
Managing ETL Processes

Alexander Albrecht Felix Naumann
Hasso-Plattner-Institute at the University of Potsdam, Germany

{albrecht,naumann}@hpi.uni-potsdam.de

ABSTRACT
ETL tools allow the definition of sometimes complex pro-
cesses to extract, transform, and load heterogeneous data
into a data warehouse or to perform other data migration
tasks. In larger organizations many ETL processes of dif-
ferent data integration projects are accumulated. Such pro-
cesses can encompass common sub-processes, shared data
sources and targets, and same or similar operations. How-
ever, there is no common method or approach to system-
atically manage such ETL processes. We propose the high-
level management of such processes as a generic approach to
enable their flexible re-use, optimization, and rapid devel-
opment. To this end we introduce a set of basic operators
on ETL processes, such as merge or invert, and motivate
their use in several scenarios.

1. ETL MANAGEMENT
Consolidating data into a single physical store has proven

to be the most effective approach to provide fast, highly
available, and integrated access to relevant information. ETL
processes, i.e., extraction, transformation, and loading (ETL),
are used to migrate heterogeneous data from one or more
data sources into a target system to form data reposito-
ries, data marts, or data warehouses. The extraction phase
largely deals with the technical heterogeneity of the different
sources and imports relevant data into a staging area. The
transformation phase is the heart of an ETL process. Here,
syntactical and semantical heterogeneities are overcome us-
ing specialized components, often called stages: All data is
brought into a common data model and schema using map-
ping technology; data scrubbing and cleansing techniques
standardize the data; simple components reflect operators of
the relational algebra for instance to aggregate or combine
data sets; duplicate detection algorithms search for com-
mon representations of same real world objects, which are in
turn consolidated to a single representation. Such stages are
strung together to often complex ETL graphs. Finally, the
load phase loads the integrated, consolidated, and cleaned

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

data from the staging area into the appropriate databases
or warehouses.

In large companies many data sources from different or-
ganizational areas (finances, customer relationships, human
resources, etc.) are involved in a variety of data integration
projects using ETL tools. Over time, there are many ETL
processes, which may encompass shared data sources, same
data targets, common sub-processes and stages configured
in an equal or similar way. However, we are not aware of a
common method, approach, or framework to uniformly man-
age entire ETL processes. We discuss several projects that
cover certain sub-aspects, such as ETL optimization or ETL
and schema mapping, later in Sec. 4. Apart from providing
a structured overview of existing processes and the ability to
search within the repository of all created processes, system-
atic ETL management promises more efficient development
of new processes through reuse, better use of ETL results by
channeling them to different targets and even back to the
sources, and more efficient execution of existing processes
through shared or rearranged stages.

Our approach is inspired by the model management re-
search, which defines a set of operators for manipulating
models and mappings [1, 5]. In analogy, the main idea of
an ETL management platform is to reduce the amount of
programming needed to develop or maintain ETL processes.

An ETL management platform should comprise all com-
pany-wide developed ETL processes in a common repository.
In practice, there is not only one ETL tool [12] in use and
often ETL is performed without any tooling but simply as
a sequence of queries, algorithms, and short scripts: For in-
stance, within a single company the marketing department
may design their data integration projects with a tool differ-
ent from the ETL tool used in the sales department, and the
IT department might have home-grown processes perform-
ing similar tasks. Therefore, some degree of interoperabil-
ity should be supported, and can be achieved by importing
tool-specific process specifications in a tool-independent rep-
resentation. Most commercial and open source ETL tools
provide process specification in some proprietary XML for-
mat, which can be directly wrapped in an internal platform
specific process description.

To establish ETL management we introduce a set of basic
operators as first class citizens. Due to space constraints we
omit the presentation of formal semantics. We want to ex-
pose the benefits of ETL Management operators in general.
Examples include:

• Search – retrieves all ETL processes that contain the
specified search terms. Search terms may comprise dif-



CREATE TABLE Customers . . .
. . .
SELECT fname, lname, . . . (
SELECT * 
FROM Customers C Addresses A

Commercial ETL 
A li ti

AS…
FROM Customers C, Addresses A
WHERE C.custID = A.custID ) AS…

1. CREATE

Application

2. IMPORT

Customers
Catalog

Join Split

Lookup
Missing Zip

Gather CRM

Zip Codes

Customers
WWW

Split

Lookup
Missing Zip

Gather CRM

Zip Codes

3. MATCH

Zip Codes
Customers

WWW

Addresses

4. MERGE

Lookup
Missing Zip

Zip CodesWWW

Customers
Catalog

Join Split Gather CRMGather

g

Addresses

5. INVERT

Figure 1: Sample ETL scenario: Marketing database with a single view of customers

ferent aspects of an ETL process, such as stage names,
database schemata, or server addresses.

