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Reach for Gold: An Annealing Standard to Evaluate Duplicate
Detection Results

TOBIAS VOGEL, ARVID HEISE, UWE DRAISBACH, DUSTIN LANGE, and
FELIX NAUMANN, Hasso Plattner Institute

Duplicates in a database are one of the prime causes of poor data quality and are at the same time among
the most difficult data quality problems to alleviate. To detect and remove such duplicates, many commercial
and academic products and methods have been developed. The evaluation of such systems is usually in need
of pre-classified results. Such gold standards are often expensive to come by (much manual classification
is necessary), not representative (too small or too synthetic), and proprietary and thus preclude repetition
(company-internal data). This lament has been uttered in many papers and even more paper reviews.

The proposed annealing standard is a structured set of duplicate detection results, some of which are
manually verified and some of which are merely validated by many classifiers. As more and more classifiers
are evaluated against the annealing standard, more and more results are verified and validation becomes
more and more confident. We formally define gold, silver, and the annealing standard and their maintenance.
Experiments show how quickly an annealing standard converges to a gold standard. Finally, we provide an
annealing standard for 750,000 CDs to the duplicate detection community.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration

General Terms: Algorithms, Management

Additional Key Words and Phrases: Annealing standard, gold standard, silver standard, duplicate detection,
classification

ACM Reference Format:
Vogel, T., Heise, A., Draisbach, U., Lange, D., and Naumann, F. 2014. Reach for gold: An annealing
standard to evaluate duplicate detection results. ACM J. Data Inform. Quality 5, 1–2, Article 5 (August
2014), 25 pages.
DOI:http://dx.doi.org/10.1145/2629687

1. THE LACK OF GOLD STANDARDS FOR DATA QUALITY

Duplicates in a database table are multiple, different records representing the same
real-world entity. A prime example for duplicity are customer relationship manage-
ment systems in which customers are represented multiple times, for instance, with
different addresses, typos in their family names, incorrect dates-of-birth, etc. Effects
of duplicates range from the harmless poor customer satisfaction to more aggravated
problems, such as giving the same customer multiple lines of credit, all the way to
low key performance indicators resulting in poor business decisions. Among the many
factors of data quality, duplicity is among the most important and the most difficult
problems. Many methods have been proposed and/or implemented in commercial data
quality applications [Elmagarmid et al. 2007; Naumann and Herschel 2010].
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5:2 T. Vogel et al.

To find all duplicates within a dataset, the naive approach is to compare each record
with all the other records and use a classifier to decide whether a record pair is a dupli-
cate or not. This approach faces two challenges: First, the complexity is quadratic, and
second, the decision of whether a pair of records represents the same real-world entity
is not trivial. To tackle these challenges, a variety of algorithms have been proposed,
such as partitioning methods to reduce the number of comparisons [Baxter et al. 2003]
and similarity measures to calculate the similarity of record pairs [Elmagarmid et al.
2007].

All these algorithms have in common that they cannot guarantee finding all du-
plicates and that declared duplicates might be incorrect. Performance measures are
necessary to evaluate these algorithms. There is a variety of these measures, and they
all require a gold standard to determine the correctness and completeness of duplicate
detection results. A generally accepted dataset and a corresponding gold standard re-
sult in a duplicate detection benchmark that makes the repeatability of experiments
and the comparability of different methods possible. Unfortunately, there is no single
large, available, and nonsynthetic dataset with a corresponding gold standard in the
duplicate detection community; this makes it difficult both to evaluate and to compare
different results.

To reduce costs associated with creating gold standards, we propose the novel
annealing standard. “Annealing” means that the corresponding standard iteratively
gets better and better and thus “converges” against the not available, yet desirable gold
standard.1 The annealing standard exploits inter-classifier agreement and requires
only manual work in cases of doubt. In this article, we consider the classification algo-
rithms and manual decision process as black boxes and focus on describing the work-
flow to generate a standard for a dataset with the results of several classifiers. It is
worth mentioning that all concepts and definitions in the article can also be applied to
other classification tasks. Because the duplicate detection problem is a good example
for a classification problem with a strong need for an annealing standard, we focus on
duplicate detection in the remainder.

1.1. Available Gold Standards

For duplicate detection, there is no single dataset that is used for benchmarking.
In Draisbach and Naumann [2010], we describe three datasets that are often used
for evaluation and which all have a gold standard.

The CORA Citation Matching dataset contains 1,879 references representing differ-
ent papers and is used in several approaches, to evaluate duplicate detection [Bilenko
and Mooney 2003a; Dong et al. 2005; Singla and Domingos 2005]. As described in
Draisbach and Naumann [2010], the reference ID (the BibTeX key) is not always fault-
less, but a manually verified gold standard can be downloaded from the DuDe toolkit
website.2

The restaurant dataset comprises only 864 records, which makes it difficult to eval-
uate partitioning algorithms. Additionally, it contains only clusters with a maximum
size of 2, and this makes it not useful for algorithms that, for example, rely on transi-
tivity to reduce the number of comparisons.

The third dataset comprises 9,763 randomly extracted CD records from freeDB.3 The
gold standard contains 299 duplicates which were detected in a manual inspection.

1We use the term “annealing” in the same sense as the well-known “simulated annealing” optimization
method, namely, cooling-down or solidifying.
2http://www.hpi.uni-potsdam.de/naumann/projekte/dude duplicate detection.html.
3http://www.freedb.org/.
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Reach for Gold 5:3

All three datasets have in common that they comprise only a small number of
records. The reason being that a manual inspection of all possible record pairs is very
time consuming. An alternative to the manual inspection is using a dataset genera-
tor, such as the UIS Database Generator4 or the FEBRL Generator.5 Such artificially
generated data seems to be an attractive alternative to the manual inspection of real-
world data, as the number of duplicates and the error types, such as missing values or
typographical errors, can be controlled. On the other hand, generated data needs to re-
flect issues of real-world data, including the frequency distribution of attribute values
and error types. Only real-world data contain the surprising types of errors that one
cannot foresee but that one hopes to detect anyway. Synthetically inserting errors into
data and then re-discovering them is not sufficiently convincing, therefore, real-world
data is generally preferred.

An overview about data generation for deduplication and record linkage is given
by Christen [2005]. For all generated datasets, there is always the risk that they do
not contain uncommon errors or that classifiers are overfitted regarding the generated
error types.

1.2. An Ever-Improving Standard

The core idea of the annealing standard is to create a standard that comprises all du-
plicates and nonduplicates that can be detected with state-of-the-art algorithms. With
any of these algorithms, a first baseline is created and with more algorithms, the stan-
dard is refined. This refinement is based on a manual inspection of the differences
between the current annealing standard and the newer results. It is not as perfect as
a gold standard, but due to the iterative improvement, it becomes nearly as good as a
gold standard after enough iterations. This makes it possible to create a standard even
for large datasets with limited manual effort, because obvious duplicates or nondupli-
cates are classified correctly by all state-of-the-art algorithms, and therefore manual
inspection is mainly necessary in the gray and particularly difficult area of possible
matches.

