
METL: Managing and Integrating ETL Processes

Alexander Albrecht
supervised by Felix Naumann

Hasso-Plattner-Institute at the University of
Potsdam, Germany

{albrecht,naumann}@hpi.uni-potsdam.de

ABSTRACT
Companies use Extract-Transform-Load (Etl) tools to save
time and costs when developing and maintaining data migra-
tion tasks. Etl tools allow the definition of often complex
processes to extract, transform, and load heterogeneous data
into a data warehouse or to perform other data migration
tasks. In larger organizations many Etl processes of dif-
ferent data integration and warehouse projects accumulate.
Such processes encompass common sub-processes, shared
data sources and targets, and same or similar operations.
However, there is no common method or approach to sys-
tematically manage large collections of Etl processes. With
Metl (Managing Etl) we present an Etl management ap-
proach that supports high-level Etl management. To this
end we establish and implement a set of basic management
operators on Etl processes, such as Match, Merge or In-
vert.

1. INTRODUCTION
A common scenario in data migration is data warehousing,

often applied in the areas of business intelligence, customer
relationship management, data mining or master data man-
agement. In practice, developers often use data integration
tools instead of hand-coded scripts for loading data ware-
houses. Usually one of the various Etl tools is chosen [17].
Etl tools allow the definition of often complex processes to
extract, transform, and load heterogeneous data from one
or more sources into a data warehouse.

Companies start using Etl tools in order to save time and
costs in connection with developing and maintaining data
migration tasks: Etl tools support all common databases,
file formats and data transformations, simplify the reuse of
already created (sub-)processes due to a collaborative de-
velopment platform and provide central scheduling, logging
and monitoring functionality for the execution of all running
Etl processes.

Figures 1 to 3 show three simplified Etl processes, which
we use as running examples throughout the paper. These

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Etl processes cover two typical scenarios in the context of
data warehouse loading: Augmenting data with additional
information and fact loading. The Etl processes were im-
plemented with IBM InfoSphere DataStage, the Etl com-
ponent of the IBM Information Server1. The Etl process
in Figure 1 loads daily sales data of a retail company from
an Ftp server into a database table. Raw sales data consist
of sales volume grouped by product key and shop number.
At the beginning, data is augmented with additional shop
information, such as shop address and the sales district key,
using a join transformation over the shop number. Because
there are some shops with a missing sales district key, this lo-
cation information is subsequently consolidated: The data
flow is split into two streams of tuples – one stream with
records that lack location information, the other with ex-
isting sales district keys. A record with a missing location
information is assigned a sales district key by a lookup using
the zip code of a shop address. Finally, the two split data
streams are combined into one, which is in turn loaded into
a database table of daily shop sales.

The Etl processes in Figures 2 and 3 load daily sales
data of all shops and the online shop into the fact table of a
data warehouse. In this sample scenario, both Etl processes
were separately developed and the data warehouse provides
a single view on sales volume grouped by product key, lo-
cation, sales week and year. The Etl process in Figure 2
uses a filter transformation in order to extract sales volume
for products of the current week from the data warehouse.
Weekly sales volume is subsequently aggregated with new
daily sales volume from all shops and finally reloaded into
the data warehouse. The Etl process in Figure 3 considers
only sales volume of products from the data warehouse, that
were actually sold over the internet this day. This is achieved
by a semi-join over the product key. The aggregation and
loading is equivalent to the Etl process in Figure 2.

The continuous use of Etl tools results in a large number
of Etl processes. Etl tools store all Etl processes in a
repository. The size of a repository may already increase in
the course of a complex data integration project up to sev-
eral hundred Etl processes [1]. The cooperation with our
industrial partner shows that over time there are many Etl
processes, which may encompass shared data sources, same
data targets, common sub-processes and data transforma-
tions configured in an equal or similar way. However, we are
not aware of a common method, approach, or framework to
uniformly manage large repositories of Etl processes.

