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1. Empirical and experimental
2. Theoretical
3. Computational
4. Data-intensive
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The Fourth Paradigm of Science

We have to do better producing tools to support the 
whole research cycle - from data capture and data 

curation to data analysis and data visualization. Jim Gray



1. Data Science
2. Big Data
3. Data Profiling
4. Data Preparation
5. Data Cleaning

Overview
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■Drivers
□Cloud computing
□ Internet of services
□ Internet of things
□Cyberphysical systems

■Underlying trends
□Connectivity
□Collaboration
□Computer generated data

More and more data are available 
to science and business

video streams
web archives

sensor data

audio streams

RFID data

simulation data

Government data



Domain 
Knowledge

Data
Science

Control Flow
Iterative Algorithms

Error Estimation
Active Sampling

Sketches

Curse of Dimensionality

Decoupling

Convergence

Monte Carlo

Mathematical Programming

Linear Algebra

Stochastic Gradient Descent

Statistics

Data Obfuscation

Parallelization

Query Optimization

Visual Analytics

Relational Algebra / SQL 

Scalability

Data Analysis Languages

Fault Tolerance

Memory Management

Memory Hierarchy

Data Flow

Information Extraction

Indexing

RDF / SparQL

NF2 /XQuery
Data Warehouse/OLAP

“Data Scientist” – “Jack of All Trades!

Domain Expertise (e.g., Industry 4.0, Medicine, Physics, Engineering, Energy, Logistics)

Real-Time

Information Integration

Text Mining
Graph Mining
Signal Processing

Business Models
Legal Aspects

Privacy

Security

Regression

Machine Learning

Predictive Analytics
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■ Prediction
□Weather, natural disaster, predictive maintenance, disease

■Optimization
□ Planning, traffic, logistics, machine efficiency, site selection

■ Individualization
□Digital health and personalized medicine, personalized learning, 

recommendations
■Comfort
□Sharing, smart home, authentication (face, gait)
□Happiness: HappyDB – a database of happy moments
□Autonomous vehicles

■ Intelligence
□ Fraud detection, translation, gaming
□Robotics
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Positive Uses of Big Data

https://unsplash.com/photos/JfolIjRnveY



■ Invading lives
□ Tracking persons: 

– Direct: GPS location tracking
– Indirect: face recognition / surveillance

□ Tracking behavior: social networks, sensors, smart homes
■ Classifying individuals
□ Behavior prediction
□ Crime prediction
□ Social Scoring

■Misinformation
□ Filter bubble
□Manipulating/inflaming opinion

■ Intervention
□ Restricting free movement
□ Censorship
□ Autonomous drones

Felix Naumann                         
Data Science 2019

10

Questionable Uses of Big Data

https://unsplash.com/photos/fPxOowbR6ls



Data Science Pipeline
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Capture

Extraction

Curation Storage

Search

Sharing Querying

Analysis

Visualization

Data Engineering Data Science
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Volume
■Size of dataset
Velocity
■Speed at which data arrives and 

must be processed
Variety
■Different data modalities, models, 

schemata, semantics
Veracity
■Data quality: Correctness, 

completeness, consistency, up-to-
dateness, etc.

Viscosity
■ Integration and dataflow friction
Venue
■ Different locations that require 

different access & extraction methods
Vocabulary
■ Different language and vocabulary
Value
■ Added-value of data to organization 

and use-case
Virality
■ Speed of dispersal among community
Variability
■ Data, formats, schema, semantics 

change
Volatility, vagueness, validity, 
visualization, …
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Gartner’s 3 (+ 1) V’s – Properties of Big Data



Military Projection of Sensor Data Volume (later refuted)
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250 TB
12 TB

GIG Data Capacity (Services, Transport & Storage)

UUVs

2000 Today 2010                        2015 & Beyond

Theater Data Stream (2006):
~270 TB of NTM data / year
Example: 
One Theater’s 
Storage 
Capacity:

2006 2010

1018

1012

1024

Yottabytes

Exabytes

Terabytes

1015

Petabytes

1021

Zettabytes

FIRESCOUT VTUAV DATA

Bob Gourley: Thoughts on the future of Information Sharing Technology

153 hard disks
per person on 

the planet



■Aggregation: Calculate statistics
□Sum of sales, average cheese consumption (per state) 