The annealing standard aims to reduce the manual work needed from the domain
expert similarly to active learning in the machine learning community. Here, the two
principle approaches either exploit a confidence score of one classifier [Sarawagi and
Bhamidipaty 2002] or employ the disagreement of a committee of classifiers [Freund
et al. 1997; Seung et al. 1992] to present a small number of pairs with a high uncer-
tainty to a domain expert and feed the labeled pairs back to the classifiers in several
iterations. Since especially difficult pairs with a high uncertainty are in the training
set, the classifiers achieve good performance with comparably few pairs. In contrast,
the annealing standard operates on classifier results. The main goal is to directly im-
prove the standard (not the classifiers) and to eliminate all uncertainties regarding the
results. Consequently, while they both reduce the manual effort by avoiding manual
inspection of trivial pairs, the metric and the goal to find difficult pairs are different in
both approaches.

The contributions of this article are as follows.

— We present 2 formal definition of silver and annealing standard for classification
problems.

— We provide evaluation metrics for silver and annealing standard.
— We present a workflow for creating an annealing standard using a sequence or

batches of classifiers.

4http://www.cs.utexas.edu/users/ml/riddle/data.html.
5http://sourceforge.net/projects/febrl/.
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5:4 T. Vogel et al.

— We provide an evaluation on a duplicate detection task with 35 different classifiers
showing the convergence of the annealing to the gold standard.

— We give an annealing standard for a dataset comprising 750,000 records of
audio CDs.

The article is structured as follows. The next section covers different directions of
related work. In Section 3, we define gold, silver, and annealing standard and explain
their usefulness for evaluating a classifier. Then, Section 4 describes the workflow to
create an annealing standard, and Section 5 evaluates the annealing standard using
a real-world scenario. Finally, Section 6 concludes the article and gives an outlook on
interesting research directions for the future.

2. RELATED WORK

Five areas are related to our proposal of a classification standard: (i) the area of
(database) benchmarking in general, (ii) classification frameworks, which comprise
usually multiple algorithms and datasets and are thus useful to perform benchmark-
ing, (iii) iterative approaches for classification, (iv) ensemble learning techniques to in-
corporate results from several classifiers, and (v) duplicate detection measures, which
evaluate the quality of a duplicate detection result.

Benchmarking. Benchmarks are domain-specific and they should be relevant,
portable, scalable, and simple [Gray 1991]. The Transaction Processing Performance
Council6 has published several benchmarks for databases, such as TPC-C and TPC-E,
as online transactional processing benchmarks, as well as TPC-H as an ad-hoc, deci-
sion support (OLAP) benchmark. For the XML data model, there are benchmarks, such
as XOO7 [Bressan et al. 2002], XMark [Schmidt et al. 2002], and XMach [Rahm and
Böhme 2002]. Benchmarks usually comprise a dataset or dataset generator, a query
workload, and some concrete and objective comparison measures, such as transactions
per second (tps), price/tps, or Watts/tps. Because these measures do not depend on the
semantics of the generated data or the queries, it is fairly simple to generate appropri-
ate datasets and some corresponding query workload. In addition, the queries follow
a well-defined and widely accepted semantics, so the query results are predefined and
can be verified with ease.

When creating a benchmark for less well-defined tasks, such as duplicate detec-
tion or information retrieval tasks, query results follow a less well-defined semantics.
Even among human experts, there is usually some disagreement whether some record
pair is in fact a duplicate or whether some webpage is in fact relevant to a search
query [Kim and Wilbur 2010]. It is far more costly to create an appropriate dataset,
corresponding query results, and expected query results. Each query result must be
carefully crafted, preferably double-checked by further human experts. In the domain
of information retrieval, the TREC conference and its specific tracks and tasks are well
accepted as standard evaluation procedures.7 For duplicate detection however, there is
no such well-accepted benchmark or evaluation set. The proposed annealing standard
is a means to fill this gap.

Classification Frameworks. There are various tasks that can be addressed by clas-
sification, including spam detection, news article categorization, and part-of-speech
tagging. A popular framework for classification in general is Weka [Hall et al. 2009],
which offers implementations of the most relevant classification algorithms.

6http://www.tpc.org/.
7http://trec.nist.gov/.
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Since duplicate detection serves as our main target, we discuss frameworks devel-
oped specifically for this task in more detail. Köpcke and Rahm have compared differ-
ent frameworks for entity matching [Köpcke and Rahm 2010]. In their summary, they
criticize the frameworks for using different methodologies, measures, and datasets,
which makes it difficult to assess the performance of each single system. Furthermore,
they mention that the used datasets were mostly quite small, making it impossible to
make predictions of the scalability of the approaches. For the future, they see a strong
need for standardized benchmarks for entity matching. This observation agrees with
Neiling et al. who discuss the properties of an object identification test database and
recommend quality criteria [Neiling et al. 2003]. A duplicate detection benchmark for
XML (and potentially relational) data is proposed by Weis et al. [2006]. All three pa-
pers have in common that they emphasize the necessity of publicly available datasets
that can be used for evaluation and thus make the comparison of results possible.
Hassanzadeh et al. use the Stringer framework to compare different duplicate-
clustering algorithms, and they use generated datasets, because for a thorough evalua-
tion, it is necessary to have datasets for which the actual truth is known [Hassanzadeh
et al. 2009]. An annealing standard meets this requirement even for real-world
datasets.

Iterative Classification. There is a variety of techniques and systems that manage
changes in classification and disagreement among annotators. These systems share
traits of the approach presented here. Supervised information retrieval and machine
learning algorithms rely on a feedback loop [Salton and Buckley 1997]. The classifica-
tion result in one stage is evaluated and influences classification in further stages. In
the annealing standard, feedback (manual inspection) is also used, but it is not em-
ployed to improve further classification (a classifier is assumed as given and fixed) but
to increase the quality of the annealing standard itself.

Learn++ is an algorithm that allows the introduction of new classes during clas-
sification without the need for catastrophic forgetting of the model built up to this
point [Polikar et al. 2001]. In the field of ontology annotation, the classification of more
and more items from a corpus implies/requires the change of the ontology [Erdmann
et al. 2000; Simov et al. 2007]. Some concepts are left out, others are refined, and new
subconcepts are introduced. The result is a “hardened” ontology.

In terms of minimizing the (costly) manual effort, Forman proposes incremental re-
training after each manual inspection [Forman 2002]. This procedure is hoped to en-
sure that only the most promising elements are classified. However, in our approach,
all classification is already done when it comes to evaluating the results and construct-
ing the annealing standard.

All mentioned contributions have in common that they improve classification effi-
ciency, effectiveness, and capabilities. This article aims to efficiently create a near gold
standard that can be used for benchmarking existing classifiers. Of course, a bench-
mark and gold standard may indirectly improve new classifiers by serving as a training
set for humans and computers.

Ensemble Learning. In the case of using several classifiers for a static dataset—in
contrast to iterative classification—ensemble techniques combine the classifiers/their
models to create a new, improved classifier.

With bootstrap aggregation (bagging), several classification models are trained on
different subsets of the data [Breiman 1996]. These models are then combined to create
a model that is not prone to overfitting on the dataset. Boosting is a supervised tech-
nique to run another classifier on the items misclassified by a former classifier [Freund
and Schapire 1996]. In contrast, we let several classifiers run on the entire dataset at
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5:6 T. Vogel et al.

the same time; misclassifications are identified afterwards. RISE is a rule generaliza-
tion algorithm that takes a set of rules and subsequently merges them as long as these
merges do not reduce the overall accuracy [Domingos 1996]. To perform these gener-
alization operations, RISE relies on a training set with correct classification, that is, it
is a supervised approach.

