Information Quality: Fundamentals, Techniques, and Use

Felix Naumann Humboldt-Universität zu Berlin

> Kai-Uwe Sattler TU Ilmenau

EDBT Tutorial, Munich, March 28 2006

Our Personal Motivation

- Now: Motivation
 - IQ is big business
 - IQ is (also) a database topic
- This tutorial: The past
 - Where we are now
- The future: Open Problems
 - Much to do

1.5 hours \Rightarrow no details

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Tutorial Overview

- Motivation
- Defining IQ
 - IQ Dimensions
 - IQ Models
- IQ Assessment
 - Assessment techniques
 - IQ aggregation and ranking
- IQ Improvement
 - Profiling & Data Scrubbing
 - Outlier Detection
 - Duplicate Detection
- Wrapup

Felix Naumann, Kai-Uwe Sattler

3

Information Quality: Fundamentals, Techniques, and Use

Part 1: Motivation

<u>Felix Naumann</u> Humboldt-Universität zu Berlin

> Kai-Uwe Sattler TU Ilmenau

EDBT Tutorial, Munich, March 28 2006

Anecdotal Evidence

- Incorrect prices in inventory retail databases [English 1999]
 - Costs for consumers 2.5 billion \$
 - 80% of barcode-scan-errors to the disadvantage of consumer
- IRS 1992: almost 100,000 tax refunds not deliverable [English
- 50% to 80% of computerized criminal records in the U.S. were found to be inaccurate, incomplete, or ambiguous. [Strong et al. 1997a]
- US-Postal Service: of 100,000 mass-mailings due to incorrect addresses [Pierce 2004]

Goodyear reveals \$100 million error

Goodyear said late Wednesday that it will restate up to 7,000 undeliverable earnings for the past five years, decreasing income by as much as \$100 million because an accounting system caused billing errors. The tiremaker is delaying the release of its third-quarter earnings, expected this morning, until mid-November. Shares closed up 2 cents to \$6.83 before the announcement; in after-Felix hours trading, shares plummeted 27%, or \$1.83, to \$5.

March 28, 2006

Anecdotal Evidence

- In 2006 the Fortune 1000 companies will spend more money on IQ problems than for ERP, CRM, and BI together. [Gartner]
- More than 35% of all IT projects fail due to poor IQ. Poor IQ causes annual expenses of 2-4 billion \$ in US. [Meta Group]
- IQ is one of the most important success factors in DWH and CRM projects. [PriceWaterhouseCoopers]
- Data collection in the wake of 2004 tsunami
 - Fatalities and injuries
 - Housing damages
 - Property damages
- http://www.informationquality.org/ publiclyexposedigproblems.cfm

miners found alive REPORT: 2 MERTED

March 28 2006

Felix Naumann, Kai-Uwe Sa

Examples

- Data warehousing (DWH)
 - Incorrect price of item in inventory table
 - 10,000 \$ ≠ 10.000 \$
 - 2000 orders for this item
 - Revenue 20,000,000 \$ or 20,000 \$?
 - Decision: Increase marketing?
- Customer relationship management (CRM)
 - Revenue with Bayerische Motoren Werke AG 1,000,000 €
 - Revenue with BMW

60,000 €

• Revenue with BaMoWe

- 15,000,000 €
- Question: Is BMW a preferred customer?
- Further examples: Healthcare, Disaster data management, etc
- Materialized and virtual integration

Causes of Poor Information Quality

- Data production
 - Data collection with human input (typos etc.)
 - Systematic problems with data collection (Incorrect codes, etc.)
 - Different sources with different representations of same real world object
- Storage
 - Different formats
 - Insufficient formats
- Usage
 - Insufficient analysis and processing capabilities
 - Change of IQ requirements
 - Security and access problems

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

References

13

- [Batini et al. 2004]
 C. Batini, T. Catarci, M. Scannapieco: A Survey of Data Quality Issues in Cooperative Information Systems, Int. Conference on Conceptual Modeling (ER 2004), Shanghai, China, 2004.
- [English 1999]
 L. English: Improving Data Warehouse and Business Information Quality, Wiley, 1999.
- [Pierce 2004]
 E. Pierce: Assessing Data Quality with Control Matrices,
 Communications of the ACM 47(2): 82-86, 2004.
- [Strong et al. 1997a]
 D. Strong, Y. Lee, R. Wang: Data Quality in Context,
 Communications of the ACM 40(5): 103-110, 1997.

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

Information Quality: Fundamentals, Techniques, and Use Part 2: Defining IQ

Felix Naumann Humboldt-Universität zu Berlin

> Kai-Uwe Sattler TU Ilmenau

EDBT Tutorial, Munich, March 28 2006

Overview

- Motivation
- Defining IQ
 - Dimensions and Classifications
 - Models
- IQ Assessment
- IQ Improvement
- Wrapup

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

15

Quality

"Even though quality cannot be defined, you know what it is."