• Match – finds for a given ETL process all correspond-
ing ETL processes that extract, transforms, or load
common data in a similar way.

• Create – generates an ETL process from (a sequence
of) non-ETL data transformation steps, such as map-
pings between data sources or SQL scripts.

• Import – creates a tool-independent representation for
a product-specific ETL process to support ETL man-
agement in a tool-independent manner.

• Merge – takes one or more, often independently de-
veloped ETL processes as input and returns a merged
ETL process.

• Rewrite – eliminates design mistakes made during
ETL development by restructuring stages within an
ETL process

• Invert – feeds back the output of one ETL process to
the sources in order to share the benefit of any data
cleansing and integration stage.

• Deploy – generates from a tool-independent ETL rep-
resentation an executable ETL process for a specific
deployment platform [12].

Section 3 elaborates these and lists more useful operators.
Before, in the following Sec. 2, we provide an exemplary sce-
nario showing the benefits of high-level ETL management.
Related work is surveyed in Sec 4 and finally, Sec. 5 con-
cludes and outlines next steps.

2. SAMPLE SCENARIO
The scenario in Fig. 1 is a simplified example of loading

data into a customer relationship management marketing
database (marked as CRM), which provides a single view
of customers from information stored in different sources.
In this scenario, address information of catalog customers
is stored in a separate table, whereas all information about
internet customers resides in a single table. First, the under-
lying ETL process uses the stage Gather, which represents
the union operator, to combine customer data from catalog
sales and the online shop. Gather expects that both incoming
data flows use the same schema, which is then propagated
to the output.

Subsequently, a simplified address correction is performed:
The data flow is split into two streams of tuples – one stream
with missing zip codes, the other with existing zip codes.
A tuple with a missing zip is assigned a postal code using
an address lookup. Finally, the two split data streams are
combined into one, which is in turn loaded into the CRM
database.

Let us assume that the ETL process in Fig. 1 is the re-
sult of a Merge operation on two independently developed
ETL processes, one that integrates customer data from an
online shop and the other loads customer data from cata-
log selling, whereas both corresponding ETL processes were
found by the Match operator. It is imaginable that one of
the processes was derived by applying the Create operator
using existing SQL scripts. Merge yields to a better utiliza-
tion of system resources, compared to a separate execution
of both single processes, because the address lookup is done
for all customer data once. Furthermore, the combined ETL
process provides an uniform view of all customer.

In addition to executing the Merge operator, it makes
sense to apply the Invert operator to the merged ETL pro-
cess, to replace the dirty data in the original sources with the
consolidated, corrected, and enhanced address information.



Thus, applications working on the original sources may ben-
efit from address data cleansing performed within the ETL
process.

3. OPERATORS FOR ETL MANAGEMENT
In this section we describe the semantics of selected oper-

ators in detail. The underlying idea of all operators for ETL
management is the reduction of complexity and the raise of
abstraction to enable and simplify reuse, development, op-
timization, and maintenance of ETL processes.

3.1 Match
Given an ETL process, the macth operator allows to find

similar ETL processes and therefore provides a simple ac-
cess to a possibly large number of ETL processes stored
within the repository. Similarity is yet to be defined, but can
be interpreted as containing operators with same or similar
functionality or as accessing same or similar data sources
and/or targets. In analogy to information retrieval systems,
the operator should determine a numeric similarity measure
on how well each ETL process in the repository matches the
given process, and rank the result according to this value. In
general, it is hard to define a suitable similarity measure for
ETL processes, because of the variety of ETL features and
the presence of semantic or syntactic heterogeneity. Note
that the given ETL process, used as input to match, can
not only be an entire complex process but also a single ETL
stage or data source.

3.2 Merge
The intention of the Merge operator is to combine two

or more ETL processes into one. In order to merge ETL
processes, it is necessary to first identify corresponding sub-
processes between similar ETL processes. A common sub-
process consists of an equal sequence of equivalent or suf-
ficiently similar stages. Such sub-processes may be derived
by rewriting the considered ETL processes. The smallest
possible sub-process is a common ETL stage. A common
sub-process may be located at the beginning, in the middle
or at the end of the merged ETL process. One major dif-
ficulty in combining ETL processes is to find within a set
of common sub-processes those corresponding sub-processes
that are most qualified for a merge.