We, however, do not aim for manipulating the classifiers or their models. We treat
them as black boxes and do not make any assumptions on which algorithm was used;
the classifiers might even employ unsupervised methods. In particular, we need not
know their precision or recall; boosting is thus not applicable. Instead, we solely oper-
ate on the classification result. Consequently, we do not have any models to merge and
we cannot rerun the classifiers on subsets of the dataset. Finally, our overall goal is not
to build or improve classifiers, but to create a standard to benchmark these classifiers.

Duplicate Detection Evaluation Measures. Christen and Goiser give an overview of
quality measures for data linkage [Christen and Goiser 2007]. The measures, for ex-
ample, precision, recall, and F1-measure (in the following just called F-measure), are
calculated based on classified record pairs that are compared with the real world. Be-
sides the pairwise comparison approach, there is also the cluster-level approach, which
uses the similarity of clusters to evaluate duplicate detection results. Cluster F1 (cF1)
is the harmonic mean of cluster precision cP (ratio of completely correct clusters and
the total number of retrieved clusters) and cluster recall cR (portion of true clusters
retrieved) [Huang et al. 2006]. Another metric is the K measure, which is the geo-
metric mean between the average cluster purity (i.e., purity of the generated clusters
with respect to the reference clusters) and the average author purity8 (i.e., reflects how
fragmented the generated clusters are in comparison to the reference clusters) [Cota
et al. 2007]. Another measure, proposed by Menestrina et al. [2010], is the generalized
merge distance (GMD) that can be configured with different cost functions for split and
merge steps.

All these measures, regardless of whether they are a pairwise comparison or cluster-
level approach, have in common the necessity for a gold standard that defines which
records represent same real-world entities.

3. DIFFERENT TYPES OF STANDARDS

In this section, we give an overview of the different standards to evaluate duplicate
detection results and additionally define the new annealing standard. The standards
differ regarding the completeness and correctness of the duplicates and the required
manual effort.

3.1. Gold Standard

In a gold standard, all duplicates are known, and thus, we also know all real-world
entities that are only represented by a single record.

Definition 3.1 (Duplicates). A duplicate is a pair of distinct records that represent
the same real-world entity. All other pairs of distinct records are nonduplicates.

We assume for all duplicates and nonduplicates
〈
rj, rk

〉
that j < k. This serves two

purposes: First, we do not want to reward algorithms for finding the tautology
〈
rj, rj

〉
.

Second, we do not want to reward algorithms for finding both
〈
rj, rk

〉
and

〈
rj, rk

〉
. In

8In this case, the authors complies with a cluster in the gold standard.
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Table I. Acronyms and Abbreviations

Acronym Meaning〈
rj, rk

〉
A pair of records that might be either a declared duplicate or
nonduplicate.

G A gold standard consists of duplicates DG and nonduplicates NG and
is correct and complete.

S A silver standard is a subset of a gold standard and consists of du-
plicates DS and nonduplicates NS . Therefore, is correct but maybe
not complete. In our case, those pairs are manually inspected.

A An annealing standard consists of undisputed duplicates DA and
nonduplicates NA and a silver standard S.

D{G|S|A} All duplicates that are in the gold/silver/annealing standard.
N{G|S|A} All nonduplicates that are in the gold/silver/annealing standard.

T P{G|S|A} A declared duplicate that is correctly classified (according to the
gold/silver/annealing standard).

T N {G|S|A} A declared nonduplicate that is correctly classified (according to the
gold/silver/annealing standard).

FN {G|S|A} A declared nonduplicate that is actually a duplicate (according to
the gold/silver/annealing standard).

FP{G|S|A} A declared duplicate that is actually a nonduplicate (according to the
gold/silver/annealing standard).

addition, this constraint reduces the size of the gold and silver standards and serves
notational simplicity.

Given a set of duplicates, we can calculate the transitive closure to create clusters
with records that represent the same real-world entity.

Definition 3.2 (Cluster). A cluster c is a set of records rj ∈ R that are pairwise
duplicates, that is, all records in c represent the same real-world entity.

With these definitions, a set of records R can be clustered into a set of disjoint clus-
ters C = {c1, . . . , cm}. Note that a cluster resulting from an actual classifier does not
necessarily contain all records that represent a particular real-world entity (duplicates
might be missing in the set of duplicates). In particular, several separate clusters could
contain records that represent the same real-world entity, but the algorithm was un-
able to find the connecting duplicate relations

〈
rj, rk

〉
(rj ∈ cx �= cy � rk) between them.

We define gold and silver standards using sets of duplicates and nonduplicates. In
general, a set D contains all (known) duplicates, and a set N contains all (known)
nonduplicates. D and N are always disjoint and together contain all possible pairs of
records in R. Usually, N is much larger than D.

Definition 3.3 (Gold Standard). A gold standard G for a set R of records is defined
as G = {DG ,NG}, where the set DG contains all duplicates and the set NG contains all
nonduplicates. The sets DG and NG are disjoint, and each pair of records in R appears
in one of the sets.

According to this definition, all duplicates are known and correct. Thus, using
the transitivity property of duplicity finds no additional duplicates. As mentioned in
Section 2, some evaluation measures require a gold standard that consists of record
pairs, and some require clusters. Both representations are equivalent: clusters can be
used to generate record pairs, and vice versa record pairs can be used to generate
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5:8 T. Vogel et al.

Fig. 1. Evaluation based on a gold standard.

clusters. Thus, it does not matter whether a gold standard is given as sets of record
pairs or as sets of clusters. This definition also agrees with Bilenko and Mooney
[2003b], who describe a gold standard as a set of equivalence classes, where each equiv-
alence class contains the records of a particular entity and all duplicate records are
identified.

Table I shows the acronyms and abbreviations used throughout the article for refer-
ence. Some terms are introduced later.

For real-world datasets, a gold standard is created by manually inspecting all possi-
ble record pairs. As the complexity for this inspection is quadratic, it is only feasible for
smaller datasets. For synthetic data, the duplicates and the gold standard can be gen-
erated, often by polluting records. However, this approach raises the problem that two
polluted records might be so similar that even domain experts would classify this pair
as duplicates although they are not. Thus, the generated gold standard would not be
complete. For the evaluation of algorithms that select candidate pairs for comparison,
Whang et al. use an exhaustive comparison with a classifier to define a “gold stan-
dard” [Whang et al. 2009]. As there is a high probability that some pairs are classified
incorrectly, such a “gold standard” does not comply with our definition.

Evaluation with Gold Standard. Having a gold standard, it is possible to measure
key figures, such as precision and recall, because we know the duplicates and all of
them are correct. Precision is defined as the fraction of correctly classified duplicates
(true positives, T PG) and all classified duplicates (true positives and false positives,
T PG ∪FPG). Intuitively, precision is a measure for the correctness of the result. Recall
on the other hand is a measure for the completeness of the result. It is defined as
the fraction of correctly classified duplicates and all real duplicates within the gold
standard (true positives and false negatives, T PG ∪ FNG). Thus, we have

Precision = T PG
T PG ∪ FPG

, (1)

Recall = T PG
T PG ∪ FNG

. (2)

Figure 1 shows the evaluation as a Venn-diagram. Among all pairs, some are known
to be duplicates according to the gold standard, and some pairs are declared to be
duplicates by a classifier. A gold standard is the best way to evaluate a classifier, be-
cause it gives exact numbers for precision and recall and it is also very easy to apply.
However, the creation of a gold standard is very costly or even infeasible for larger
datasets.

