per IND
candidate). But all approaches reduce the number of candi-
dates by constraining pairs to equal data types [5, 15] or by
using samples to create IND candidates [7]. Dasu et al. [8]
reduce the test complexity of each IND candidate test by
using data summaries.

We decided not to use samples or data summaries, because
we want to avoid errors in this step of the Aladin frame-
work. Errors at this level would surely propagate through
the entire integration process. Thus, working as exact as
possible is a basic requirement for detecting INDs in Al-
adin.

Further, attributes in the life science domain are com-
monly defined as data type string. This means that we have
to test all O(n2) pairs of attributes. We tested several SQL
statements to perform this task. We used one statement per
IND candidate, but found that this approach is infeasible for
large schemas such as PDB. The reason is two-fold: First,
the independent test of each IND candidate by one query
prevents reusing intermediate results, in particular sorting.
Thus, each attribute is sorted as often as it is part of an
IND candidate. Second, one cannot formulate in SQL that
query execution should stop immediately after a counter-
example for the IND is found. Thus, each SQL statement
we analyzed computed more than necessary. For instance,

4Database sizes differ slightly from previous work due to
new versions of the DBMS and OpenMMS parser.
5www.ebi.ac.uk/intact/
6www.reactome.org

the join variant essentially computes the number of counter-
examples [3].

Marchi et al. [19] propose a completely different approach
requiring a preprocessing on all data. This preprocessing as-
signs to each value in the database a list of attributes that
include this value. The test itself uses one pass on this struc-
ture. We tested this approach and showed its infeasibility
to large schemas such as PDB [4].

3.1.2 Detecting INDs with SPIDER
The evaluation of previous approaches led us to devel-

oping the Spider algorithm [4]. It is capable to exactly
detect all INDs in databases within large schemas. Spider
is based on two ideas: (i) Stop the test of a single IND
candidate as soon as the first counter-example is known. A
sort-merge-like procedure is used to find this first dependent
value not included in the referenced attribute’s values. (ii)
All IND candidates are tested in parallel while reading all
attribute’s values at most once. Both characteristics and
a special data-structure to synchronize all IND tests build
the main advantage of Spider: A greatly reduced complex-
ity in terms of comparisons that enables IND tests on huge
schemas. This feasibility led to a co-operation with FUZZY!
Informatik AG, a German company providing the data pro-
filing tool FUZZY! DIME. The next release of this tool will
implement Spider.

We describe Spider in the following in detail, because
some of our ideas for detecting inter-schema relationships
are based on Spider or on modifications of Spider. In a
preprocessing step all attribute’s value sets are sorted inside
the DBMS and these distinct sorted values are saved to disk.

The basic procedure for testing one IND candidate A ⊆ B
is described in the following. Handle cursors on the sorted
value sets of both attributes starting from the smallest value.
We call A the dependent attribute and B the referenced at-
tribute. Let dep and ref be the current value in the depen-
dent and referenced attribute, respectively. Compare dep
and ref and move the cursors as follows: (i) If dep > ref
move the referenced attribute’s cursor one position further,
i. e., look for the current dependent value in the remaining
referenced values. (ii) If dep = ref move both cursors on, be-
cause we found dep in the referenced attribute and want to
test the next dependent value. (iii) Otherwise, if dep < ref
stop the execution, because we found the counter-example
dep being not included in the set of values of B. An IND
candidate is tested to be satisfying the IND definition if all
values of the dependent attribute are tested and found.

Spider performs the described test on all IND candidates
in parallel while saving comparisons. The used data struc-
ture and one step of the Spider test are illustrated in Fig-
ure 1. It shows two referenced attributes Ref1, Ref2 and two
dependent attributes Dep1, Dep2.