Robert Pirsig

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

IQ from 10000 feet

18

- General definitions
 - "excellence / value"
 - "fitness for use"
 - "extent to which a product successfully serves the purpose of consumers"
 - "meeting / exceeding consumer expectations"
 - "inexact science in terms of assessment and benchmarks"
- Observations
 - Information quality is subjective
 - Depends on context, consumer, etc.
 - Information quality is multidimensional
 - multiple dimensions (criteria, aspects, properties)

IQ under the Microscope

		h 29 0		1000
Ability to be	Ability to Download	Ability to Identify	Ability to Upload	
Joined With		Errors		
Acceptability	Access by Competition	Accessibility	Accuracy	
Adaptability	Adequate Detail	Adequate Volume	Aestheticism	
Age	Aggregatability	Alterability	Amount of Data	
Auditable	Authority	Availability	Believability	
Breadth of Data	Brevity	Certified Data	Clarity	
Clarity of Origin	Clear Data Responsibility	Compactness	Compatibility	
Competitive Edge	Completeness	Comprehensiveness	Compressibility	
Concise	Conciseness	Confidentiality	Conformity	
Consistency	Content	Context	Continuity	
Convenience	Correctness	Corruption	Cost	
Cost of Accuracy	Cost of Collection	Creativity	Critical	
Current	Customizability	Data Hierarchy	Data Improves	
	•	•	Efficiency	
Data Overload	Definability	Dependability	Depth of Data	
Detail	Detailed Source	Dispersed	Distinguishable	
2012			Updated Files	
Dynamic	Ease of Access	Ease of Comparison	Ease of	
-,		•	Correlation IVA/	ang Strong 1996
Ease of Data	Ease of Maintenance	Ease of Retrieval	Ease of	ang Onlong 1550
Exchange			Understanding	
rc Ease of Update	Ease of Use	Easy to Change	Easy to Question	19
Efficiency	Endurance	Enlightening	Ergonomic	
Error-Free	Expandability	Expense	Extendibility	

	unde	r the M	icrosco	pe	
	Extensibility	Extent	Finalization	Flawlessness	
	Flexibility	Form of Presentation	Format	Integrity	'
	Friendliness	Generality	Habit	Historical	
				Compatibility	
	Importance	Inconsistencies	Integration	Integrity	
	Interactive	Interesting	Level of Abstraction	Level of	
		-		Standardization	
	Localized	Logically Connected	Manageability	Manipulable	
	Measurable	Medium	Meets Requirements	Minimality	
	Modularity	Narrowly Defined	No lost information	Normality	
	Novelty	Objectivity	Optimality	Orderliness	
	Origin	Parsimony	Partitionability	Past Experience	
	Pedigree	Personalized	Pertinent	Portability	
	Preciseness	Precision	Proprietary Nature	Purpose	
	Quantity	Rationality	Redundancy	Regularity of Forma	a
	Relevance	Reliability	Repetitive	Reproducibility	
	Reputation	Resolution of Graphics	Responsibility	Retrievability	
	Revealing	Reviewability	Rigidity	Robustness	
	Scope of Info	Secrecy	Security	Self-Correcting	
	Semantic	Semantics	Size	Source	
	Interpretation				
	Specificity	Speed	Stability	Storage	
	Synchronization	Time-independence	Timeliness	Traceable	Wang Strong 1996]
	Translatable	Transportability	Unambiguity	Unbiased	inang enong recej
	Understandable	Uniqueness	Unorganized	Up-to-Date	
/larch	Usable	Usefulness	User Friendly	Valid	20
	Value	Variability	Variety	Verifiable	
	Volatility	Well-Documented	Well-Presented		

Finding the right Dimensions

21

IQ := {Understandability, Reputation, Reliability, Timeliness, Availability, Price, Consistency, Coverage, Response time, Density, Completeness, Amount, Accuracy, Relevancy, ...

Selected IQ Dimensions – Completeness

- The extent to which data are of sufficient breadth, depth and scope for the task at hand
 - [Wang Strong 1996]
- Coverage denotes the estimated portion of the intended complete relation that is actually present.
 - Trio System [Widom 2005]
- A subset of a database is complete if it includes a representation of every occurrence in the real world environment that it models.
 - [Motro 1986]
- Soundness measures the proportion of the stored information that is true, and completeness measures the proportion of the true information that is stored.
 - [Motro Rakov 1998]
- Coverage is the probability that a source has some answer to a given query.
 - [Florescu et al. 1997]

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

25

Selected IQ Dimensions – Accuracy

- The extent to which data are correct, reliable, and certified free of error.
 - [Wang Strong 1996]
- At value level: Fraction of correct values
 - In a tuple
 - In a relation
- At tuple level: Fraction of tuples with only correct values
- Definition of correctness
 - Nearness of a value to the correct value
 - Missing values?
 - Rules, domains, etc.