Due to this fact we presented the notion of Etl man-

1
www.ibm.com/software/data/integration/info_server/



agement in [2]. Our approach is inspired by the model
management research, which defines a set of operators for
manipulating models and mappings [10]. In analogy, the
main contribution of Etl management is to reduce the ef-
fort needed to develop or maintain Etl processes. Although
Etl processes are strongly related to schema mappings [7],
known model management techniques are not applicable in
the context of Etl management: Etl management is based
on certain Etl process characteristics that are not repre-
sented in schema mappings, such as the order, type, and
configuration of data transformation steps. To establish
Etl management we develop in the context of this Ph.D.
project Metl, a prototypical, web-based Etl management
platform that supports the following high-level Etl man-
agement functionality:

• Create – converts non-Etl data transformation
steps, such as declarative schema mappings between
data sources and targets, into an Etl process.

• Import – creates a tool-independent representation for
a product-specific Etl process to support Etl man-
agement in a tool-independent manner.

• Search – retrieves all Etl processes that satisfy the
specified search query. Search queries may comprise
different aspects of an Etl process, such as transfor-
mation types or database schemata.

• Match – given an Etl (sub-)process, find and rank all
corresponding Etl (sub-)processes that extract, trans-
form, or load common data in a similar way.

• Invert – propagates any data cleansing and consoli-
dating steps applied in an Etl process back to its data
sources.

• Merge – takes two or more Etl processes as input
and returns a merged Etl process.

• Deploy – generates from Metl’s tool-independent
Etl process representation an Etl process for a spe-
cific Etl tool.

Section 3 elaborates our approach to implement Etl man-
agement. Related work is surveyed in the following section.
Section 4 introduces our prototype system Metl, which is
currently under development. Finally, Sec. 5 concludes and
outlines next steps.

2. RELATED WORK
Although the practical importance of Etl in data integra-

tion projects is significant, [17], only little research on Etl
at a meta-level has been performed. Most related research
results improve Etl process modeling [11, 14, 16], but there
is no implementation that supports further processing on
such Etl process models.

The problems of setting up and maintaining multiple in-
tegration scenarios is addressed in [4]. The author’s focus
however is at a higher abstraction level namely abstract-
ing different platform-specific integration processes, such as
Etl, Eai, or Fdbms. The Orchid approach in [7] uses the
work of [14] to convert real, IBM InfoSphere DataStage Etl
processes into their abstract OHM model. Moreover, the

Figure 1: Augmenting sales information

Figure 2: Adding daily to weekly sales volume

Figure 3: Fact loading based on daily product sales

Orchid approach provides a solution for creating Etl pro-
cesses only out of declarative schema mappings and vice
versa. Furthermore, there is a body of research on Etl pro-
cess rewriting and optimization by Vassiliadis et al. [15] and
Roy [13].

The work of Kraft et al. describes a coarse-grained opti-
mization (CGO) technique for sequences of Sql statements
including creating, loading and dropping tables, inserts and
queries [9]. Such statement sequences are similar to Etl pro-
cesses and are automatically generated by commercial Olap
tools. The introduced rule-based optimization approach al-
lows the merging of similar and dependent statements and is
related to techniques we consider for the Merge operator.

The matching of processes is a basic problem in the field
of business process management. Jung and Bae present an
approach for workflow clustering and introduced a method
how to determine process similarity [8]. This structure-
aware similarity measure is related to the one we use for
the Match operator.

The Invert operator propagates changes, applied in the
Etl process in order to improve data quality, back to the
sources. The idea of sending clean data back to the sources
is first mentioned in [12] as backflow of cleaned data, but
still remains to be worked out. Our work on the Invert
operator builds on known methods from materialized view
maintenance to detect irrelevant updates [3].

In the context of Etl we also must mention [5] in the area
of data lineage. In this work aspects of data that undergoes a
sequence of transformations are studied. An introduction to
model management, with its inspiring principles of providing
generic algebraic operations, can be found in [10].