ACM Journal of Data and Information Quality, Vol. 5, Nos. 1–2, Article 5, Publication date: August 2014.
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Fig. 2. The silver standard is a subset of the gold standard.

3.2. Silver Standard

A silver standard is a subset of a gold standard. Some duplicates are known and cor-
rectly classified, but there might still be additional duplicates that are (yet) unknown.
In particular, there might be smaller or fewer clusters of duplicates in a silver stan-
dard. Additionally, a silver standard may include correctly classified nonduplicates,
which is helpful, for example, for machine learning algorithms that need positive and
negative examples.

Definition 3.4 (Silver Standard). A silver standard S for a set R of records is de-
fined as S = {DS ,NS}, where DS ⊆ DG and NS ⊆ NG .

Hence, a silver standard is correct, but usually not complete. All classified pairs
(duplicates and nonduplicates) are in accordance with the gold standard, but for some
(most) pairs, a silver standard does not state anything.

A silver standard can be created by a domain expert that manually labels a sub-
set of the record pairs as duplicate or nonduplicate. These pairs can be, for example,
randomly sampled or—to find rather hard-to-classify pairs—retrieved by applying any
known duplicate detection algorithm to produce a set of candidate pairs. If metadata
about the silver standard size in proportion to the expected number of duplicates is
available, it is possible to estimate the overall recall of a deduplication process.

Figure 2 shows the relationship between the silver and the gold standard. In ab-
sence of a known gold standard, a comparison with a silver standard classifies only a
subset of record pairs, because a silver standard is not necessarily complete. If a de-
clared duplicate is within the true duplicates or within the true nonduplicates of the
silver standard, then it can be classified as either a true positive (T PS ) or as a false
positive (FPS ). Vice versa, if a declared nonduplicate is within the true duplicates or
within the true nonduplicates of the silver standard, it can be classified to be either a
false negative (FNS ) or true negative (T NS ). For all declared duplicates and declared
nonduplicates that are not within the silver standard, we cannot make a statement
whether they are classified correctly. Thus, these record pairs should not be considered
to evaluate the duplicate detection results based on this silver standard.

Note that Figure 2 does not state that a silver standard contains false negatives
(FNS ). Instead, some classifier has declared a particular pair as nonduplicate, but it
is a duplicate according to the silver standard and thus this pair is a false negative.

Other definitions for a silver standard also exist in the literature: the CALBC ini-
tiative [Rebholz-Schuhmann et al. 2010] provides a large-scale biomedical text corpus
for tagged named entities. The authors name the corpus itself a silver standard, con-
taining annotations from different automatic annotation systems. The information is
added to the silver standard, if at least two annotation systems agree on it, but there
is no manual inspection.

ACM Journal of Data and Information Quality, Vol. 5, Nos. 1–2, Article 5, Publication date: August 2014.
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Another example is the BioCreative III Gene Normalization task that refers to iden-
tifying and linking gene mentions in free text to standard gene database identifiers
[Lu and Wilbur 2010]. While the gold standard consists of 50 manually annotated
documents, the so-called silver standard comprises 507 documents with automatically
detected identifiers. Only identifiers with a probability of at least 50 % were added to
the silver standard (no manual inspection). The authors report that the produced re-
sults of the task gain better results when evaluated with the silver standard than with
the gold standard, but that the relative rankings tend to be largely preserved.

Evaluation with Silver Standard. To evaluate a classifier based only on a silver stan-
dard, we try to extrapolate from the silver to the gold standard. We can calculate pre-
cision and recall similar to the gold standard if we assume that the distribution of
duplicates and nonduplicates in the silver standard is similar to that of the gold stan-
dard. Since this assumption does not always hold, we provide a better estimation for
differing duplicate distributions in the silver and gold standards. To estimate precision
and recall for the silver standard, we need to estimate the following parameters.

— Overall Amount of Duplicates. We need an estimation of the assumed amount of
duplicates in the complete dataset as the parameter π ≈ |DG |. This parameter can
be used to calculate the completeness of the silver standard regarding the amount of
duplicates. An estimation needs to take into account knowledge about the creation
of the silver standard as well as the overall quality of the dataset.

— Correctness of Missing (Non)Duplicates. Since the silver standard may be an arbi-
trary subset of the overall set of pairs, we cannot infer the correctness of the miss-
ing pairs from the silver standard. Thus, we estimate the classifier’s correctness
regarding missing duplicates with the parameter φD and the correctness regarding
missing nonduplicates with the parameter φN . Usually, we expect φN to be much
higher than φD, since in general, nonduplicates are much more obvious than dupli-
cates. The correctness of the classifier on the silver standard’s pairs may be a helpful
indicator for estimating φD and φN .

With these parameters, we can calculate estimated numbers of correctly or wrongly
detected duplicates as follows.

˜|T PG | = |T PS | + φD(π − |DS |), (3)
˜|FPG | = |FPS | + (1 − φN )(|R| − π − |NS |), (4)
˜|FNG | = |FNS | + (1 − φD)(π − |DS |). (5)

We can use these estimations to calculate precision and recall on the complete
dataset using Formulas (1) and (2) in Section 3.1.

While the creation of a smaller silver standard requires less resources than the
gold standard, the parameter estimations make the application of the silver standard
nontrivial. Thus, in the next section, we describe our novel annealing standard that is
inexpensive to create and can be applied almost as easily as a gold standard.

3.3. The New Annealing Standard

In many cases, neither a silver nor a gold standard are available. What is known are
the best effort results of a duplicate detection experiment. We call this the baseline. It
consists of pairs of records where each pair is declared either as duplicate or as nondu-
plicate. All other pairs that are not explicitly classified are implicitly nonduplicates.
Most likely, precision and recall are not perfect. Yet the idea of the annealing standard
is to establish those results as a baseline against which other experiments (different
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Fig. 3. In absence of a gold standard, the annealing standard takes its role.

algorithm/different similarity-measure) can evaluate and which other experiments can
improve upon.

Definition 3.5 (Annealing Standard). The annealing standard A for a set R of
records is defined as A = S ∪{DA,NA}, where S is the silver standard just defined, DA
is a set of potential duplicates, and NA is a set of potential nonduplicates. All four sets
(DS , NS , DA, NA) of A are mutually disjoint.

The set DA of potential duplicates contains all pairs that are classified as duplicates
within a duplicate detection experiment but have not yet been manually inspected.
Vice versa, the set NA of potential nonduplicates contains all pairs that are classi-
fied as nonduplicates within a duplicate detection experiment. Pairs that underwent
a manual inspection are contained either in DS or NS if the expert labeled them as
duplicates or as nonduplicates, respectively. Figure 3 shows the role of the annealing
standard as a replacement of the gold standard.