All attributes are represented as attribute object with a
cursor pointing at its current value and two roles: as de-
pendent object and as referenced object. In Figure 1 we
show attribute objects with only dependent or only refer-
enced role for better traceability. The IND candidates are
represented and maintained in the dependent object role us-
ing two sets of referenced attributes – namely satisfiedRefs
and unsatisfiedRefs. The referenced attributes in both lists
form IND candidates with the dependent attribute that are
to be tested, i. e., in Fig. 1 a the IND candidates Dep1 ⊆
Ref1 and Dep1 ⊆ Ref2 are represented in attribute object

unsatisfiedRefs = {Ref1, Ref2}
satisfiedRefs = {}2 3Dep2

Dep1 unsatisfiedRefs = {Ref1, Ref2}1 2 satisfiedRefs = {}

Ref2 2 4

1 3Ref1

(a) Initialization of data structure.

Dep2

Dep1

Ref2

Ref1

1 2

1 3

unsatisfiedRefs = {Ref1}

unsatisfiedRefs = {Ref1, Ref2}
satisfiedRefs = {}2 3

satisfiedRefs = {}

2 4

(b) Data structure after processing setMin of (a).

Figure 1: Illustration of Algorithm SPIDER. At-
tribute objects with their values and additional
helper structures, are given horizontally. Light gray
areas mark the current values, dark gray areas mark
minimal but equal values.

Dep1. For referenced objects in satisfiedRefs we know that
the current dependent value is included in this referenced
attribute; for referenced objects in unsatisfiedRefs we have
not (yet) seen the current dependent value in this referenced
attribute.

To synchronize the cursor movements we hold all attribute
objects in a min-heap sorted by their current value. A min-
heap is a data structure that provides peeking its smallest
item in constant time, and inserting any item as well as
deleting the minimal item in O(log n).

The following procedure is repeated until the min-heap is
empty: Remove all attribute objects with equal, currently
minimal value in set Min. Inform all dependent objects in
Min of all referenced objects in Min. This way, each de-
pendent object can track the referenced objects including
– until now – all dependent values by updating the lists
satisfiedRefs and unsatisfiedRefs. That is, if the delivered
referenced objects are included in list unsatisfiedRefs they
are moved to satisfiedRefs. In our example, we move in
attribute object Dep1 the referenced attribute object Ref1
from unsatisfiedRefs to satisfiedRefs. Afterwards, read the
next values. If there is no next value return all INDs with
referenced attributes in satisfiedRefs. Otherwise, if there is
a next value read it and remove all referenced objects from
unsatisfiedRefs as the current dependent value is a counter-
example for the implied IND. That is, in our example dis-
card Ref2 in Dep1, because it does not include the value 1.
Further, move all referenced objects from satisfiedRefs to un-
satisfiedRefs as we did not yet see the next dependent value
in them and re-add the attribute object to the min-heap (see
Fig. 1 b).

Let n be the number of attributes and t the maximum
number of values in an attribute. The number of compar-
isons of Spider is O(nt log t), assuming t > n : To sort
all data we need O(nt log t) comparisons. We need O(log n)
comparisons to insert one attribute object into the heap de-
pending on its currently viewed value, and thus O(nt log n)
to insert all attributes. To pop attributes from the heap we
need O(nt log n) comparisons for the heap operations and
O(nt) comparisons for identifying the attributes in the min-

imum value set (Min). Thus, the complexity of Spider to
test the IND candidates (i. e., without sorting) is O(nt log n).
Assuming t > n, we need O(nt log t) comparisons for the
complete execution of Spider, i. e., for sorting and testing.
This analysis shows that the complexity to test the IND can-
didates is lower than the complexity to sort all attribute’s
values. Further, the complexity depends on the number of
attributes, but not in the quadratic number of IND candi-
dates. This is a considerable improvement over previously
described approaches.

3.1.3 Results on IND detection
Using Spider we were able to detect all INDs on the entire

PDB within ∼ 6 hours. With previous approaches [5, 19]
this task could not be solved. On our smaller databases
Spider outperformed these approaches by at least a factor
of 3 [4].