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

More IQ Dimensions

- Content-related dimensions (data-intrinsic)
 - Accuracy, completeness, relevancy, interpretability, valueadded
- Technical dimensions (hard- and software)
 - Reliability, response time, latency, QoS, price, security, timeliness
- Intellectual dimensions (subjective)
 - Believability, reputation/trust, objectivity
- Instance-related dimensions (presentation)
 - Amount of data, understandability, concise and consistent representation, verifiability

Many Classifications

- Classification based on conflicts
 - [Rahm Do 2000] and [Redman 1996]
 - Schema vs. data
 - One source vs. multiple sources
- Semantic classifications
 - [Naumann 2002] and [Strong et al. 1997a]
- Process-oriented classification
 - [Liu Chi 2002]
- Classification for IQ assessment
 - [Naumann Rolker 2000]

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

29

Overview

- Motivation
- Defining IQ
 - Dimensions and Classifications

- Models
- IQ Assessment
- IQ Improvement
- Wrapup

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

IQ Models

- Data models
 - Common theme: Enrich conventional data model with elements to represent and analyze IQ.
 - Conceptional modeling
 - ER-Extension: Quality ER-Model [Storey Wang 1998]
 - Logical modeling
 - Extension of relational model
 - Polygen [Wang Madnick 1990]
 - Attribute-based model [Wang et al. 1995]
 - Trio DBMS for data, accuracy, and lineage [Widom 2005]
 - Extended XML-Model: D2Q [Scannapieco et al. 2004]
- Process model
 - Model for data production process
 - IP-MAP [Shankaranarayanan et al. 2000, Wang et al. 2003]

Polygen

- Explicit representation of origin (lineage)
- Extension of the relational model
- Attribute value in a Polygen relation is a triplet

 Extension of relational operators (projection, selection, etc.) to also update intermediate sources

[Wang Madnick 1990]

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

33

Attribute-based Model

- Extension of the relational model: "cell tagging"
 - Attributes with different levels of quality indicators
- Extension of the relational algebra
- Queries against quality indicators

Trio

- A system for integrated management of
 - 1. Data
 - 2. Accuracy
 - Attribute-level: approximation
 - Tuple-level (or relation-level): confidence
 - Relation-level: coverage
 - 3. Lineage
- Data Model (triples)
- Algebra for relational operators
- Query Language: TriQL

[Widom 2005]

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

References

- [Chen 1993]
 Peter Chen: *The Entity-Relationship Approach* in Information Technology in Action: Trends and Perspectives. R.Y. Wang, editor, Prentice Hall 1993
- Tolorescu et al. 1997]

 Daniela Florescu, Daphne Koller, Alon Y. Levy: Using Probabilistic Information in Data Integration. VLDB 1997: 216-225
- Liu, L. Chi: Evolutional Data Quality: A Theory-specific View, Proc. of the Int. Conference on Information Quality (IQ 2002), pages 292-304, 2002.
- [Motro 1986] Amihai Motro: Completeness Information and Its Application to Query Processing. VLDB 1986: 170-178
- [Motro Rakov 1998] A. Motro, I. Rakov: *Estimating the Quality of Databases*, Proc. of the Int. Conference on Flexible Query Answering (FQAS 1998), pages 298-307, 1998.
- [Naumann et al. 2004]
 Felix Naumann, Johann Christoph Freytag, Ulf Leser: Completeness of integrated information sources. Inf. Syst. 29(7): 583-615 (2004)
- [Naumann Rolker 2000]
 Felix Naumann, Claudia Rolker: Assessment Methods for Information Quality Criteria. IQ 2000: 148-162 [Naumann 2002] Felix Naumann: Quality-Driven Query Answering for Integrated Information Systems, Springer 2002
- Erhard Rahm, Hong Hai Do: *Data Cleaning: Problems and Current Approaches*. IEEE Data Eng. Bull. 23(4): 3-13 (2000) [Redman 1996]
 T. Redman: Data Quality for the Information Age, Artech House, 1996.

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

39

References

- [Storey Wang 1998] V. Storey, R. Wang: *An Analysis of Quality Requirements in Database Design*, Proc. of the Int. Conference on Information Quality (IQ 1998), pages 64-87, 1998.
- [Strong et al. 1997a] D. Strong, Y. Lee, R. Wang: Data Quality in Context, Communications of the ACM 40(5): 103-110, 1997.
- Scannapieco et al. 2004]
 M. Scannapieco, A. Virgillito, C. Marchetti, M. Mecella, R. Baldoni: *The DaQuinClS Architecture: A Platform for Exchanging and Improving Data Quality in Cooperative Information Systems*, Information Systems 29(7): 551-582, 2004.
- [Shankaranarayanan et al. 2000] G. Shankaranarayanan, R. Wang, M. Ziad: *IP-MAP: Representing the Manufacture of an Information Product*, Proc. of the Int. Conference on Information Quality (IQ 2000), pages 1-16, 2000.
- (Wang et al. 2003)
 R. Wang, T. Allen, W. Harris, S. Madnick: *An Information Product Approach for Total Information Awareness*, Proc. of IEEE Aerospace Conference, 2003.
- RWare less, Proc. of IEEE Aerospace Conference, 2005.

 [Wang Madnick 1990]

 R. Wang, S. Madnick: A Polygen Model for Heterogeneous Database Systems: The Source Tagging Perspective, Proc. of the 16th VLDB Conference, Brisbane, Australia, pages 519-538, 1990.

