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Abstract Query planning for information integration using a local-as-view ap-
proach is exponential in the size of the user query. Furthermore, it may generate
an exponential number of plans, many of which will produce results of very poor
quality. We propose to use information quality reasoning to speed up query plan-
ning. We construct tight upper quality bounds for a branch & bound algorithm.
The algorithm uses these quality scores to filter out non-promising plans early on.
Experiments show that this approach dramatically improves planning time without
compromising the quality of the result.

1 Introduction

Information integration in the Internet age must deal with two especially
difficult problems: (a) the high degree of heterogeneity between sources and
(b) the enormous amount of potential information sources that must be con-
sidered. Projects such as Information Manifold [5] and Infomaster [2] use the
Local-as-View (LaV) approach described by Ullman in [10] to overcome het-
erogeneity. However, systems using LaV require exponential query rewriting
algorithms. Furthermore, they potentially generate an exponential number of
plans for a given query.

On the other hand, it can be observed that many plans will produce results
of low information quality (IQ). For instance, plans may produce only few
tuples, data of low accuracy, or tuples with many missing values. In [7], we
proposed to use IQ scores to filter out such plans and suggested a three step
procedure: In the first step, we identified data sources that are qualitatively
worse than all other sources. The remaining data sources are used for query
planning in the second step. Once the set of correct query plans is obtained,
the third step selects the most promising plans, based on the expected quality
of their results. This quality-based plan selection greatly reduces the number
of queries that must be submitted via the Internet, but does not improve
the performance of query planning itself. At the same time, it delivers query
responses that are of high quality according to the IQ scores assigned to the
sources.

L2 This research was supported by the German Research Society, Berlin-
Brandenburg Graduate School in Distributed Information Systems (DFG grant
no. GRK 316)
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In this work, we considerably improve this approach by describing a
branch & bound algorithm that merges the second and third step, i.e., we
seamlessly integrate the consideration of IQ scores into query planning. We
present experiments showing a drastic reduction in query planning time. The
algorithm we developed is also very efficient for LaV query planning without
1Q scores.

Structure of the paper. We review query planning using LaV in Sect. 2, and
introduce information quality aspects of query plans in Sect. 3. Section 4
describes the HiQA algorithm which integrates quality reasoning and query
planning. In Sect. 5 we present experiments and show the increase in perfor-
mance gained through this integration. Section 6 discusses related work and
we conclude in Sect. 7.

2 Local-as-View Query Planning

We assume a global schema S consisting of a set of relations R. S exists only
virtually; the data physically resides in a set of known data sources. A data
source is logically modeled as a conjunctive view on S, i.e., it is described as:

’U(E) < 1"1(A1), c.. :Tn(An): C17 cey Ck;

where r; € R. The C; are conditions of the form ‘v op ¢’, where v is a
variable, c is a constant, and op € {=,<,>,<,>}. The variables in E are
called exported variables. The view v must be safe. Let V' be the set of views
describing all available data sources.

The purpose of query planning is to find answers to a user query u against
the global schema S. Such answers are computed by plans. A plan p is a
combination of views from V together with a tuple (a,C), where a is a
unificator introducing joins between the views, and C is a set of conditions
on variables exported in the plan.! A plan exports all variables exported in
any of the views it contains. The ezpansion p’ of p is the conjunction of the
bodies of all its views with C' appended and « applied. p is correct for user
query u if and only if p’ is contained in u. The answer to u is defined as the
union over the results of all correct plans.

Recall the definition of query containment by Chandra and Merlin [1].
The expansion p’ of a plan p is contained in u, written p’ C u, if and only if
there exists a containment mapping from u into p’. A containment mapping
is a mapping from the symbols of u into the symbols of p’ where (a) every
exported variable from v is mapped to an exported variable of p/, (b) every
literal of w is mapped to at least one literal of p’, and (c) the conditions of p’
imply the conditions of u. Levy et al. prove that we can find all correct plans
by testing all plans with no more views than u has literals [4]. The authors
also show that finding all correct plans is an NP-complete problem.