The BioSQL schema, in which we parsed UniProt, de-
fines 21 foreign keys. Among those we find 19 as INDs.
The remaining two foreign key constraints are defined on
empty tables and cannot be found by any approach based
on analyzing the actual content of a database. Another 11
INDs found by Spider that are not defined as foreign keys
in BioSQL provide an interesting insight: They result from
situations where there are two foreign key attributes A, B
referencing a primary key attribute C. In addition to the
defined foreign keys A ⊆ C and B ⊆ C, Spider also de-
tects the IND A ⊆ B and sometimes even B ⊆ A. We
found this structure between several tables, e. g., a relation-
ship between the tables sequence feature and biosequence
over bioentry. In this case, our additional IND is semanti-
cally correct, as for each entry in UniProt there must ex-
ist exactly one sequence (biosequence), which implies that
always biofeature⊆biosequence (but not vice versa in this
example). Furthermore, Spider found three INDs in 1:1 re-
lationships where only one direction was defined as foreign
key constraint, i. e., we detected a semantically correct IND
A ⊆ B where only the constraint B ⊆ A was contained
in the schema. One example is the relationship between
the tables bioentry and biosequence. Spider detected three
false positives that relate a dependent attribute with a single
distinct value to a referenced attribute with about 10, 000
distinct values.

In the PDB, Spider detected 5, 431 INDs with a unique
referenced attribute. We applied the two following sim-
ple heuristics to prune probably uninteresting, yet satisfied
INDs: (i) The referenced attribute must have more than one
value; and (ii) At least 1% of all distinct values of the refer-
enced attribute must be covered by values of the dependent
attribute. Both restrictions are very weak and should not
exclude interesting possible foreign keys, but they reduced
the number of INDs to 2, 480. If we roughly estimate that
each of the 116 tables in this schema defines one foreign key
constraint, we see that further heuristics are necessary to
support the step from INDs to foreign keys.

For SCOP we found 11 INDs of which 2 are semantically
correct. The other INDs base on a key built from numerical
values only. Using the heuristics described above we could
exclude one IND. Therefore, finding and testing further fil-
ters is an important task for future work. But nevertheless,
we aimed at using the INDs for detecting the primary rela-
tion of a data source. This task is very well supported by
the detected INDs as we will see in the following section.

3.2 Primary Relation
A “primary relation” is a domain specific structural char-

acteristic of life science data sources. This relation repre-
sents the objects described in the data source such as pro-
teins or genes. All other relations provide secondary infor-
mation on these objects.

We use two classes of information to choose the primary
relation: the inclusion dependencies and accession number
candidates, i. e., attributes with a structure of an accession
number. An accession number is in our experience charac-
terized by the following properties: The attribute contain-
ing the accession number is unique, the values are typically
build of at least one non-digit character, are at least four
characters long, and the length of all accession numbers in
one data source differs by at most 20%.

To identify the primary relation of a database, we use the
following heuristics:

1. One of the attributes of a primary relation has to be
an accession number candidate.

2. The number of INDs referencing any attribute in a
relation containing an accession number candidate is
maximal for the primary relation.

Applying these heuristics to the BioSQL schema, we iden-
tified three accession number candidates (sg bioentry.accession,
sg reference.crc and sg ontology.name). Out of these, Heuris-
tic 2 unambiguously identifies the correct primary relation,
namely sg bioentry.

For the OpenMMS schema we find nine accession num-
ber candidates, and 19 accession number candidates when
softening the rules such that only 99.98% of an attribute’s
values have to fulfill the criteria of minimum length and
containment of at least one non-digit character. Heuris-
tic 2 leads to three primary relation candidates (exptl, struct,
struct keywords). Of these, struct is the correct solution,
whereas struct keywords could be considered as a second pri-
mary relation, as it is a table containing controlled vocabu-
lary. Furthermore, the accession number candidates in these
relations contain exactly the same values, which means they
also relate to equivalent INDs. Thus, an automatic proce-
dure cannot distinguish these relations. But a distinction
is not necessary for the following steps on detecting inter-
schema relationships, because the chosen accession numbers
are equal.

For SCOP, we identified one accession number candidate
classification.scop id, which is the old accession number used
in SCOP. It is still correct, but the newer version of SCOP
uses an accession number build from numbers only [18].
Thus, we cannot detect it as an accession number with our
current heuristic. Consequently, we are able to detect cross-
references to SCOP using the old accession number when
restricting the detection to the primary relation, but unable
to detect cross-references using the new accession number.
We will need efficient algorithms for detecting inter-schema
relationships allowing wider search.