3. ETL MANAGEMENT
In this section, we provide more details on our Etl man-

agement work. We present our approach and research chal-
lenges that are targeted in the course of this Ph.D. project.
Based on this approach, we expect this project to produce
substantial results in the new field of Etl management. The
cooperation with our industrial partner and a first analysis
of the provided Etl repositories show the importance of Etl
management in practice.

3.1 A general ETL process model
Importing product-specific Etl processes from large Etl

repositories and other sources is the first step in Etl man-
agement. Import converts a product-specific Etl process
specification into a general Etl process representation to
enable further processing by Etl management operators
in a tool-independent manner. Most commercial and open
source Etl tools provide Etl process specifications in some
proprietary XML format, which is directly wrapped by Im-
port. Currently there is no standard mechanism or im-
plementation one can use to model Etl processes. With
Cwm there is a specification for modeling all metadata of a
data warehouse project [11]. The contained transformation
package is intended to model Etl processes. Unfortunately,
there is a lack of documentation and examples in the Cwm
specification how to actually model Etl processes. In addi-
tion, Cwm is intended to model Etl processes for exchange,
not for further processing like in Etl management. Already
the modeling of a single Etl transformation causes exces-
sive main memory consumption due to the elaborate Cwm
metadata modeling approach.

In our work we model Etl processes as statement se-
quences based on the Operator Hub Model (OHM) intro-
duced in [7]. OHM covers a dozen Etl transformations
available in IBM InfoSphere DataStage and defines their
operational semantics as fragments of basic, product-inde-
pendent operators. For example, the switch transformation
in Figure 1 is defined by an OHM fragment consisting of one
SPLIT operator and sequences of a FILTER operator followed
by a BASIC PROJECT operator for every output stream.

The OHM model is also applicable for Etl process spec-
ifications from other Etl tools, such as Informatica Pow-
erCenter2 or CloverETL3. In Etl, transformations are a
generalization of relational operators supporting multiple
outputs, i.e., filter- or join-like operations, and work with
multi-set semantics. In Etl a transformation never pro-
duces its own input data. An Etl process is thus a directed
acyclic graph or, more precisely, a multidigraph, because in
Etl more than one output stream of a transformation may
be consumed by one subsequent transformation. The topo-
logically ordered graph structure determines the execution
order of the dependent transformations.

In our model, each transformation of an Etl process is
described by a statement similar to Sql that reflects the
corresponding OHM fragment. The output of each state-
ment is loaded into a temporary table, which is the input to
the next transformation. In the final loading step the output
is loaded into the data target. Our modeling approach is in-
tended to represent those aspects of ETL processes that are
relevant to ETL management. On that level of abstraction,

2
www.informatica.com

3
www.cloveretl.com

Figure 4: ETL statement sequence

the modeled statement sequences should not be regarded as
real execution plans for ETL processes. Figure 4 shows the
corresponding statement sequence for the Etl process in-
troduced in Figure 1. The statement sequence always starts
with a header of all relevant meta information about each
Etl extracting and loading step.

3.2 Search
Search returns all Etl processes stored in the reposi-

tory that satisfy the specified search query. There are many
attributes describing an Etl process, such as transforma-
tion names, input and output schemata, server addresses,
etc. The Search operator supports a query language that
is similar to standard search engines: A query consists of
search predicates p1, p2, ..., pn. In order to assign a specific
Etl context to a predicate, each predicate can optionally
be prepended by a label. Each label indicates a certain con-
text, such as transformations, database schemata, or server
addresses. Predicates without labels are applied to all con-
texts. In addition, implemented Search offers an automatic
keyword completion feature: While typing the first letters
of a query keyword, a list of keywords that start with the
entered letters is automatically offered. The proposed key-
words are taken from those Etl processes that answer the
already typed-in search query. Figure 6 demonstrates the
auto-completion feature provided by Search. There may
be multiple Etl processes in the repository that answer a
query. The resulting Etl processes are therefore ranked by
Search based on the relevance to the user. The ranking
of the resulting Etl processes is a major challenge, because
their degree of relevance to the user has to be inferred. A
first ranking approach obtains search terms that appear of-
ten within an Etl process but rarely in the entire repository
a higher weight. With this TF/IDF-like term weighting ap-
proach we create weighted term vectors for the search query
and all resulting Etl processes and use the cosine measure



to compute the similarity between each Etl process and
the search query. The results of the search query are finally
ranked based on the determined numeric similarity values.