! For simplicity, we ignore the unificator and conditions in the rest of the paper.
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Ezample. Consider a system that provides integrated access to stock infor-
mation. The global schema and a set of data sources are given in Fig. 1. A
user query u(sc, cn, sp) + price(sc, cn, cc, sp), cc = ‘D’ has two correct plans,
each containing only one view, namely p; = {vs} and py = {vg}. p = {v4} is
not a correct plan because the conditions on the company’s country do not
match.

price (shareCode, companyName, companyCounitry, date, sharePrice)
press(companyName, pressRelease, domain, date)
rating (shareCode, compName, rating, domain, date)

1. Business press releases for the IT market
vi(en, pr,d) + press(cn, pr,dom,d),dom = ‘IT’

2. Press announcements
va(en, pr, dom, d) < press(cn, pr, dom, d)

3. Business ratings of the day
vs(cS, en, r,d) < rating(sc, en,r,dom,d),dom="‘cars’

4. Business ratings for US IT companies
va(se, en, 7, d) + rat.(sc, en,r,dom, d), price(se, en, cc, d,-),cc = ‘US’, dom="“IT"’

5. New York stock exchange
vs(se, en, cc, d, sp) <+ price(sc, en, ce, d, sp)

6. German stock exchange
ve(se, en, d, sp) < price(se, en, ce,d, sp),cc=‘D’

Figurel. Global schema and data sources

3 Quality of Query Plans

Query planning based only on views cannot distinguish different correct plans.
For instance, it cannot tell apart several Web services that all offer the same
type of stock information, although these sources certainly differ in their reli-
ability, completeness, timeliness etc. In such cases, human users would make
their choice based on quality estimations gained through past experiences.
We aim at introducing the same ability into query planning. Our final goal
is not to compute all correct plans, but only the best N plans. To this end,
we suggest to use information quality (IQ) as basic “cost” factor.

We capture information quality as a set of IQ) criteria ci,...,cq. The cri-
teria may range from subjective ones like understandability and reputation to
objective ones like availability and completeness. Our method is not restricted
to a certain set of criteria. To describe the quality of the information stored
in a data source, we attach to each view v an IQ vector with one dimension
for each criterion, denoted as IQ(v). Depending on the nature of a crite-
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rion, such scores may be obtained by inspecting typical answers, measuring
response times, estimating coverage, etc.

Let p be a plan consisting of the views {v1,va, ..., vx}. The IQ vector of p,
written as IQ(p), is obtained by combining IQ(v1), IQ(v2), ..., IQ(vg) fol-
lowing the join structure of p. Imagine the join tree of p. The leaves represent
views, which provide the data, and the inner nodes represent joins between
data sources. We compute the IQ vector of each inner node bottom-up by
combining the scores of the IQ vectors of its children. Each of the dimensions
of the IQ vector is handled separately by a criterion-specific merge function.
IQ(p) is the 1Q vector of the root of the tree. For a list of criteria and their
merge functions see [7].

To compare the quality of different plans, we first scale the values inside
each vector to make them comparable. Then we compute the overall quality
of a plan p, written iq(p), as their weighted sum, according to a user-defined
weighting. ig(p) is the scalar IQ score of p. In [7], we proposed to first compute
all correct plans, order them according to their IQ scores, and execute only
the top N plans. Now, we avoid the inefficiency of computing all correct plans
using I1Q based subplan selection.

We call each inner node of the join tree of a plan p a subplan (sp). Ob-
viously, we can compute IQ(sp) and iq(sp) for each subplan sp in the same
manner as for plans. In the following section, we use these measurements to
order subplans according to the expected maximal quality a plan including
this subplan can reach.

4 High Quality Planning

To test whether a plan p is correct for a user query u, we need to find a
containment mapping h from u into p’. h must map each literal of u into a
literal of p’, i.e., h must map all variables appearing in a literal | of u into
variables of a literal I’ of p’. We use this property to devise an enumeration
strategy for subplans such that we can use their IQ score to prune the search
space.