■Data mining: Identify useful rules
□35% of all customers who bought X, also bought Y 

(X=beer and Y=diapers)
■Clustering: Group similar items
□Cluster patients into 10 groups based on a similarity 

measure (age, weight, income …)
■Classification: Organize items into a set of known groups based on similarity
□Assort products into categories
□Collaborative filtering (for movies)

■Machine learning: Generalization of all of the above
□Build a model that explains the data (for a given target dimension)
□Apply the model to new data items to find out target dimension value
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Abridged History of Big Data Analytics



■Sophisticated models need many input 
dimensions
□ Few dimensions for spam filtering
□Tens of dimensions for intrusion detection
□Hundreds of dimensions for user classification
□Thousands of dimensions to understand text

■… and have many model parameters.

■Need at least as many input 
data items as parameters
□ Labeled spam emails
□Annotated log entries
□Detailed user profiles
□Sample texts

Appetite for Training Data
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■The End of Theory: The Data Deluge Makes the Scientific Method Obsolete 
(Chris Anderson, Wired, 2008)
□All models are wrong, but some are useful.  (George Box)
□All models are wrong, and increasingly you can succeed without them. 

(Peter Norvig)
■Before Big Data: Correlation is not causation!
■With Big Data: Who cares? 
□Traditional approach to science — hypothesize, model, test — is becoming 

obsolete.
□ Petabytes allow us to say: “Correlation is enough.”
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Big Data = Science?

http://www.wired.com/s
cience/discoveries/maga
zine/16-07/pb_theory

vs.

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg https://www.flickr.com/photos/seattlecitycouncil/39074799225/



Correlation vs. Causation

Felix Naumann                         
Data Science 2019

18



■Maximal speedup is determined by non-parallelizable part of program: 

□ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 1
1−𝑓𝑓 + �𝑓𝑓 𝑝𝑝

□p processors
□ f parallelizable 

fraction

Felix Naumann                         
Data Science 2019

19

Parallelization obstacle: Ahmdahl‘s Law



Distribution Obstacle: CAP Theorem
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Choose 
any Two

Consistency

AvailabilityPartition 
Tolerance

DNS, Cloud
Computing

Distributed
DatabasesGlobal Banking
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■Data profiling refers to the activity of creating small but informative 
summaries of a database.

Ted Johnson, Encyclopedia of Database Systems

■Extracting metadata from given data
□Basic statistics and histograms
□Datatypes
□Key and foreign keys
□Dependencies and rules

■Data profiling is first step in any data management task
□ “What shape does my data have?”
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Definition Data Profiling



■Statement about the distribution of first digits d in (many) naturally 
occurring numbers:
□𝑃𝑃 𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑑𝑑 + 1 − 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑙𝑙10 1 + ⁄1 𝑑𝑑
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Benford Law Frequency , a.k.a. “first digit law”
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■ Surface areas of 335 rivers
■ Sizes of 3259 US populations
■ 1800 molecular weights
■ 5000 entries from a mathematical handbook
■ 308 numbers in an issue of Reader's Digest
■ Street addresses of the first 342 persons listed 

in American Men of Science
■ Powers of 2: 2𝑛𝑛
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Examples for Benford‘s Law

Heights of the 60 tallest structures

http://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures_in_the_world#
Tallest_structure_by_category
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detection



Felix Naumann                         
Data Science 2019

25



Detecting Unique Column Combinations (aka. keys)

Felix Naumann                         
Data Science 2019

26A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABDABE ACD ACEADE BCD BCE BDE CDE

ABCDABCE ABDE ACDE BCDE

ABCDE
minimal 
unique

unique

maximal
non-unique

non-unique



Large search space: 2𝑛𝑛 − 1
Large solution space: 

𝑛𝑛
𝑛𝑛/2
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8 columns

9 columns

10 columns
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Candidate Set Growth for Unique Column Combinations