A more advanced ranking is achieved by increasing the
relevance for those Etl processes where search terms refer-
ence same Etl components, such as transformations, source
or target databases. The following query example retrieves
all sales-related Etl processes that use the term district

in a input or output schema and contain one or more lookup
transformations:

sales +schema:district +transformation:lookup

In this query example, the relevance of an Etl process in-
creases, if the term district is used in the input or output
schema of a lookup transformation. Thus the relationship
between search terms within each resulting Etl process be-
comes important in our advanced relevance ranking strategy.

3.3 Match
Given an Etl process, the Match operator allows to find

similar Etl processes or sub-processes and therefore pro-
vides an easy-to-use method to access all Etl processes
stored within the repository. Instead of a query, an Etl
process is required as input for Match. In analogy to in-
formation retrieval systems, the operator determines a nu-
meric similarity measure on how well each Etl process in
the repository matches the given Etl process, and ranks the
result according to this value. In general, it is hard to define
a suitable similarity measure for Etl processes, because of
the presence of semantic or syntactic heterogeneity. Already
the definition of input and output schemata for equal trans-
formations causes problems, because column names are de-
fined independently by the Etl developers. Thus in different
schemata a variety of abbreviations, synonyms and hyper-
nyms for semantically related attributes occur. In conse-
quence, finding similar transformations at the schema-level
becomes difficult. To make matters even more challeng-
ing, known schema matching approaches assume that the
regarded schemata are at least somehow related to one an-
other. For schemata in different Etl processes we cannot
ensure that this assumption holds.

In order to find corresponding Etl processes within the
repository, we implemented a basic, structure-aware Match
operator. In this approach, we consider transformations to
be similar if they belong to the same general Etl compo-
nent. The structure of an Etl process is described by pairs
of transformations: We consider pairs of transformations
that are explicitly connected in the Etl process as directly
interdependent. Two transformations that are connected by
a path of length greater than one, we consider as indirectly
interdependent. Each pair of transformations is initially as-
sociated with a weight w ∈ [0,1], which determines its de-
pendency.

Match creates for the given Etl process and each Etl
process from the repository a weighted multidimensional
vector of directly and indirectly interdependent transforma-
tion pairs. The cosine measure computes the similarity be-
tween the given Etl processes and every Etl process from
the repository. Finally, all Etl processes are ranked accord-
ing to the calculated similarity values.

For the sample scenario from Section 1 Match determines
the similarity of the Etl processes from Figures 1 and 2
with 10%, from Figures 1 and 3 with 7% and from Figures 2

Figure 5: Corresponding data consolidation in ETL

and 3 with 77%. There is, of course, a high similarity of both
fact loading Etl processes due to the similar structure. In
addition, Match identifies the semi-join as a generic filter
component an treats it similar to the filter transformation
in Figure 2.

The similarity measure calculated with Match can also
be used to automatically organize all Etl processes within
a large repository: Similar Etl processes are grouped to-
gether, i.e., Etl processes of one group are more related
to each other than to Etl processes in other groups. We
currently investigate this clustering idea using a large Etl
repository of an industrial partner with several hundred Etl
processes. Based on this test set we additionally want to
infer Etl reference processes for every cluster in order to
support and improve Etl process development using the in-
ferred Etl reference processes as best practise patterns. For
evaluation we use Etl reference processes manually built by
our industrial partner.

3.4 Invert
Data cleansing plays a major role in Etl processes [12].

Especially in the data warehouse context, data with high
quality is requested in order to ensure reliable analysis re-
sults. Within an Etl process specific data quality problems,
such as missing or misspelled values or referential integrity
violations, are solved in sequenced transformation steps.