 [Wang et al. 1995]

 R. Wang, M. Reddy, H. Kon: Towards Quality Data: An Attribute-based Approach, Decision Support Systems 13:349-372, 1995.
- [Wang Strong 1996] R. Wang and D. Strong: Beyond Accuracy: What Data Quality Means to Data Consumers, Journal of Management Information Systems, Vol. 12, No. 4, 1996, 5-34
- [Widom 2005]
 Jennifer Widom: *Trio: A System for Integrated Management of Data, Accuracy, and Lineage*. CIDR 2005: 262-276

Part 3: Assessment

Felix Naumann Humboldt-Universität zu Berlin

> Kai-Uwe Sattler TU Ilmenau

EDBT Tutorial, Munich, March 28 2006

Tutorial Overview

- Motivation
- Defining IQ

- IQ Assessment
 - Assessment techniques
 - IQ aggregation and ranking
- IQ Improvement
- Wrapup

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

IQ Assessment

- "You cannot control what you cannot measure" [DeMarco 82]
- Why assess IQ?
 - Estimating quality, relevance, significance, ... ("garbage in/garbage out")
 - Need for improvement?
 - In case of improvement: cost-benefit ratio?

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

43

Metrics for IQ

- Measurement: quantitative comparison between an observation and a reference value
- Metrics:
 - function: IQ dimension → IQ score
- Requirements:
 - Understandable, combinable
 - Precise
 - Feasible, efficient
- Rut·
 - Context-specific issues → subjective measures
 - IQ values are rarely published
 - · High data volume, frequent updates,

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Techniques: Measuring

- Completeness: absence of null values, but beware of semantics of null
- Accuracy: distance between current value w and correct value w'
 - Syntactic distance: numeric values |w-w'|, string values edit_distance(w,w')
 - Semantic distance: Munich=München, BMW=Bayerische Motorenwerke
- Consistency: ratio of correct values wrt.
 - Integrity rules, business rules, ...
- Timeliness: 1/(update frequency age)

Measuring /2

- Example: completeness of relation r with $R(A_1, A_2, ..., A_n)$
 - Non-null values of A_i : $N_A = \{ \ t \in r \ | \ NotNull(t.A) \ \}$ Completeness for A_i : $\frac{|N_A|}{|r|}$
 - Completeness for $A_I,...,A_k$: $\frac{|N_{A_1,...,A_m}|}{|r|}$
 - With attribute weighting: $\sum_{t \in r} (\sum_{i=1}^{n} w_i \cdot NotNull(t(A_i)))$

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

49

Aggregation of Measurings

- Ratio: non-null values vs. total cardinality
 - For completeness, accuracy, ...
- Minimum/maximum
 - For timeliness, response time, ...
- Sum
 - For access costs, ...
- Product
 - For availability, ...

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Combining Multiple IQ Dimensions

- IQ score = vector of (completeness, exactness, ...)
- How to compare IQ scores?

IQ dimensions with different

- scales
- ranges
- importance

Therefore

- convert
- scale/normalize
- weight
- Multi attribute decision making (statistical techniques)
 - E.g. simple additive weighting, data envelopment analysis

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Aggregation and Ranking Methods

- Simple Additive Weighting
 Scaling $v_{ij} = \frac{d d^{min}}{d^{max} d^{min}}$
 - Weighting and scoring $score = \sum_{i} w_{j} v_{ij}$ with $\sum_{j} w_{j} = 1$
- Data Envelopment Analysis
 - Does no compute a score, but suggests ranking (e.g. for data sources)

dimension #2

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Interpretation: Result Annotation

- [Motro Rakov 1998]
 - Estimating result quality for individual queries based on quality specifications (soundness, completeness)
 - Given view v:
 - Complete: if $v \supseteq v_{ideal}$
 - Sound: if $v \subseteq v_{ideal}$
 - Sampling of given and ideal view, human expertise
 - Partioning of views into homogeneous fragments (same quality value) → tree with homogeneous leafs
 - Quality estimation for simple queries (σ, π, \times)

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Interpretation: Source Selection and Ranking

Assessment

- [Mihaila et al. 2000]
 - Data sources export quality values ("source content quality descriptions")
 - Dimensions: completeness, recency, update frequency, granularity
 - Queries:
 - Data fulfilling quality requirements (e.g. completeness, granularity)
 - Source providing data with given quality (ranked on quality values)
 - Combination of sources (union)

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

55

Interpretation: Plan Selection

- [Naumann et al. 1999]
- Goal: choose a query plan which maximizes IQ
- IQ as additional cost parameter (beside execution costs)
- But:
 - Several IQ dimensions
 - Preferences?
- Approach
 - Prune poor sources (e.g. by applying DEA)
 - Use IQ score to rank plans (e.g. by user preferences for certain dimensions)

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

References: Assessment

- [Ballou Tayi 1999] D. Ballou, G. Tayi: Enhancing Data Quality in Data Warehouse Environments, Communications of the ACM 42(1): 73-78, 1999.
- [Naumann Rolker 2000] F. Naumann, C. Rolker: Assessment Methods for Information Quality Criteria, Proc. of the Int. Conference on Information Quality (IQ 2000), pages 148-162, 2000.
- [Naumann et al. 2004]
 F. Naumann, J. Freytag, U. Leser: Completeness of Integrated Information Sources, Information Systems 29(7):583-615, 2004.
- [Pierce 2004] E. Pierce: Assessing Data Quality with Control Matrices, Communications of the ACM 47(2): 82-86, 2004.
- [Pipino et al. 2002] L. Pipino, Y. Lee, R. Wang: Data Quality Assessment, Communications of the ACM 45(4): 211-218, 2002.