Example. Let a dataset R = {a, b, c, d, e, f , g, h} and two classification results with
the declared duplicates {〈a, b

〉
,
〈
c, d

〉} and {〈a, b
〉
,
〈
e, f

〉}, where manual inspection reveals
that

〈
c, d

〉
is a duplicate and

〈
e, f

〉
is a nonduplicate. The pair

〈
a, b

〉
is undisputed among

the two classifiers and thus located in DA.
〈
c, d

〉
is member of DS and

〈
e, f

〉
is contained

in NS . See Section 4 for an extended explanation of this example, including the devised
workflow.

Note that DA is transitively closed, because it is directly derived from the undisputed
decisions within the (transitively closed) classification results. DS is not transitively
closed, because it contains only genuinely manually inspected pairs. With respect to
the files we provide (see Section 5.4) we leave it to the user to create transitive clo-
sures and to tag inferred edges. All inferred edges have then neither been manually
inspected nor did all classifiers agree on them being duplicates.

Evaluation with Annealing Standard. To calculate precision and recall with the an-
nealing standard, we assume that the sets DA and NA contain correctly classified
duplicates and nonduplicates, respectively. Thus, we can use the Formulas 1 and 2 in
Section 3.1 using the following estimations, which estimate not only the size of the
three estimates, but also their prospective contents.

T̃ PG = T PS ∪ T PA, (6)
F̃PG = FPS ∪ FPA, (7)
F̃NG = FNS ∪ FNA. (8)
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Table II. Classified Record Pairs

ID1 ID2 Duplicate Version
1 2 True 1
7 10 False 2

. . . . . . . . . . . .

Table III. Data Model Metadata

Version Date Author #Added pairs #Inspected pairs #Changed pairs
1 2013-05-30 John 100 0 0
2 2014-05-10 Peter 30 50 15

. . . . . . . . . . . . . . . . . .

Data Model. An annealing standard is incrementally improved in the course of time.
With each new classification result, a new version of the annealing standard is created.
The differences between the previous annealing standard and the results have to be
inspected manually. Thus, each version is an improvement of the previous one until
all possible pairs are inspected manually. In this case, the annealing standard has
been converted into a gold standard. To make differences between different annealing
standard traceable, all pairs in the annealing standard are tagged with a version label,
indicating the annealing standard version of the last change for this pair.

Tables II and III describe the data model of the annealing standard. Table II shows
the classified record pairs with {id1, id2} as primary key. Additionally, we need a con-
straint id1 < id2 to ensure that a record pair is not inserted twice with swapped IDs.
All record pairs are classified as duplicate or nonduplicate, and the attribute version
contains information when a record pair was inserted or its duplicity information was
updated the last time.

In the beginning, we have a probably high number of nonduplicates that have not yet
been inspected, and thus to save storage space, we do not save the pairs NA explicitly.
All record pairs with version = 1 are potential duplicates of the baseline classifier.
In the following iterations, the annealing standard is refined (see Section 4). In each
iteration, the differences between the current classification result and the baseline (all
inserted records and updated records) are manually checked. Thus, all records with
version ≥ 2 are the silver standard, with duplicate = true for DS and duplicate =
false for NS . As mentioned before, the potential duplicates DA are all records with
version = 1 ∧ duplicate = true, and the potential nonduplicates NA are all not included
record pairs.

Next to the table with the record pairs, there is optionally also a table with metadata
(see Table III). This table contains the change history of an annealing standard, with
the creation date and the responsible person for each version. Furthermore, it contains
the number of explicitly added record pairs, the number of manually inspected record
pairs, and the number of changed record pairs (only for changes in a pair’s duplic-
ity, not in its version). This metadata helps to explain differences between duplicate
detection experiments conducted with different versions of the same annealing stan-
dard. In the example (Table III), version 2 could have been created by merging in a
60-pair classification result (already transitively closed), where 10 pairs confirm the
current annealing standard. The remaining 50 pairs create conflicts (are inspected),
from which 30 pairs are new (added) and 20 pairs are already known, but with the
opposite duplicity statement. From these 20 pairs, 15 pairs were correct in the classifi-
cation result (according to the manual inspection and in contradiction to the previous
annealing standard) and hence, their duplicity was changed.
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Fig. 4. Workflow to create silver and annealing standards.

4. WORKFLOW FOR THE ANNEALING STANDARD

Figure 4 shows the proposed workflow for the creation and maintenance of the anneal-
ing standard. Given a dataset, preferably from a real-world setting, a baseline classi-
fier Cl0 creates an initial set of duplicate pairs. Of course, this result set may harbor
false positives and false negatives; nevertheless after copying its transitive closure it
constitutes the initial annealing standard A0.

Following the idea of annealing, results from additional classifiers are added either
sequentially or in batches to improve the current standard. Each new classifier Cli,
which can be a different configuration of a previous classifier or an entirely new clas-
sifier, produces a new set of result pairs (see lower path of Figure 4). The transitive
closure is created for these pairs, too.

4.1. Incorporating New Results into the Annealing Standard

For now we focus on sequential addition of classification results and discuss batches
in Section 4.3. The declared duplicate pairs

〈
rj, rk

〉
can be distinguished into four types

with respect to their membership in different parts of the annealing standard Ai−1.
Definition 3.5 defines an annealing standard as A = {DS ,NS ,DA,NA}.
(1)

〈
rj, rk

〉 ∈ DS . These pairs are certain true positives; their duplicity has been manu-
ally confirmed in the past.

(2)
〈
rj, rk

〉 ∈ DA. These pairs are probable true positives; they serve as further con-
firmation that they in fact are duplicates, but a manual check has not been
performed.

(3)
〈
rj, rk

〉 ∈ NS . These pairs are certain false positives; they are clear errors, because
their nonduplicate status has been manually confirmed in the past.

(4)
〈
rj, rk

〉 ∈ NA. These pairs are probably false positives; no previous classifier has yet
declared this pair to be a duplicate.

The same distinction can be made for pairs that were not declared to be duplicates
by Cli, that is, were declared nonduplicates.

(5)
〈
rj, rk

〉 ∈ DS . These pairs are certain false negatives; they are clear errors and
should have been declared as duplicates by classifier Cli.

(6)
〈
rj, rk

〉 ∈ DA. These pairs are probable false negatives; all previous classifiers have
declared this pair to be a duplicate.

(7)
〈
rj, rk

〉 ∈ NS . These pairs are certain true negatives; their nonduplicity has been
manually confirmed in the past.

(8)
〈
rj, rk

〉 ∈ NA. These pairs are probable true negatives; they serve as further con-
firmation that they in fact are not duplicates, but a manual check has not been
performed.

Pairs of types 1, 2, 7, and 8 can be ignored for now. Either they have been manually
verified as being correct (1 and 7) or as more and more classifiers are tested against
the annealing standard, the certainty of their correctness increases (2 and 8). All other
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pairs (3, 4, 5, 6) represent a conflict between the annealing standard so far and the last
classifier. Pairs of type 3 and 5 are certain classifications that reside in the silver stan-
dard. They can also be ignored for now—they constitute certain errors of the classifier.
Finally, pairs of types 4 and 6 constitute supposed errors, labeled as “Delta pairs” in
Figure 4, and shall be manually inspected. These are the pairs that contradict previous
automated classifications and that have not yet been manually checked. The expecta-
tion is that for a good current annealing standard and a good classifier the amount of
work for manual inspection is reasonable.