In general, company-wide developed ETL processes share
common sources and targets and are performed within sev-
eral ETL tools. Applying Merge in such scenarios, may
achieve a better utilization of shared resources, along with
latency improvement and a reduced amount of data trans-
mission. Applying Merge to a set of similar ETL processes
also promises an enhancement of performance compared to
performing all processes in a separate run. This assumption
is motivated by the expectation that in a merged ETL pro-
cess common data may be processed in an equal way. In
addition to optimization, a merged ETL process provides a
single view of all information that was originally processed
separately.

Apart from performance benefits, consolidating large sets
of ETL processes promises reduced overhead and mainte-
nance.

3.3 Rewrite
The purpose of the Rewrite operator is to restructure an

existing ETL process in a (semi-)automatic way. In particu-

lar, Rewrite allows optimization and maintenance of ETL
processes in order to eliminate design mistakes made during
the ETL development. A sample rewrite may place late run-
ning standardization stages at the beginning of the process
to ensure consistency of data for the following processing
steps. In addition to effectiveness, poor design of an ETL
process may have a negative impact on its efficiency too. In
analogy to traditional query optimization, late filtering of
data is a prominent example how ETL performance is nega-
tively affected by performing expensive and time-consuming
transformations for data that is later filtered out. Another
common mistake in ETL design is the late placement of
stages that discard attributes that are not involved in the
population of the data warehouse. Row size has a signifi-
cant impact on the throughput rate of ETL processes. Thus
one should avoid costly processing of large rows by placing
stages that reduce the number of attributes as soon as possi-
ble. Problems that arise in the context of reorganizing ETL
processes are described for instance in [9].

3.4 Invert
The Invert operator inverts an ETL (sub-)process in such

a way that cleansed data from the staging area of an ETL
process is moved backwards to the sources. This is accom-
plished by creating an inverted ETL process that starts at
a predefined stage within the staging area and loads the
cleansed data into a predefined source table. Based on an
invertible ETL process, major challenges are restoring the
data model and schema of the source table and inverting
individual ETL stages, which for instance might discard at-
tributes or delete tuples.

The idea of sending back improved data to the sources is
mentioned in passing as backflow of cleaned data in [7], but
this idea still remains to be worked out: Within an ETL
process specific data quality problems are solved, and the
consolidated and cleaned data should also be fed back to
the sources in order to ensure data quality for applications
working on the original sources. A backflow also promises
an improvement of future ETL projects in order to avoid
multiple fixing of data quality problems of the source sys-
tems.

Since master data management (MDM) became an im-
portant issue in most companies, the idea of replacing dirty
master data with cleansed master data from ETL processes
in the source systems is a promising approach. Master data
describes business objects, such as products, business part-
ners or customers. In particular, for ETL-based migration
of dirty master data from sources to MDM server, the In-
vert operator opens up an interesting approach to send
back cleansed and consolidated master data to the appro-
priate sources in a (semi-)automatic manner. The inverted
ETL process should then be regarded as an MDM process
depending on its purpose.

An improved inversion of an ETL process may be achieved
by a sequence of Rewrite operations, that place late run-
ning data quality stages at the beginning of the ETL process,
near to the predefined source table, to overcome difficulties
in inverting other ETL stages. This manual intervention
should only be performed when appropriate.

3.5 Other basic operators
We conclude this section with a short examination of oper-

ators that support interoperability, including Create, Im-



port, and Deploy. This approach assumes for now that
supported ETL or data integration tools exchange their data
integration projects at a tool-independent, logical level.

Besides ETL, there are many ways to move data from
sources to targets, such as setting up mappings between the
data sources or performing SQL scripts. In order to benefit
from data integration work that was already done, we sug-
gest the Create operator, which converts non-ETL data
transformation steps, into a tool-independent ETL repre-
sentation. Such an ETL process could be enhanced within
an specific ETL tool or managed with the introduced ETL
management operators in order to make further use of it.
In [4] Wisnesky et al. introduce Orchid – a prototype sys-
tem that creates ETL processes from declarative mapping
specifications and vice versa.

The Import operator supports interoperability by con-
verting tool-specific ETL process specifications into a tool-
independent representation and by importing it into the re-
spective ETL management platform. Subsequent ETL man-
agement operations are perform on the imported ETL pro-
cess, which may be deploy afterwards into multiple data
integration platforms using the Deploy operator. One ma-
jor problem with deployment of tool-independent ETL pro-
cesses is due to the fact that ETL tools have a different scope
of stages and in general ETL processes are more expressive
than other data integration approaches, such as mappings
or SQL queries.