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

57

References: Interpretation

- [Chen et al. 1998] Y. Chen, Q. Zhu, N. Wang: Query Processing with Quality Control in the World Wide Web, World Wide Web Journal 1(4):241-255, 1998.
- [Mihaila et al. 2000] G. Mihaila, L. Raschid, M.-E. Vidal: Using Quality of Data Metadata for Source Selection and Ranking, Proc. of WebDB'2000, pages 93-98, 2000.
- [Naumann et al. 1999] F. Naumann, U. Leser, J. Freytag: Quality-driven Integration of Heterogeneous Information Systems, Proc. of the 25th VLDB Conference, Edinburgh, Scotland, pages 447-458, 1999.
- [Motro Rakov 1998] A. Motro, I. Rakov: Estimating the Quality of Databases, Proc. of the Int. Conference on Flexible Query Answering (FQAS 1998), pages 298-307, 1998.

Felix Naumann Humboldt-Universität zu Berlin

> Kai-Uwe Sattler TU Ilmenau

EDBT Tutorial, Munich, March 28 2006

Overview

- Motivation
- Defining IQ
- IQ Assessment

- IQ Improvement
 - Cleaning Steps
 - Profiling and Data Scrubbing
 - Outlier Detection
 - Duplicate Detection
- Wrapup

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Data Cleaning

- Identifying & eliminating inconsistencies, discrepancies and errors in data in order to improve quality
- aka "data cleansing" or "data scrubbing"
- Up to 80% of costs in DW projects
- Cleaning in data warehousing
 - As part of the ETL process
- Cleaning in information integration systems
 - "on the fly" for virtually integrated data
 - Sometimes requires materialization

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

Avoiding dirty data in DBMS

61

avoiding	by	
wrong data types	Data type definition, DOMAIN constraints	
wrong values	CHECK	
missing values	NOT NULL	
invalid references	FOREIGN KEY	
duplicates	UNIQUE, PRIMARY KEY	
inconsistencies	ACID transactions	
outdated data	replication, materialized views	
March 28, 2006	Felix Naumann, Kai-Uwe Sattler	62

So, why is data still dirty?

- Missing metadata, integrity constraints, ...
- Data from "foreign" sources
- Non-DBS sources
- typos, lack of knowledge, ...
- Multi source problems, heterogeneities

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Profiling

- Analysis of content and structure of attributes
 - Data type, domain, data distribution and variance, occurence of null values, uniqueness, pattern (e.g. mm/dd/yyyy)
- Analysis of dependencies between attributes of a single relation
 - Functional dependencies, primary key candidates, "fuzzy" dependencies
- Analysis of overlapping attributes from different relations
 - Redundancies, foreign keys

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Profiling /2

- Missing or wrong values
 - current vs.expected cardinality (e.g. number of shops, gender of customers)
 - frequency of null values, minimum / maximum, variance
- Data and input errors
 - Sorting and manual inspection
 - Similarity checks
- Duplicates
 - Number of tuples vs. Cardinality of attribute domain

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

Profiling: Fuzzy Dependencies

67

- "Fuzzy" keys, functional dependencies and joins
 - no explicitly defined integrity constraints
 - But satisfied in most cases
- Examples
 - Primary key properties of attributes
 - Functional dependencies
 - Join paths, e.g.
 customer → profession → income class

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Fuzzy Dependencies

- TANE [Huhtala et al. 1999]
 - error $e(X \to A)$: minimal number of tuples which have to be eliminated to satisfy $X \to A$
 - Approach:
 - 1. Starting with single attributes
 - 2. Add addional attributes incrementally
 - 3. check dependencies & pruning
 - Efficient check of dependencies by partitioning the relation into equivalence classes (sets of tuples containing the same attribute values)

March 28, 2006 Felix Naumann, Kai-Uwe Sattler 69

Profiling with SQL

- SQL queries for basic profiling tasks
 - schema, data types: querying data dictionary
 - Domain of data SELECT MIN(A), MAX(A), COUNT(DISTINCT A) FROM DataTable
 - Erroneous data, default values
 SELECT City, COUNT(*) AS Cnt
 FROM Customer
 GROUP BY City ORDER BY Cnt
 - ascending: typos, e.g. Illmenau: 1, Ilmenau: 50
 - descending: undocumented default values, e.g. AAA: 80

Data transformation and normalization

- Data type conversion: varchar → int
- Normalization: mapping into a common format
 - date: $03/01/05 \rightarrow 01$ -MAR-2005
 - currency: \$ → €
 - Uppercase strings
 - tokenizing: "Date, Chris"→ "Date", "Chris"
- Discretization of numerical values
- Domain-specific transformations
 - Codd, Edgar Frank → Edgar Frank Codd
 - St. \rightarrow Street
 - Address transformation using address databases
 - Domain-specific product names/codes (e.g. in pharmacy)