4. DETECTING INTER-SCHEMA
RELATIONSHIPS

Life sciences databases heavily cross-reference each other
using the data source’s accession numbers [10]. We want to
detect these references to define links at schema level and
at object level. There are several methods used to link ob-
jects, i. e., to store and represent the referenced data source

and the accession number. So far, we know the following
methods:

1. A data source references only one data source using
a single attribute, e. g., SCOP only references PDB
using the attribute classification.pdb id. In this case,
the referenced data source is given in the attribute
name. Another way is the concatenation of a “refer-
enced database code” and the accession number. For
instance, CATH – a protein classification data source –
uses a single attribute to reference the PDB concate-
nating the string “pdb|”, the accession number and
two characters representing the protein domain.

2. A data source references several data sources. If the
data source uses one attribute per referenced data source
we can apply Spider to find these INDs.

3. The more usual way to reference several data sources
is to use a combination of a “referenced database code”
and an accession number. This combination could be
represented in two attributes or concatenated in one
attribute. For instance, BioSQL uses the attributes
dbxref.dbname and dbxref.accessionnr to reference 67
life science data sources.

4. A completely different method is the reference in a
description attribute using natural language.

We cover these kinds of references in the following sections
and represent our ideas on detecting each of them.

4.1 References to a Single Data Source
In this section we cover the cases 1 and 2, i. e., one at-

tribute referencing one data source.

4.1.1 Using accession number
If the referencing attribute contains only accession num-

bers, i. e., no concatenated extra-string, we can apply Spi-
der. But we assume that there will never be an exact IND
between the referencing attribute and the referenced acces-
sion number attribute. E. g., for SCOP there are 91 refer-
ences out of 25, 972 that are not included in the accession
number attribute in PDB. Thus, we need a modification of
Spider that allows a certain percentage of dependent values
not included in the referenced attribute.

A minor modification of Spider gives this functionality:
The original Spider discards a referenced attribute from
the dependent attribute’s unsatisfiedRefs list after the first
counter-example was found, i. e., a dependent value that is
not included in the referenced attribute. To allow a certain
number of counter-examples we just have to add a counter
to each referenced attribute object representing the number
of found counter-examples. When the lists unsatisfiedRefs
and satisfiedRefs are updated we raise the counter for each
attribute object in unsatisfiedRefs. Only if the counter ex-
ceeds a given threshold the referenced attribute object – and
with it the implied IND – is discarded.

The complexity in comparisons remains O(n log n), be-
cause the synchronization procedure is exactly the same. In
fact, the runtime increases slightly, because INDs are dis-
carded later such that attributes are discarded later from
the min-heap. Using this modified Spider we are able to
detect the described cross-reference from SCOP to PDB.

4.1.2 Using prefix or suffix and accession number
To detect cross-references of type “pdb|<accessionNr>”

we develop algorithms to detect INDs with prefixes and

suffixes, i. e., INDs after removing a prefix and / or suffix
from the referencing attribute’s values. We plan to mod-
ify Spider to detect such kind of INDs, because we want
to leverage its excellent complexity and its independence in
the number of tested IND candidates.

There are several classes of prefix-suffix-INDs: (i) Prefixes
and suffixes of constant length or (ii) variable length; (iii)
Accession numbers of constant length or (iv) variable length.

The detection of INDs with a suffix at all referencing val-
ues (suffix-IND) seems affordable with Spider, because the
sorted value sets and the basic read-and-compare procedure
can be retained. Detecting INDs with a prefix at all refer-
encing values (prefix-IND) seems even more interesting when
looking at our known data source cross-references. Solving
this problem could be reduced to the problem of suffix-INDs
by working on inversed values. This procedure adds large
cost for preprocessing the data, but the advantage of parallel
tests with good test complexity remains.