4. RELATED WORK
Although the practical importance of ETL in data inte-

gration projects is significant [11], only some work on ETL
at a meta-level has been performed in the database research
community. Most related research results are about ETL
process modeling, whereas the Orchid approach in [4] uses
the work of [8] to convert real, IBM WebSphere DataStage
ETL processes into their abstract OHM model. Moreover,
the Orchid approach provides a solution for creating ETL
processes out of declarative schema mapping and vice versa.
Furthermore, there is a body of research on ETL process
rewriting and optimization by Vassiliadis et al. [9]. There are
other approaches in modeling ETL processes [3, 10]; both
approaches do not support the description of schema map-
pings between ETL stages. Thus, none of the existing ETL
modeling approaches work on the full set of ETL mecha-
nisms or support fundamental ETL aspects, such as fuzzy
operators or data lineage.

In the context of ETL we also want to refer the research
of [2] in the area of data lineage, in particular in this work
aspects of data that undergoes a sequence of transforma-
tions are studied. An introduction to model management,
with its inspiring principles of providing generic algebraic
operations, can be found in [5].

5. CONCLUSIONS AND NEXT STEPS
In this paper we presented the idea of a generic approach

for ETL management, meaning that all introduced high-
level operators, such as Search, Merge, or Invert, are
applicable to different kinds of ETL processes from different
platforms. The generic approach shall be achieved by treat-
ing ETL processes in a tool-independent representation. We
motivated the usefulness of our approach by an example and
described the behavior of some operators in more detail.

Our initial prototype is based on the open-source ETL
tool Clover [6]. Clover is an Eclipse plugin, which provides
ETL process specifications in a proprietary XML format.
In addition, it allows the integration of ETL management
operators based on the available java sources.

Our next steps include the formal definition of a number
of the proposed operators, their implementation in our pro-
totype, and subsequent case studies. Additionally we plan
to build wrappers for the most common ETL tools, so that
product-specific ETL processes can be imported, and rewrit-
ten processes can be deployed in different formats. In this
context, exploring the different semantics of similar ETL
stages in different tools and describing their expressiveness
will be a further direction.

6. REFERENCES
[1] Philip A. Bernstein. Generic model management: A

database infrastructure for schema manipulation. In
Proceedings of the International Conference on
Cooperative Information Systems (CoopIS), pages 1–6,
Trento, Italy, 2001.

[2] Yingwei Cui and Jennifer Widom. Lineage tracing for
general data warehouse transformations. VLDB
Journal, 12(1):41–58, 2003.

[3] Object Management Group. Common Warehouse
Metamodel (CWM), 2003. http://www.omg.org/
technology/documents/formal/cwm.htm.

[4] Ryan Wisnesky Ahmed Radwan Mauricio
A. Hernandez, Stefan Dessloch and Jindan Zhou.
Orchid: Integrating schema mapping and ETL. In
Proceedings of the International Conference on Data
Engineering (ICDE), Cancun, Mexico., 2008.

[5] Sergey Melnik. Generic Model Management: Concepts
and Algorithms. LNCS 2967. Springer Verlag, Berlin –
Heidelberg – New York, 2004.

[6] David Pavlis. clover.etl, 2008. www.cloveretl.org.

[7] Erhard Rahm and Hong Hai Do. Data cleaning:
Problems and current approaches. IEEE Data
Engineering Bulletin, 23(4):3–13, 2000.

[8] Alkis Simitsis. Mapping conceptual to logical models
for ETL processes. In DOLAP ’05: Proceedings of the
8th ACM international workshop on Data warehousing
and OLAP, pages 67–76, New York, NY, USA, 2005.
ACM.

[9] Alkis Simitsis, Panos Vassiliadis, and Timos Sellis.
Optimizing ETL processes in data warehouses. In
Proceedings of the International Conference on Data
Engineering (ICDE), Tokyo, Japan., 2005.

[10] Juan Trujillo and Sergio Luján-Mora. A UML based
approach for modeling ETL processes in data
warehouses. In Proceedings of the International
Conference on Conceptual Modeling (ER), Chicago,
IL, 2003.

[11] Panos Vassiliadis, Anastasios Karagiannis, Vasiliki
Tziovara, and Alkis Simitsis. Towards a benchmark
for ETL workflows. In Proceedings of the 5th
International Workshop on Quality in Databases
(QDB), Vienna, Austria., 2007.

[12] Wikipedia. ETL tools, 2008. http:
//en.wikipedia.org/wiki/Category:ETL_tools.