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

71

Missing Data

- Missing information on different levels
 - Instance level: values, tuples, relation fragments,
 - Schema level: Attributes, ...
- Main problems on instance level:
 - Treating null values: missing value or default value?
 - "truncation" of values
 - Biased data, e.g. caused by null values

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Detecting missing values

- Basic analysis:
 - Number of null values, duplicates, mean, frequency,

• • •

- Comparing with expected values
 - In data warehousing on different levels of aggregation
- Analyzing order of tuples
 - No sales information during 03/01...03/04?
 - No products with price > 20 €?

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

73

Detecting missing values /2

- Incomplete data, e.g. truncated and censored data
 - Sales with < 1 € are not collected in the dataset
 - Sales with > 100 € stored as 100 €
- Detection
 - By analyzing data distribution
 - But often domain knowledge required

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Improvement

Imputing missing values

- "Unbiased estimators"
 - Estimating missing values without changing characteristics of existing dataset (mean, variance, ...)
 - E.g.: 1, 2, 3, _, 5 → (mean: 2.75; variance: 4.659)
- Exploiting functional dependencies
 - E.g.: #Bedrooms → Income
- Techniques from statistics
 - Linear regression: income = c • #Bedrooms
 - techniques for non-linear dependencies:
 - Neural networks, ...

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

75

Outlier detection

- Outlier: "suspicious" observation that deviates too much from other observations
- Issues:
 - · detection: distribution, "geometry", time series
 - interpretation: data or observation error vs. real event

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Outlier detection /3

- Model: attribute interrelationships
 - Regression
 - Rules
- Distribution / statistics
 - Based on assumption of data distribution
- Geometry
 - Points on the periphery of the dataset
 - Expensive, not applicable to higher dimensional dataset
- Distance [Knorr Ng 1998]
 - Based on distance between data points (metric distance function)
 - For higher dimension, if dataset does not fit any standard data distribution
- Time series [Dasu et al. 2000]

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Distance-based outliers

- Object o in dataset T is a DB(p,D)-outlier, if at least a fraction p of T lies greater than distance D from o [Knorr Ng 1998]
 - Outlier = object with not enough neighbors
 - Parameter *p* for determining "cluster of outliers"

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

79

Distance-based outliers /2

- Index-based detection (R tree, kd(B) tree)
 - Multidimensional index for determining *D*-neighbourhood
 - M = maximum number of objects in D-neighbourhood; if M+1 objects → not an outlier
 - $O(dN^2)$
- Nested loops
 - · Similar, but avoid index building by smart block reading
- Cell-based
 - Partition data space into cells with two layers for each cell
 - Cell-wise check: $O(c^d+N)$

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Tools for data cleaning

[Barateiro Galhardas 05]

- Auditing & Profiling
 - Axio (EvokeSoft), WizWhy (WizSoft), DB-Examiner (DBE Software), ...
- Transformation
 - SQL Server 2005, Oracle Warehouse Builder, Hummingbird ETL, ...
- Cleaning & Duplicate elimination
 - Trillium, dfPower (DataFlux), WizRule & WizSame, FirstLogic, Sagent, ...

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

82

81

References

- [Barateiro Galhardas 2005] J. Barateiro, H. Galhardas: A Survey of Data Quality Tools, Datenbank-Spektrum, 5(14):15-21, 2005.
- [Dasu Johnson 2003] T. Dasu, T. Johnson: Exploratory Data Mining and Data Cleaning, Wiley, 2003.
- [Dasu et al. 2000] T. Dasu, T. Johnson, E. Koutsofios: Hunting Data Glitches in Massive Time Series, Proc. of the Int. Conference on Information Qality (IQ 2000), pages 190-199, 2000.
- [Fan et al. 2001] W. Fan, H. Lu, S. Madnick, D. Cheung: Discovering and Reconciling Value Conflicts for Numerical Data Integration, Information Systems 26(8):635-656, 2001.
 [Galhardas et al. 2001] H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita: Declarative
- [Gannardas et al. 2001] H. Gannardas, D. Florescu, D. Shasha, E. Simon, C. Salta: Declarative Data Cleaning: Language, Models and Algorithms, Proc. of the 27th VLDB Conference 2001, Roma, Italy, pages 371-380, 2001.
 [Huhtala et al. 1999] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen: TANE: An Efficient
- Algorithm for Discovering Functional and Approximate Dependencies, The Computer Journal 42(2):100-111, 1999.
- [Knorr Ng 1998] E. Knorr, R. Ng: Algorithms for Mining Distance-based Outliers in Large Datasets, Proc. of the 24th VLDB Conference 1998, New York, USA, pages 392-403, 1998.
- [Pyle 1999] D. Pyle: Data Preparation für Data Mining, Morgan Kaufmann Publishers, 1999.
- [Rahm Do 2000] E. Rahm, H. Do: Data Cleaning: Problems and Current Approaches, IEEE Data Engineering Bulletin, 23(4):3-13, 2000.