Modifying the read-and-compare procedure of Spider is
a non-trivial task: When can a cursor be moved? And
which information do we have to store to get the maxi-
mum information at the end? We briefly illustrate this task
for detecting Suffix-INDs with variable accession number
length and constant suffixes. Assume the dependent value
list {abcd, abce} and the referenced value list {ab, abc, abd}.
The intended solution here is an suffix-IND with suffix length
1, i. e., we see two references to abc. Starting with cursors
at the smallest items we compare abcd and ab and find a
match of length 2 with a suffix cd of length 2. We move
only the referenced cursor to look for longer matches with
abcd. Thus, we compare abcd and abc and find a match of
length 3 with a suffix d of length 1. We move the referenced
cursor again and see that there is no match between abcd
and abd. We can now move the dependent cursor on to com-
pare the next value. The cursors point now at abce and abd.
If we only compare these values we miss the matches ab and
abc. Thus, we have to store and transfer the knowledge from
the previous value to this value.

In future work we will check the feasibility to integrate
this read-and-compare procedure into the parallel test ar-
chitecture of Spider.

4.2 References to Multiple Data Sources
We now look at the third class of cross-references, i. e.,

references to several data sources. The general idea is to
find a horizontal partition on the referencing relation that
divides the cross-references by the referenced data sources.
Afterwards, each partition can be tested separately.

If the information on the referenced data source and the
accession number are represented in two attributes we plan
to apply approaches for detecting functional dependencies.
The basic idea is, that different data sources use different
structures for accession numbers. That is why we look for
accession number candidates and normalize their values into
patterns of numbers and letters. We expect to find func-
tional dependencies of style “attribute db name dominates
attribute accession number”. Thus, the problem of finding
a horizontal partition is reduced to the (still complex) prob-
lem of finding functional dependencies [8, 12, 13].

If otherwise, the information on the referenced data source
and the accession number are concatenated in values of one
attribute we plan to use keyword trees to detect the hori-
zontal partitions. In a keyword tree each path from root to

a leaf represents one word and each branch from a node is
unambiguously defined [1]. When each value is inserted as
word into a keyword tree, we expect a small branching from
the root node into the prefixes representing the referenced
data sources followed by a large branching for the following
accession numbers.

4.3 References at Object Level
The last, and most delicate class of cross-references are

references in natural language text in description fields. We
expect these references to be detectable only at object level.
We plan to apply text mining approaches in attributes with
very long values. That is, we want to identify textual refer-
ences to accession numbers in other data sources [16].

Another idea for references at object level is based on
fields representing DNA or protein sequences. These at-
tributes can be found by their restriction to a small alphabet.
Thus, we could use sequence alignment algorithms to detect
sequence inclusion and therefore infer a reference. This task
is very complex, because even sequence alignment is a com-
plex problem.

5. DUPLICATE DETECTION
For duplicate detection we want to examine the links found

in the previous step of detecting inter-schema relationships.
While comparing the objects themselves we plan to distin-
guish cross-references and duplicates.

We plan to use the structural information on intra-schema
relationships to consider the entire information of the ob-
jects given in both data sources. Thus, this task relates
to schema matching techniques and duplicate detection for
semi-structured data [9, 14, 21].

6. CONCLUSION
We presented our life science integration project Aladin,

which intends to integrate data sources automatically. Its
basic idea is twofold: (i) Use the data instance for inte-
gration instead of schema information to avoid problems
with mostly underspecified schemas. (ii) Use domain knowl-
edge on life science data sources, i. e., identify and use ac-
cession numbers, primary relations, and data source cross-
references.

Aladin is divided into four steps: (i) data source im-
port into a relational database – the only manual interac-
tion, (ii) detecting intra-schema relationships, (iii) detecting
inter-schema relationships, and (iv) duplicate detection.

We presented our results on the first two steps. The major
contribution is our algorithm Spider, which identifies inclu-
sion dependencies efficiently. We use these INDs as hint for
foreign key constraints and as input to identify the primary
relation.

Furthermore, we proposed and discussed several ideas on
detecting data source cross-references. We gave a classifica-
tion of reference representations and discussed approaches
to detect them. The results of this step will be used as
input for duplicate detection.

7. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string matching:

an aid to bibliographic search. Commun. ACM,
18(6):333–340, 1975.

[2] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker,
B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez,
M. Magrane, M. Martin, D. Natale, C. O’Donovan,
N. Redaschi, and L. Yeh. The universal protein resource

(UniProt). Nucleic Acids Research, 33(Database
issue):D154–9, 2005.

[3] J. Bauckmann, U. Leser, and F. Naumann. Efficiently
computing inclusion dependencies for schema discovery. In
Int. Workshop on Database Interoperability. In
Workshop-Proceedings of the ICDE 06, 2006.

[4] J. Bauckmann, U. Leser, F. Naumann, and V. Tietz.
Efficiently detecting inclusion dependencies. In Int. Conf.
on Data Engineering (ICDE 07), Istanbul, Turkey, 2007.
Poster.

[5] S. Bell and P. Brockhausen. Discovery of data dependencies
in relational databases. In Statistics, Machine Learning
and Knowledge Discovery in Databases, ML–Net
Familiarization Workshop, pages 53–58, 1995.

[6] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat,
H. Weissig, I. Shindyalov, and P. Bourne. The protein data
bank. Nucleic Acids Research, 28(1):235–242, 2000.

[7] P. Brown and P. J. Haas. BHUNT: Automatic discovery of
fuzzy algebraic constraints in relational data. In Int. Conf.
on Very Large Databases (VLDB 03), pages 668–679, 2003.

[8] T. Dasu, T. Johnson, S. Muthukrishnan, and
V. Shkapenyuk. Mining database structure; or, how to
build a data quality browser. In ACM SIGMOD Int. Conf.
on Management of Data, pages 240–251, 2002.

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Transanctions
on Knowledge and Data Engineering, 19(1), 2007.

[10] T. Hernandez and S. Kambhampati. Integration of
biological sources: current systems and challenges ahead.
SIGMOD Rec., 33(3):51–60, 2004.

[11] T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen,
L. Clark, T. Cox, J. Cuff, V. Curwen, T. Down, and et al.
The Ensembl genome database project. Nucleic Acids
Research, 30(1):38–41, 2002.

[12] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional
and approximate dependencies. Computer Journal,
42(2):100–111, 1999.

[13] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and
A. Aboulnaga. CORDS: Automatic discovery of correlations
and soft functional dependencies. In ACM SIGMOD Int.
Conf. on Management of Data, pages 647–658, 2004.

[14] D. V. Kalashnikov and S. Mehrotra. Domain-independent
data cleaning via analysis of entity-relationship graph.
ACM Transactions on Database Systems (TODS),
31(2):716–767, 2006.

[15] M. Kantola, H. Mannila, K.-J. Rih, and H. Siirtola.
Discovering functional and inclusion dependencies in
relational databases. Int. Journal of Intelligent Systems,
7:591–607, 1992.

[16] U. Leser and J. Hakenberg. What makes a gene name?
named entity recognition in the biomedical literature.
Briefings in Bioinformatics, 6(4):357–369, 2005.

[17] U. Leser and F. Naumann. (Almost) hands-off information
integration for the life sciences. In Conf. on Innovative
Data Systems (CIDR 05), 2005.

[18] L. Lo Conte, S. E. Brenner, T. J. Hubbard, C. Chothia,
and A. G. Murzin. SCOP database in 2002: refinements
accommodate structural genomics. Nucleic Acids Research,
30(1):264–267, 2002.

[19] F. D. Marchi, S. Lopes, and J.-M. Petit. Efficient
algorithms for mining inclusion dependencies. In Int. Conf.
on Extending Database Technology (EDBT 02), pages
464–476, 2002.

[20] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
SCOP: a structural classification of proteins database for
the investigation of sequences and structures. J Mol Biol,
247(4):536–40, 1995.

[21] M. Weis and F. Naumann. DogmatiX tracks down
duplicates in XML. In ACM SIGMOD Int. Conf. on
Management of Data, pages 431–442, Baltimore, MD, 2005.