Total
: 1 3 7 15 31 63 127 255 511 1,023 2,047 4,095 8,191 16,383 32,767

15 1
14 1 15
13 1 14 105
12 1 13 91 455
11 1 12 78 364 1,365
10 1 11 66 286 1,001 3,003
9 1 10 55 220 715 2,002 5,005
8 1 9 45 165 495 1,287 3,003 6,435
7 1 8 36 120 330 792 1,716 3,432 6,435
6 1 7 28 84 210 462 924 1,716 3,003 5,005
5 1 6 21 56 126 252 462 792 1,287 2,002 3,003
4 1 5 15 35 70 126 210 330 495 715 1,001 1,365
3 1 4 10 20 35 56 84 120 165 220 286 364 455
2 1 3 6 10 15 21 28 36 45 55 66 78 91 105
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of attributes: mN
um

be
r o

f l
ev

el
s:

 k

UCCs



■ „X → A“ is a statement about a relation R
□When two tuples have same value in attribute set X, 

they must have same values in attribute A.
□ I.e., for all tuples t1,t2∈R: t1[X]=t2[X] ⇒ t1[A] = t2[A]
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Functional Dependencies

Game of Dependencies

Spoiler alert for Season 1

https://www.flickr.com/photos/bagogames/16632632814/



Functional Dependencies
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HairLineagePerson Religion

New gods

New Gods

New gods

Old gods

Some Functional Dependencies:

1. Person  Lineage
2. Person  Hair
3. Person  Religion
4. Lineage  Hair
5. Religion, Hair  Lineage
6. …

Ned Stark: „Number 4 looks like 
a reasonable quality constraint“

New gods

Ned Stark: „I believe Joffrey
violates my database constraint.“
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Candidate Set Growth for Functional Dependencies

Total: 0 2 9 28 75 186 441 1,016 2,295 5,110 11,253 24,564 53,235 114,674 245,745

15 0

14 0 15

13 0 14 210

12 0 13 182 1,365

11 0 12 156 1,092 5,460

10 0 11 132 858 4,004 15,015

9 0 10 110 660 2,860 10,010 30,030

8 0 9 90 495 1,980 6,435 18,018 45,045

7 0 8 72 360 1,320 3,960 10,296 24,024 51,480

6 0 7 56 252 840 2,310 5,544 12,012 24,024 45,045

5 0 6 42 168 504 1,260 2,772 5,544 10,296 18,018 30,030

4 0 5 30 105 280 630 1,260 2,310 3,960 6,435 10,010 15,015

3 0 4 20 60 140 280 504 840 1,320 1,980 2,860 4,004 5,460

2 0 3 12 30 60 105 168 252 360 495 660 858 1,092 1,365

1 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of attributes: m

N
um

be
r o

f l
ev

el
s:

 k

FDs



Linking up millions of web tables with inclusion dependencies

35
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Candidate Set Growth for Inclusion Dependencies
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Total: 0 2 6 24 80 330 1,302 5,936 26,784 133,650 669,350 3,609,672 19,674,096 113,525,594 664,400,310

15 0

14 0 0

13 0 0 0

12 0 0 0 0

11 0 0 0 0 0

10 0 0 0 0 0 0

9 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 17,297,280 259,459,200

6 0 0 0 0 0 0 665,280 8,648,640 60,540,480 302,702,400

5 0 0 0 0 0 30,240 332,640 1,995,840 8,648,640 30,270,240 90,810,720

4 0 0 0 0 1,680 15,120 75,600 277,200 831,600 2,162,160 5,045,040 10,810,800

3 0 0 0 120 840 3,360 10,080 25,200 55,440 110,880 205,920 360,360 600,600

2 0 0 12 60 180 420 840 1,512 2,520 3,960 5,940 8,580 12,012 16,380

1 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of attributes: m

N
um

be
r o

f l
ev

el
s:

 k

INDs



■Efficient profiling
■Scalable profiling
■Holistic profiling
■ Incremental profiling
■Temporal profiling
■ Profiling query results
■ Profiling new types of data

■Hundreds of UCCs – which ones are keys?
■Thousands of FDs – which ones are true?
■Millions of INDs – which ones are foreign keys? Felix Naumann                         