Invert automatically discovers within a given Etl pro-
cess potential data cleansing and consolidating steps and
propagates them back to the sources. This allows perform-
ing discovered cleansing steps also on selected data sources.
Finally, the user decides out of all discovered repairs which
ones to process. In this context, it is important to consider
that the application of all discovered cleansing steps is side-
effect free, i.e., does not change the result of the Etl process
or violate existing constraints on the source data.

The application of Invert improves data quality for ap-
plications working on the data sources, avoids multiple fixing
of data quality problems in future Etl projects and reduces
therefore time in developing new Etl processes. Since mas-
ter data management (MDM) became an important issue in
most companies, the idea of cleansing dirty master data us-
ing repair steps from existing Etl processes is a promising
approach. Master data describes relevant business objects,
such as products, business partners, or customers, in a cen-
tralized reference store.

The Etl process of Figure 1 consolidates data by assign-
ing missing district keys to the corresponding values from
a lookup table. Invert discovers such lookups as candi-
date repairs by static analysis of the Etl process model and
presents the back-propagated repairs to the user with up-
date statements similar to Sql. For the sample Etl process
Invert generates the following update statement.



UPDATE SHOPS

SET district = ZIP LOCATION MAPPING.district

WHERE ISNULL(district)

AND zip = ZIP LOCATION MAPPING.zip

As a next step we plan to create a corresponding Etl
process based on these update statements in order to allow
data consolidation within the original Etl tool. Figure 5
shows the corresponding Etl process of the sample update
statement in IBM InfoSphere DataStage.

The approach of Invert can be summarized with the
following challenging four points: (i) discover all poten-
tial, side-effect free data cleansing and consolidating steps
within a given Etl process; (ii) describe each cleansing steps
with Sql-like update statements (iii) propagate discovered
cleansing steps as updates back to the sources; (iv) convert
derived update statements of all selected cleansing steps into
an Etl process.

3.5 Merge
The intention of Merge is to combine two or more

Etl processes into one integrated Etl process. In gen-
eral, company-wide developed Etl processes share common
sources and targets. Applying Merge in such scenarios,
achieves a better utilization of shared resources, along with
latency improvement, a reduced amount of data transmis-
sion and promises an enhancement of performance compared
to performing all processes in a separate run. This assump-
tion is motivated by the expectation that in a merged Etl
process common data may be processed in an equal way. In
addition to optimization, a merged Etl process provides a
single view of all information that was originally processed
separately. Apart from performance benefits, consolidating
large sets of Etl processes promises reduced overhead and
maintenance.

Advantages of Merge can be well demonstrated using
the Etl processes introduced in Section 1. It is imaginable,
an Etl developer discovers with Search that the database
table SALES SHOP is exclusively used by the Etl processes
from Figures 1 and 2. The merged Etl process dispenses
with materializing the database table and provides an im-
proved performance due to pipelining the data flow during
execution. In addition, the merged Etl process reduces
scheduling overhead, because only one integrated Etl pro-
cess instead of two dependent Etl processes has to be ad-
ministered. In a second sample scenario, an Etl developer
wants to merge similar Etl processes from Figures 2 and
3 found by applying Match. Because there are different
possibilities to merge both Etl processes, Merge returns a
merged Etl process with the least number of transforma-
tions. In order to find common transformations, a rewrite
of the given Etl processes is necessary. For example, in
Figure 2 the filter predicate on current week is not optimal:
Unnecessary records from the data warehouse are extracted
and in turn loaded without modification into the data ware-
house, because only sales volume of records are refreshed
that have a corresponding product key in the second data
source. The optimal filter is therefore a semi-join. Such a fil-
ter rewrite would lead to an extra correspondence between
both Etl processes and in turn to an additional merged
transformation.

The approach of Merge can also be summarized with
four challenging points: (i) creation of equivalent Etl
(sub-)processes by applying rewrites to every given Etl pro-

Figure 6: Autocompletion feature in Search

cess; (ii) identification of combinable transformations among
each given Etl process or its equivalent representations; (iii)
generation of all possible merged Etl processes (iv) return-
ing the best merged Etl process.