Any pair from DA or NA that is manually inspected and classified as duplicate or
nonduplicate is “promoted” to the silver standard, that is, either to DS or NS depending
on the expert decision. The result of this process is a new annealing standard Ai,
which typically contains a slightly expanded silver standard. The result of Cli is finally
evaluated against Ai in terms of precision, recall, and other measures.

As more and more experiments are performed, the set of manually inspected pairs
grows. It is the nature of this workflow that precisely the difficult-to-classify pairs are
those that at some point undergo a manual inspection. Those pairs that are never
manually inspected but survive their initial classification, whether as duplicates or
as nonduplicates, even after many experiments can be considered stable. In the worst
case, all pairs are manually inspected at some point, for instance when two classifiers
label every pair complementarily.

Continued Example from Section 3.3. We can now discuss a potential workflow that
leads to the creation of the exemplary annealing standard of Section 3.3. Let a dataset
R = {a, b, c, d, e, f , g, h}. In total, there are |R|·(|R|−1)

2 = 28 pairs, each of them ending
up in one of the four sets (DS , NS , DA, or NA) at the end of the workflow.

A first classifier declares
〈
a, b

〉
and

〈
c, d

〉
as duplicates. This is the baseline, and since

there cannot be any disputes at this point, both pairs are inserted into the duplicates
of the annealing standard DA. All the other 26 possible pairs, for example,

〈
e, f

〉
, are

(implicitly) declared nonduplicates and reside in the nonduplicates of the annealing
standard NA until further review is performed.

Subsequently, another classifier declares
〈
a, b

〉
and

〈
e, f

〉
as duplicates. While

〈
a, b

〉
is

confirmed (regarding the current annealing standard) and remains in DA,
〈
c, d

〉
and〈

e, f
〉
are not supported by all (two) classifiers and undergo a manual inspection. In this

example, manual inspection of both pairs reveals that
〈
c, d

〉
is actually a duplicate and〈

e, f
〉

is actually a nonduplicate. Thus,
〈
c, d

〉
is “promoted” from DA to DS , because its

duplicity has just been confirmed. In contrast,
〈
e, f

〉
is moved to NS .

Finally, DA, DS , and NS contain one pair each, whereas all the other 25 pairs are in
NA. In total, only two manual inspections were performed instead of 28.

4.2. Convergence and Manual Inspections

With each new experiment, the annealing standard converges to a gold standard, in
the meantime providing an ever-growing silver standard. Solely pairs that are so dif-
ficult to classify that no classifier has yet performed correctly remain as errors in the
annealing standard. Please note that each classifier result has to be transitively closed
before further processing (as previously described).

The manual inspection of duplicates is a key step to creating the annealing standard,
in particular because we assume manual classifications to always be correct. Thus,
only experts should perform this classification or at least clear instructions should
help the users in their classification. In general, manual classification is performed
only for the cases with differing classifier results (to reduce manual effort), but it can
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also be performed when the classifiers agree, but the objects still seem interesting or
relevant (“other interesting pairs” in Figure 4).

In some cases, manual decisions may differ depending on the interviewed expert.
For example, a news article on economic crisis may be considered as politics article
or as business article; two records from a person table with differing family names
can be regarded as duplicate or nonduplicate—both with good reasons. To resolve
these problems, two- or more-fold validation can be employed. There are elaborate
approaches to determine the needed number of classifiers and how to combine manual
decisions [Sheng et al. 2008]. In this article, we consider the manual decision process
as black box, that is, it is irrelevant how many manual classifiers have been employed
and how the decision process works. We consider only the decision at the end of this
process and store it in the silver standard part of the annealing standard (see also
Figure 3 and Table II). Similarly, we treat both the first classifier as well as the con-
secutive classifiers as black boxes and process their results only.

4.3. Saving Manual Work with Quorums and Batches

The basic workflow can be extended by adding pairs meeting a given duplicate quorum
and nonduplicate quorum directly to the annealing standard to defer and possibly save
some manual inspections. Each automatically declared duplicate is further annotated
by the number of classifiers that agree on the declaration. If the duplicate quorum is
met, the pair is considered a duplicate, even if not all classifiers agree. Analogously, if a
pair is not labeled as duplicate by enough classifiers to meet the nonduplicate quorum,
the pair is considered as nonduplicate.

The quorum can be absolute or relative and is trivially met for nonconflicting pairs.
Obviously, a pair that meets a quorum at any given time, may later still require man-
ual inspection. For example, consider a duplicate quorum of 80 %, where it is sufficient
that four out of five classifiers label a pair as duplicate. During the integration of
the first four classifiers, this quorum can be met only trivially if all classifiers agree.
When integrating the fifth classifier, no manual assessments for duplicate candidates
are necessary, because either a pair has already been manually assessed before or all
four previous classifier agreed. Thus, independent of whether the fifth classifier has
declared the pair as a duplicate or not, it is still considered a duplicate without further
manual inspection. Nevertheless, the addition of the sixth classifier might further de-
crease the support of the declared duplicate, so that only four out of six classifiers agree
and thus trigger a manual inspection.

Up to this point, we only considered the sequential addition of new classification
results. However, when multiple new classification results are to be integrated at once,
new opportunities to reduce the manual effort arise. In a batch, the results of the
classifiers and the current annealing standard are first merged to count each declared
duplicate and then the quorums are applied. In contrast to the sequential addition,
we can defer manual inspections from pairs of all new classification results likewise
and not only from the last classification result. For instance, if we use a nonduplicate
quorum of 80 % and integrate the first five classification results in a batch, we do not
need to manually assess any pair that was found by only one classifier. As can be seen
in the evaluation in Section 5.3 especially, the nonduplicate quorum helps greatly to
reduce the number of manual inspections.

5. IMPLEMENTATION AND EVALUATION

In this section, we evaluate our method with respect to two important questions:
(1) How well do evaluation results against the annealing standard converge to results
against the gold standard, that is, is an annealing standard a suitable substitute for
a gold standard? (2) How expensive is it to create a good annealing standard, that is,
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Fig. 5. Histogram of the quantized F-measures of the 35 different duplicate detection classifiers (truncated
to one decimal place).

how many manual classifications are needed? Section 5.1 describes the overall experi-
mental setup, the used dataset, and explains how our annealing standard was created.
The experimental results to answer the two questions are shown and interpreted in
Section 5.2. Section 5.3 reveals the potential to save manual inspections when using
quorums and finally Section 5.4 describes the creation of an annealing standard for a
real-world dataset.

5.1. Data and Settings

To evaluate the idea of growing an annealing standard and creating a silver standard
as a by-product, we use a customer dataset. It contains about 1 million address records
with 12 attributes. The data was artificially polluted with duplicates by a large indus-
try partner who uses this dataset as internal duplicate detection benchmark. This
gives us reason to believe that the degree and form of those duplicates is realistic. The
dataset contains about 90,000 pairwise duplicates. The gold standard is known, so our
“manual inspection” was in fact a look-up in the gold standard.

Over the past few years, this dataset was used several times for a three-day data
cleansing and duplicate detection workshop with different student teams. The task of
the student teams was to competitively find duplicates within the dataset. Using the
gold standard, precision, recall, and F-measure were calculated and compared among
the different teams. We ran this workshop several times, yielding 35 classification
results in total. The results are very precision-oriented in general with an average
precision of 83 % and an average recall of only 40 %. The resulting average F-measure
is 52 % and the best F-measure is 76 % (see Figure 5 for the distribution). Thus, the
quality of the classifiers are below typical classification results in the duplicate detec-
tion area. Nevertheless, we believe they are sufficient to evaluate the feasibility and
usefulness of the annealing standard.