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

Information Quality: Fundamentals, Techniques, and Use Part 4: IQ Improvement

Felix Naumann Humboldt-Universität zu Berlin

> Kai-Uwe Sattler TU Ilmenau

EDBT Tutorial, Munich, March 28 2006

Overview

- Motivation
- Defining IQ
- IQ Assessment
- IQ Improvement
 - Data Scrubbing
 - Outlier Detection

- Duplicate Detection
- Wrapup

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Duplicate Detection

First name	Last name	Address	ID
Sal	Stolpho	123 First St.	456780
Mauricio	Hernandez	321 Second Ave	123456
Klemens	Böhm	Hauptstr. 11	987654
Sal	Stolfo	123 First Street	456789

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

85

Motivation

- Possible effects
 - Example: Portfolio Management Offers
 - Credit maximum not detected
 - Too low inventory levels
 - No quantity discount for multiple orders
 - Total revenue of preferred customers unknown
 - Multiple mailings of same catalog to same household
- General problems
 - Additional, unnecessary IT expenses
 - Low customer satisfaction
 - Potentials and dangers not detected
 - Poor quality financial data

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

"Duplicate Detection" has many Duplicates

- Duplicate detection / de-duplication
- Record linkage
- Object identification / object consolidation
- Entity resolution / entity clustering
- Reference reconciliation / reference matching
- Householding / household matching
- Match / Fuzzy match / approximate match
- Merge/purge
- Hardening soft databases
- Identity uncertainty
- "mixed and split citation problem"

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Similarity functions – domain dependent

- Data Types
 - Special similarity for dates
 - Special similarity for numerical attributes
 - ..
- Rules
 - [Hernandez Stolfo 1998], [Lee et al. 2000]
 - Given two records, r1 and r2.

IF last name of r1 = last name of r2, AND first names differ slightly, AND address of r1 = address of r2 THEN r1 is equivalent to r2.

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Sorted Neighborhood

- Idea
 - Sort tuples so that similar tuples are close to each other.
 - Only compare tuples within a small neighborhood (window)
- Generate key
 - E.g.: SSN+"first 3 letters of name" + ...
- Sort by key
 - Similar tuples end up close to each other
- Slide window over sorted tuples
 - Compare all pairs of tuples within window
- Problems
 - Choice of Key
 - Choice of window size
- Complexity: at least 3 passes over data
 - Sorting!

[Hernandez Stolfo 1998]

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

94

Sorted Neighborhood Extensions

- Multi-Pass [Hernandez Stolfo 1998]
 - Several runs with different keys
 - Smaller window
 - Transitive closure over different runs
- Domain-independent [Monge Elkan 1997]
 - 1st pass: Key = tuple
 - 2nd pass: Key = reversed tuple
 - Similarity: Smith-Waterman
- Prime representatives [Monge Elkan 1997]
 - Clusters of duplicates
 - Compare new tuple only with some prime representative of a cluster

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

SNMX – Sorted Neighborhood for **XML**

• Delphi: Top-down

• SNMX: Bottom up

 Idea: Apply SNM to each hierarchy level beginning at bottom

 Intuition: Only elements with many duplicate children need to be compared

Increased efficiency

[Puhlmann et al. 2006]

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Data Fusion / Reconciliation

- Duplicate elimination
 - Keep any tuple
 - Keep best tuple
 - Subsumption
 - Highest quality tuple
- Duplicate fusion
 - Conflicts among duplicates
 - Conflict resolution functions
- XML Data fusion

March 28, 2006 Felix Naumann, Kai-Uwe Sattler

101

References

- [Ananthakrishna et al. 2002]
 Rohit Ananthakrishna, Surajit Chaudhuri, Venkatesh Ganti: Eliminating Fuzzy Duplicates in Data Warehouses. VLDB 2002: 586-597
 [Cohen et al. 2003]
 William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of string distance metrics for name-matching tasks. In Proceedings of the IJCAI Workshop on Information Integration on the Web (IIIWeb), pages 73{78, 2003.
- [Dong et al. 2005]
 Xin Dong, Alon Y. Halevy, Jayant Madhavan: Reference Reconciliation in Complex Information Spaces.
 SIGMOD Conference 2005: 85-96
- Fellegi Sunter 1969]
 I. Fellegi, A. Sunter: A theory of record linkage. Journal of the American Statistical Association, Vol 64. No 328, 1969
 Hernandez Stolfo 1998]
 M. Hernandez, S. Stolfo: Real-world Data is Dirty: Data Cleansing and the Merge/Purge, Journal of Data Mining and Knowledge Discovery, 2(1):9-37, 1998.
- [Jaro 1989]
 M. A. Jaro: Advances in record linkage methodology as applied to matching the 1985 census of Tampa, Florida. Journal of the American Statistical Association 84: 414-420.
- [Koudas Srivastavasa 2005]
 Nick Koudas and Divesh Srivastavasa: Approximate Joins: Concepts and Techniques. Tutorial at VLDB 2005
- [Lee et al. 2000]
 M. Lee, T. Ling, W. Low: IntelliClean: A Knowledge-based Intelligent Data Cleaner, Proc. ACM SIGKDD Conference 2000, Boston, USA, pages 290-294, 2000.