Like Invert, Merge has to work side-effect free, i.e., the
result of the merged Etl process is the same as the result
of all scheduled Etl processes in a separate run. At the
moment our work is focused on developing a set of general
rewrite rules, such as filter optimization, and identification
rules for combinable transformations.

3.6 Other basic operators
Besides Etl, there are many ways to move data from

sources to targets, such as setting up mappings between the
data sources or writing Sql scripts. In order to benefit from
any data integration effort that is already done, we intro-
duce the Create operator, which converts non-Etl data
transformation steps, into an Etl representation. Such an
Etl process could be enhanced within a specific Etl tool
or managed with the introduced Etl management opera-
tors in order to make further use of it. In [7] Hernandez
et al. introduce Orchid – a prototype system that creates
Etl processes from one type of other specification, namely
declarative mapping specifications.

The introduced Import operator enables tool-inde-
pendent Etl management by converting tool-specific Etl
process specifications into a generalized Etl process rep-
resentation. Subsequent Etl management operations are
performed on the imported Etl process, which may be de-
ployed in case of Invert or Merge as an executable Etl
process into the original Etl tool. Therefore we introduce
the Deploy operator. One major challenge is to support
interoperability of different Etl tools based on Import and
Deploy, i.e., importing an Etl process from one Etl tool
and deploying it as an executable Etl process to a second,
different Etl tool. This requires exploring different seman-
tics of similar Etl transformations in different Etl tools
and describing their expressiveness.

4. METL: A SYSTEM FOR MANAGING
ETL

Metl is a prototypical, web-based Etl management plat-
form and features higher-level Etl management functional-
ity. The basic software architecture of Metl consists of an



Ajax-based GUI using SVG as the underlying Etl process
renderer. Etl processes are visualized based on the intro-
duced general Etl process model.

Figure 6 shows Metls browser-based interface and
demonstrates the autocompletion feature provided by
Search. On the right hand side, Etl processes are im-
ported by clicking the corresponding icon in the toolbar. All
Etl processes are imported into a central repository. Each
opened Etl process is easily accessible by its tab. A user
may explore an Etl process using the graphical interface.

The novel operators for Etl management, such as
Search, Match, Merge, and Invert, appear as buttons
on the left hand side. We plan to implement all introduced
Etl management operators in course of this Ph.D. project.
Metl is used as platform to prove the usability and to ex-
plain the behavior of all implemented Etl management op-
erators.

5. CONCLUSION & NEXT STEPS
In this paper we present a generic approach for Etl man-

agement, meaning that all introduced high-level operators,
such as Match, Invert, or Merge, are applicable to dif-
ferent kinds of Etl processes from different Etl tools. The
generic approach is achieved by treating Etl processes in a
tool-independent manner. We motivated the usefulness of
our approach by examples from the data warehouse context
and described the behavior of Etl management operators
in more detail. Our suggested approach is intended to sup-
port and improve Etl process development by providing
Etl management functionality for large Etl process repos-
itories. Our research is orthogonal to other approaches that
try to simplify Etl process design by successively converting
business models of a company into Etl processes [6].

Our next steps include the implementation and improve-
ment of all introduced Etl management operators, and sub-
sequent case studies. At the moment we are analyzing large
Etl repositories of our industrial partner with several hun-
dred Etl processes. The repositories comprise Etl pro-
cesses for batch integration of financial data. Additionally
we plan to build wrappers for common Etl tools, such as
IBM InfoSphere DataStage, Informatica PowerCenter, and
CloverETL, so that product-specific Etl processes can be
imported, and Etl processes generated by Etl management
operators can be deployed in different platforms.

Next to facing the challenges described in Section 3, we
also have to comprehensibly evaluate our developed ap-
proaches within an experimental testbed, such as an Etl
benchmark as described by Vassiliadis et al. [17].