Data Science 2019
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Profiling Challenges



■Query optimization
□Counts and histograms, functional dependencies, …

■Data cleansing
□ Patterns, rules, and violations

■Data integration
□Cross-DB inclusion dependencies

■Scientific data management
□ Inspect new datasets

■Data analytics and mining
□ Profiling as preparation to decide on models and questions

■Database reverse engineering

In summary: Data preparation

Felix Naumann                         
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Use Cases for Data Profiling
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Data P-r_e\p+a|r¶a.t/i~o-n

Title Authors Venue Year

Immunogold labelling is a 
quantitative method as 
demonstrated by studies on 
aminopeptidase N in 

GH Hansen, LL 
Wetterberg, H 
SjÃƒÂ¶strÃƒÂ¶
m, O NorÃƒÂ©n

The Histochemical
Journal,

1992

The Burden of Infectious 
Disease Among Inmates and 
Releasees From Correctional 
Facilities

TM Hammett, P 
Harmon, W 
Rhodes

see

World Population Prospects: The 
1996 Revision

U Nations New York,

Consequences of Migration and 
Remittances for Mexican 
Transnational Communities.

D Conway, JH 
Cohen

Economic Geography, 1998

Missing 
values

Wrong 
encoding

redundant 
characters

Incorrect 
venue

Incorrect 
title



Data preparation in reality

“Cleaning Data: Most Time-Consuming, Least Enjoyable Data Science Task”, Gil Press, Forbes, March 23rd, 2016
http://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/

3%

60%

19%

9%
4%5%

What data scientists spend 
the most time doing?

Building training sets: 3%

Cleaning and organizing
data: 60%

Collecting data sets: 19%

Mining data for patterns: 9%

Refining algorithms: 4%

Others: 5%

10%

57%

21%

3%
4%5%

What is the least enjoyable part 
of data science?

Building training sets: 10%

Cleaning and organizing
data: 57%

Collecting data sets: 21%

Mining data for patterns: 3%

Refining algorithms: 4%

Others: 5%
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Data preparation pipelines
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Split file Remove 
preamble

Split fields 
by delimiter Promote Fill missing 

value
Change 

date format
Prepared 

dataRaw data
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Difficult names
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FIFA registration form (2010)
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Directmarketing by The Economist
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■Duplicate detection is the discovery of multiple representations of the same 
real-world object.

■ Problem 1: Representations are not identical.
□ Fuzzy duplicates

■Solution: Similarity measures / models
□Value- and record-comparisons
□Domain-dependent or domain-independent

■ Problem 2: Datasets are large.
□Quadratic complexity: Comparison of every pair of records.

■Solution: Algorithms
□E.g., avoid comparisons by partitioning.

Data Cleaning: Duplicate Detection

Felix Naumann                         
Data Science 2019

44



Felix Naumann                         
Data Science 2019

45

Ironically, “Duplicate Detection” has many Duplicates

Doubles
Duplicate detection

Record linkage

Deduplication

Object identification

Object consolidation

Entity resolution
Entity clustering

Reference reconciliation

Reference matchingHouseholding

Household matching

Match

Fuzzy match

Approximate match

Merge/purge
Hardening soft databases

Identity uncertainty

Mixed and split citation problem
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400
comparisons



Reflexivity of Similarity
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380
comparisons



Symmetry of Similarity
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190
comparisons



Blocking by zip-code
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32
comparisons



Sorting by zip-code
1 2 3 4 5 6 7 8 9 1

0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Felix Naumann                         
Data Science 2019

50

54
comparisons



Data Fusion
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amazon.com

bn.com

ID max length MIN CONCAT

 $5.99Moby DickHerman Melville0766607194

$3.98H. Melville0766607194
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■ Industry keynote speakers on credit ratings using big data
□ “If the data is out there, we will find it.”
□ “… and that is why I closed my Twitter account.”
□ “… and that is why I had my son close his Twitter account.”

Felix Naumann                         
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Big Data and Ethics
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With Great Power there must also come – Great Responsibility

Spider-Man from Amazing Fantasy #15, August 1962
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