March 28, 2006 Felix Naumann, Kai-Uwe Sattler 102

References

- [Levenshtein 1965]
 Vladimir Levenshtein: Binary codes capable of correcting spurious insertions and deletions of ones.
 Problems of Information Transmission vol 1, 1965, 8-17
- Alvaro Monge, Charles Elkan: An Efficient Domain-Independent Algorithm for Detecting Approximately Duplicate Database Records, In Porceedings of the Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, AZ, 1997
- [Puhlmann et al. 2006]
 Sven Puhlmann, Melanie Weis, Felix Naumann: XML Duplicate Detection Using Sorted Neigborhoods, Proceedings of the International Conference on Extending Database Technology (EDBT) 2006, Munich,

- Proceedings of the International Conference on Extending Database Technology (EDBT) 2006, Munich, Germany
 [Smith Waterman 1981]
 T.F. Smith and M.S. Waterman: Identification of common molecular subsequences. Journal of Molecular Biology, Vol. 147, 1981
 [Weis Naumann 2006]
 Melanie Weis and Felix Naumann: Detecting Duplicates in Complex XML Data, in Proceedings of the International Conference in Data Engineering 2006, Atlanta, GA. Poster
 [Wildland 1000]
- [Winkler 1999]
 William E. Winkler: The state of record linkage and current research problems. IRS publication R99/04 (http://www.census.gov/srd/www/byname.html)

March 28, 2006 Felix Naumann, Kai-Uwe Sattler 103

Information Quality: Fundamentals, Techniques, and Use Part 5: Wrap Up

Felix Naumann Humboldt-Universität zu Berlin

> Kai-Uwe Sattler TU Ilmenau

EDBT Tutorial, Munich, March 28 2006

Motivation

- Poor information quality costs money (and more).
- Poor information quality is a fact.
- Thus:
 - Define IQ
 - Assess IQ
 - Improve IQ

Goodyear reveals \$100 million error

Goodyear said late Wednesday that it will restate earnings for the past five years, decreasing income by as much as \$100 million because an accounting system caused billing errors. The tiremaker is delaying the release of its third-quarter earnings, expected this morning, until mid-November. Shares closed up 2 cents to \$6.83 before the announcement; in afterhours trading, shares plummeted 27%, or \$1.83, to \$5.

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

IQ Community

- Conferences and workshops
 - ICIQ (@ MIT, Boston)
 - 11th International Conference on Information Quality
 - Deadline: July 8
 - IQIS (@ SIGMOD)
 - 3rd SIGMOD Workshop on Information Quality in Information Systems
 Deadline April 14
 - CleanDB (@ VLDB): Deadline June 2
 - Others
 - QolS 2006 (@ ER) Quality of Information Systems
 - DIQ (@ CAiSE) Workshop on Data and Information Quality (DIQ)
 - WISQ (@ WISE) Web Information Systems Quality Workshop
- Organisations
 - MITs TDQM: http://web.mit.edu/tdqm/www/
 - ICIQ conference, workshops, courses
 - Master of Science in Information Quality (MSIQ) at University of Arkansas at Little Rock
 - Deutsche Gesellschaft für Informations- und Datenqualität e.V. www.dgiq.de
 - Deutsche Information Quality Management Konferenz & Workshop
 - German IQ Community
 - IQM-Contest

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

109

Areas of Interest

- Database-related
 - IQ assessment
 - Duplicate detection, data cleansing and reconciliation
 - Customer data integration, householding
 - Data integration and fusion
 - Data quality and cleaning in information extraction, semistructured data, multimedia data, graphs, and sensor data
 - Quality-aware aware query languages and query processing
 - Detection of contradictory data, outliers, inconsistencies, noise
 - Mining for patterns of poor quality data
 - IQ in scientific data management
 - Application-driven Information Quality: Bioinformatics, Marketing, CRM, e-Business, Geomedia, etc.

March 28, 2006

Felix Naumann, Kai-Uwe Sattler

Further areas of Interest

- Conceptual
 - IQ Concepts, Tools, Metrics, Measures, Models, and Methodologies
 - Information Product Implementation, Delivery, and Management
 - IQ in Databases, the Web, and e-Business
 - Trust, Knowledge, and Society in the IQ Context
 - IQ Policies and Standards
- Other
 - IQ Practices: Case Studies and Experience Reports
 - IQ Product Experience Reports
 - IQ Education and Curriculum Development
 - · Economic aspects of information quality

March 28, 2006 Felix Naumann, Kai-Uwe Sattler 111

The End

- Felix Naumann
 - Humboldt-Universität zu Berlin
 - http://www.informatik.hu-berlin.de/mac/
 - naumann@informatik.hu-berlin.de
- Kai-Uwe Sattler
 - TU Ilmenau
 - http://www.tu-ilmenau.de/dbis/
 - k.sattler@computer.org

March 28, 2006

Felix Naumann, Kai-Uwe Sattler