6. REFERENCES
[1] Himanshu Agrawal, Girish Chafle, Sunil Goyal, Sumit

Mittal, and Sougata Mukherjea. An Enhanced
Extract-Transform-Load System for Migrating Data
in Telecom Billing. In Proceedings of the International
Conference on Data Engineering (ICDE), Cancún,
México, 2008.

[2] Alexander Albrecht and Felix Naumann. Managing
ETL processes. In Proceedings of the VLDB
International Workshop on New Trends in
Information Integration (NTII), Auckland, NZ, 2008.

[3] J.A. Blakeley, N. Coburn, and P. Larson. Updating
derived relations: Detecting irrelevant and
autonomously computable updates. ACM

Transactions on Database Systems (TODS),
14(3):369–400, 1989.

[4] Matthias Böhm, Dirk Habich, Wolfgang Lehner, and
Uwe Wloka. Model-driven development of complex
and data-intensive integration processes. In
Proceedings of the International Workshop on
Model-Based Software and Data Integration (MBSDI),
Berlin, Germany, 2008.

[5] Yingwei Cui and Jennifer Widom. Lineage tracing for
general data warehouse transformations. VLDB
Journal, 12(1):41–58, 2003.

[6] Umeshwar Dayal, Malu Castellanos, Alkis Simitsis,
and Kevin Wilkinson. Data integration flows for
business intelligence. In Proceedings of the
International Conference on Extending Database
Technology (EDBT), Saint Petersburg, Russia, 2009.

[7] Mauricio A. Hernandez, Stefan Dessloch, Ryan
Wisnesky, Ahmed Radwan, and Jindan Zhou. Orchid:
Integrating schema mapping and ETL. In Proceedings
of the International Conference on Data Engineering
(ICDE), Cancun, Mexico, 2008.

[8] Jae-Yoon Jung and Joonsoo Bae. Workflow clustering
method based on process similarity. In Proceedings of
the International Conference on Computational
Science and Its Applications (ICCSA), Glasgow, UK,
2006.

[9] Tobias Kraft, Holger Schwarz, Ralf Rantzau, and
Bernhard Mitschang. Coarse-Grained Optimization:
Techniques for Rewriting SQL Statement Sequences.
In Proceedings of the International Conference on
Very Large Databases (VLDB), pages 488–499, Berlin,
Germany, 2003.

[10] Sergey Melnik. Generic Model Management: Concepts
and Algorithms. LNCS 2967. Springer Verlag, Berlin –
Heidelberg – New York, 2004.

[11] John Poole, Dan Chang, and Douglas Tolbert.
Common Warehouse Metamodel, Developer’s Guide
(OMG). Wiley & Sons, Indianapolis, IN, 2003.

[12] Erhard Rahm and Hong Hai Do. Data cleaning:
Problems and current approaches. IEEE Data
Engineering Bulletin, 23(4):3–13, 2000.

[13] Prasan Roy. Optimization of DAG-structured Query
Evaluation Plans. Master’s thesis, Indian Institute of
Technology, Bombay, 1998.

[14] Alkis Simitsis. Mapping conceptual to logical models
for ETL processes. In Proceedings of the International
Workshop on Data warehousing and OLAP (DOLAP),
pages 67–76, New York, NY, 2005.

[15] Alkis Simitsis, Panos Vassiliadis, and Timos Sellis.
Optimizing ETL processes in data warehouses. In
Proceedings of the International Conference on Data
Engineering (ICDE), Tokyo, Japan, 2005.

[16] Juan Trujillo and Sergio Luján-Mora. A UML based
approach for modeling ETL processes in data
warehouses. In Proceedings of the International
Conference on Conceptual Modeling (ER), Chicago,
IL, 2003.

[17] Panos Vassiliadis, Anastasios Karagiannis, Vasiliki
Tziovara, and Alkis Simitsis. Towards a benchmark
for ETL workflows. In Proceedings of the 5th
International Workshop on Quality in Databases
(QDB), Vienna, Austria, 2007.