We use these 35 independently created results as our classifiers. Since in real-life the
order of the duplicate detection runs is unpredictable with regard to the monotonicity
of the F-measure, we used a random order of the 35 classifiers. Note that the order
of the classification results does not influence the number of conflicts, but just the be-
havior of the F-measure. To bypass the effects of accidentally selecting a poor order,
we took 1,000 distinct random permutations of the 35 classifiers and present the av-
erage in the following figures and descriptions. The following paragraphs distinguish
individual classifiers—in reality these are the averages over the 1,000 permutations.
Referring to Figure 4, we consider the first classification result as the baseline and the
34 following as additional classification results.

There are several different metrics for evaluating such a process for creating an
annealing standard. The precision and recall of the annealing standard compared to
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Fig. 6. Precision and recall in the annealing standard.

the gold standard describe whether and how the annealing standard evolves towards
the gold standard over time.

The number of manually inspected pairs determines the amount of manual effort,
directly derived from the size of the delta between the current result and the annealing
standard so far (i.e., how many pairs have to be manually inspected). We also show the
silver and annealing standards with regard to their respective number of duplicates
and nonduplicates.

5.2. Evaluation Results

Convergence of Precision and Recall. Figure 6 shows that both precision and recall
of the annealing standard converge. In the second iteration, the precision already
achieves a value of nearly 1.0: all classified duplicates are true duplicates with regard
to the gold standard. After the first iteration, the annealing standard’s precision is
necessarily the precision of the baseline classification result. The figure further shows
that any combination of two classification results is enough to make the annealing
standard’s precision nearly perfect.

This rapid convergence comes with the price of a relatively high number of pairs that
have to be manually inspected as described later. In scenarios where only precision
needs to be evaluated and where the annealing standard is created with precision-
oriented classifiers, a few iterations suffice.

The recall continuously grows much slower and does not reach a level of 1.0 within
the 35 iterations. This is because the particular classifiers were all quite conservative
and found (over all classification results) only 86,000 of the 90,000 duplicates in the
gold standard. Obviously, the missing 4,000 duplicates are especially hard to find, not
a single classifier succeeded.

Figure 7 shows the absolute number of pairs contained in the annealing standard
classified as true/false positives as well as true/false negatives with regard to the gold
standard. The baseline (the first iteration) is successively improved towards the gold
standard with more and more manually verified pairs and a decreasing delta. The last
bar in the figure shows the convergence’s target: the gold standard.

Furthermore, the growth of the recall in Figure 6 corresponds to the growth of the
number of true positives and the reduction of the false negatives in Figure 7. Precision
in Figure 6 reaches 1.0, as soon as all false positives (red) are removed after the second
iteration.

Number of Manually Inspected Pairs. Figure 8 shows the delta size for the itera-
tions, representing the number of manually inspected pairs per iteration in linear and
in logarithmic scale, separated in pairs that would be manually classified as duplicates
and nonduplicates. In the first iterations, the classifiers find different duplicates, caus-
ing a large number of manual inspections. After a few iterations, no new duplicates
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Fig. 7. Absolute numbers of pairs in the annealing standard with regard to the gold standard. The last bar
shows the gold standard.

Fig. 8. Delta sizes in linear/logarithmic scale.

are declared, but the amount of nonduplicates remains large, compared to the num-
ber of duplicates. Every classifier generates a delta of at least 4,500 new pairs that
have never been manually inspected before. The ratio of nonduplicates to duplicates is
strongly skewed towards the nonduplicates over time.

The absolute number of necessary manual inspections is quite high for this exper-
iment: The first two classifiers disagree on about 45,000 pairs (on average); over the
course of the experiment altogether 283,000 manual inspections were needed. There
are two reasons for these large numbers. First, note that the set of classifiers are the
result of a three-day workshop with students—not those of experienced research or
industry teams. Second, the number is dwarfed by the overall number of candidate
pairs, which is n·(n−1)

2 ≈ 5.4 · 1011.
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Fig. 9. Size of the silver standard over the iterations.

Fig. 10. Number of pairs in the classification result vs. conflict vs. delta.

We reran the evaluation process with the ten best classification results in terms of
precision. The number of manual inspections significantly decreases up to 50 % for
classification results with a high precision. Nevertheless, the second iteration still re-
quired 30,000 inspections on average, because the classifiers with a high precision are
mostly quite conservative with a small recall and found very different pairs. However,
the number of nonduplicates that need to be inspected in each iteration is 3 to 4 times
lower compared to the evaluation with all classifiers.

The silver standard is an accumulation of the manually inspected pairs (i.e., the
delta) and thus, grows monotonically (Figure 9). It continuously grows while the num-
ber of found true duplicates does not change much (Figure 8). Thus, after a while
mostly nonduplicates are inserted into the silver standard and one could stop the iter-
ations earlier and save manual inspections.

Figure 10 shows the size of the conflicts (the difference between the current classifier
and the annealing standard so far) against the size of the deltas. The size of the classi-
fication results is also included for comparison. The set of pairs in the delta is a subset
of the set of pairs in the conflict. Due to the random order and their independence, the
classification result size fluctuates and no trend can be observed.

The number of conflicting pairs slowly increases, because the silver standard incor-
porates more and more hard-to-classify pairs over time. These pairs are misclassified
by most of the classifiers and can only be detected as soon as one classifier decides
correctly and the manual inspection confirms the new classification. This manually
confirmed classification improves the quality of the silver standard: from now on, this
common misclassification is detected and thus, the conflict size of the following classi-
fiers is increased.
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Fig. 11. Number of duplicates and nonduplicates for silver standard and number of duplicates for annealing
standard.

Since the silver standard is empty in the beginning, the conflict size equals the delta
size in the second iteration. Beginning with the third iteration, only misclassifications
of the new classifier and misclassifications that all previous classifiers have done, are
in the set of conflicts.

The delta is smaller, since it does not comprise those pairs (type 3 and 5) that con-
tradict with the silver standard but only those that contradict the baseline prediction
(type 4 and 6) and have to be classified manually, subsequently.

Figure 11 shows the changes of the sizes of the three sets DS , NS , and DA. The size
of DS and NS after the first iteration is zero, because at this point no pairs can have
been manually checked.

The number of duplicates in the annealing standard (DA) starts with the number
of duplicates declared by the baseline classifier. Consecutively, some of these decisions
are revoked by further classifiers and thus, pairs move into the silver standard (DS
or NS ). Only a few pairs in DA survive all iterations and are never questioned. These
duplicates seem to be found very easily. Note that no statement is made about whether
those pairs actually are duplicates.

The nonduplicates in the annealing standard (NA) initially start with about 540 bil-
lion, but some pairs are actually duplicates or different classifiers disagree upon their
correct classification. They are consequently removed from NA and fed into DS or NS .
Nevertheless, the size of NA remains almost constant in respect to its size and would
be out of range of Figure 11 and is therefore omitted.

As a large portion of duplicates according to the gold standard are found, DS con-
verges against the total number of duplicates. NS also steadily increases but achieves a
larger momentum than DS in the end as the deltas of the classification results contain
more and more nonduplicates (Figure 8).

As a conclusion, an annealing standard can be created, but the manual effort is still
large, because even a single poor classifier can boost the amount of manual work. In
the following, we alleviated such effects with quorums.

5.3. Quorums and Batch Updates

In an additional experiment, we first examined how many classifiers declared the
same duplicates and how many of these duplicates are indeed true positives. Second,
we evaluated how duplicate and nonduplicate quorums (see Section 4.3) impact the
amount of manual work needed.

Figure 12 shows that most declared duplicates have very little support: 57 % of the
overall 283,000 declared duplicates have been found by only one classifier. Similarly,
most of the remaining declared duplicates were found by two and three classifiers.
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Fig. 12. Number of duplicate declarations for the same pair and classification correctness.

Fig. 13. Effect of nonduplicate quorum on recall, precision, and F-measure.

Additionally, there are only ≈5,000 real duplicates among these seldom found declared
duplicates; most of them were false positives.

Consequently, with a nonduplicate quorum, we can greatly reduce the number of
comparisons. A quorum of 35 represents the baseline and results in 283,000 compar-
isons. By reducing the quorum by 1 to 34, we already save 166,000 comparisons (57 %).
A quorum of 33 yields in a total of 90,000 and a quorum of 32 in 78,000 comparisons.
The majority of these comparisons are false positives; however, we also lose roughly
5,000 true positives for each step that we decrease the quorum.

We thus measured the impact of absolute nonduplicate quorums on the overall qual-
ity of the annealing standard in Figure 13. Obviously, the recall monotonously drops
if we increase the nonduplicate quorum, because fewer pairs are even considered to
be duplicates altogether. However, at the same time, fewer false positives need to be
manually assessed and corrected. Thus, depending on the domain, recall and precision
need to be traded, which we did with the well-established F-measure.

A nonduplicate quorum of 35 represents the baseline: the declaration of one classifier
is already enough for a pair to be a potential duplicate causing manual assessment.
However, only 33 % of the declared duplicates are true positives with a recall of 96 %.
A nonduplicate quorum of 34 would ignore all declared duplicates with a support of
one and significantly improve the precision to 71 % and yield a recall of 90 %. Using
F-measure, the sweet spot for this dataset and the given classifiers is a nonduplicate
quorum of 2 (precision 85 %, recall 84 %).

Similarly, a duplicate quorum could help save some manual work. All 18,072 pairs
that were labeled by at least 26 classifiers as duplicates have indeed been true posi-
tives. Even if only 17 of the 35 classifiers agreed, only 30 of the 41,487 declared posi-
tives were false, yielding a high precision of 99.93 %.
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Finally, this mechanism could also be employed to tell poor classifiers apart: For
each pair that bypasses the manually inspection due to only few disagreeing classi-
fiers, we can note the classifiers that disagree and eventually identify poor-performing
classifiers.

5.4. Real-World Annealing Standard

We ran the annealing standard workflow in a real-world setting using a larger sample
of CD information from the freeDB project (see Section 1.1): 750,000 CD entries com-
prising information about artist, title, genre, release year, track lists, etc. Four of the
authors each developed a classifier to identify duplicates.

Together, the classifiers found about 134,000 duplicate clusters with 366,000 nodes.
Next to the manual inspections to decide on disputed edges, we additionally manually
falsified the clusters that contained “unknown artist” or “unknown title” CDs, making
use of the “other interesting pairs” feature in Figure 4. In total, we performed
1,648 manual inspections. Eventually, we present a consistent, reasonably-sized set
of files: an annealing standard (containing all agreed pairs), a silver standard (con-
taining all manually inspected pairs), the dataset, and the four classifications. You
can find them on our webpage at http://www.hpi.uni-potsdam.de/naumann/projekte/
annealing standard.html.

6. CONCLUSIONS & OUTLOOK

With the proposed annealing standard, we provide an approach for creating a valu-
able, high quality standard for even large datasets that can be used as a classification
benchmark. We have discussed and experimentally evaluated this approach for the
duplicate detection domain.

With each new evaluated classifier, a new version of the annealing standard is cre-
ated. Thus, it is not possible to compare results like precision, recall, and F-measure
with classifiers that used a previous version of the annealing standard. To use an an-
nealing standard as a benchmark dataset, it has to be frozen at some point in time. As
we could see from the experimental evaluation, the annealing standard is highly de-
veloped after a certain number of iterations. Freezing an annealing standard does not
mean that there is no more manual inspection necessary. While the frozen annealing
standard can be used as benchmarking dataset, the annealing standard can be further
improved to obtain a better benchmarking dataset at a later point in time.

A critical step in the creation of an annealing standard is the (black-box) manual
inspection, which faces two challenges.

Quality of Manual Inspection. Although manual inspection should be conducted by
a domain expert, there is still the chance of an incorrectly inspected pair. As the in-
spected pairs are part of the silver standard and thus no longer part of the delta, they
will not be checked again and might indicate incorrect results for future classifiers.
This is not only a problem of the annealing or silver standard, but concerns also ex-
isting gold standards. A solution might be the requirement that within each iteration
the delta has to be inspected by more than one domain expert. This helps to increase
the confidence in the inspected pairs. A second solution is to resubmit pairs for man-
ual inspection, if after a manual inspection several classifiers return a contrary result.
A straight-forward implementation would treat human inspections as an additional
classifier with higher weight and form a feedback loop that resubmits pairs if they do
not meet the duplicate and nonduplicate quorums.

Workload for Manual Inspection. Especially for the first iterations, a relatively high
number of manual inspections is necessary. For this task crowd-sourcing services,
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such as Amazon Mechanical Turk,9 are an alternative for reducing the required time
[Paolacci et al. 2010; Welinder et al. 2010]. This has already been evaluated for anno-
tation tasks, but raises again the question of how trustworthy the results are [Snow
et al. 2008]. A high workload is expected if the results of a poor quality classifier are
evaluated with the annealing standard. To allow only useful classifiers to contribute
to the annealing standard, there could be a restriction that only classifiers with a
score > 95% F-measure with the silver standard (or some other a-priori knowledge
of their quality) are accepted to avoid unworthy manual inspections. Finally, a more
sophisticated approach beyond our current quorum-technique (possibly weighted by
dynamically determined classifier quality) could further reduce the number of manual
inspections.

An interesting direction of future research would be to merge the annealing stan-
dard with active learning methods. Both approaches aim to reduce manual effort. A
unified approach would require manual classification decisions for both objects that
were classified with low confidence (active learning) and objects that were classified
differently by at least two classifiers (annealing standard). We expect the labeled data
to be of higher quality for both training and evaluating classifiers. Note that while the
annealing standard is a black-box approach regarding the classifiers, active learning
(and thus a unified approach, too) depends on internals of the classifiers to determine
which objects to label next.

For the future, we also plan to evaluate our approach with more real-world datasets
and for other classification domains, such as classifying spam emails. Another research
topic is the determination of parameters φD and φN as described in Section 3.2, to esti-
mate the correctness of missing duplicates and missing nonduplicates within the silver
standard. To reduce the workload for the manual inspection for classifier developer, we
are planning to evaluate crowd-sourcing possibilities and configurations. Finally, we
would like to provide an annealing standard system that allows the administration of
different annealing standard versions for different datasets or corpora.
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