Suppose a user query u has literals [y, ..., [,. First, we compute a bucket
B, for each literal ;. Let v be a view from V. We put the tuple (v,h) into
the bucket B; if v contains a literal I’ such that h is a containment mapping
from ; into ', i.e., if v is ‘useful’ for answering u wrt. [;.

In a second step, we consider each combination of one element from each
bucket: ((v1, k1), (v2, h2), ..., (Vn, hyn)) € By X By X - - - X By,. Each such tuple
represents a potential plan consisting of the views vy .. . v,. Unfortunately, not
all potential plans are correct. The containment mappings from the literals
of u into the views of the plans, i.e., hy, ho, ..., h,, may be incompatible.
For instance, they may map one variable of u into different constants. Also,
conditions may conflict, and it may be necessary to merge views connected
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through non-exported variables. For this reason, a simple greedy approach
will not work.

Now, we describe the High Quality Branch & Bound algorithm (HiQA).
It intelligently enumerates correct plans in such a way that it finds the best
N plans, usually after computing only a fraction of the total number of plans.

The HiQA algorithm enumerates all potential plans by traversing a tree
constructed as follows. The root of the tree is empty. We connect all elements
of B as children to the root. Each of these children gets all elements of Bs
as children, and so forth (see the following example and Fig. 2). This tree
represents the search space; each path from the root to a leaf is a potential
plan.

HiQA traverses this tree and incrementally constructs plans by building
subplans of increasing length. In each branching step it adds the elements of
a new bucket to an existing set of subplans. A subplan is discarded whenever
the views it contains are incompatible. This practice already greatly reduces
the average time necessary to find correct plans even without considering
1Q scores (see Section 5).

HiQA improves query planning further. It uses IQ scores to prune those
subplans that will provably not be part of any top N plan. This step is the
bounding part. Therefore, HiQA efficiently calculates for each subplan the
maximum IQ score that any plan containing this subplan can ever reach (see
Section 4.1). This score is denoted as ub(sp). HIQA uses it as upper bound for
other subplans. Suppose that N complete plans have been obtained, and let
1q(pn) be the 1Q score of the worst of those. The algorithm may safely prune
any subplan sp with ub(sp) < ig(pn). Whenever a new complete plan enters
the top N plans, iq(py) rises and further subplans can possibly be pruned.
Depending on N, this additional pruning increases the performance of query
planning by magnitudes.

Exzample. We use fictitious IQ scores and omit the associated containment
mappings for simplicity. Our goal is to find the 3 best plans (N = 3). Consider
the following user query against the global schema of Fig. 1.

u(sc, sp, r,pr) < press(cn, pr, dom, d), rating(sc, cn, r,dom, d),

price(sc, en, —, d, sp), d=‘today’

First, we compute buckets for the literals of u: By = {v1,v2}, B = {v3,v4},
and B3 = {v4,vs,v6}. From those buckets we construct the search tree of
Fig. 2. We attached to each subplan sp (i.e., inner node) the pair [iq(sp), ub(sp)].
For leaves, i.e., complete plans, only one value is given since there iq(sp) =
ub(sp). Subplans or plans without such a pair in the figure are never generated
because of early pruning.

HiQA starts with one subplan consisting only of v; and one consist-
ing only of vy. It greedily chooses the next subplan to be expanded. Since
1q(v1) > iq(vs), it expands v; next. Combining v, and wvs fails because the
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associated containment mappings are incompatible: The variable price.dom
from wu is once mapped to ‘IT’ (in v1) and once to ‘cars’ (in vs). Next the
algorithm generates the subplan {v;,v4}. Since ig(v1,v4) > ig(v2) we expand
this subplan next with the three elements from Bs. This leads to three com-
plete plans, of which the worst has an IQ score of 0.3. From now on, the
algorithm prunes all subplans sp with ub(sp) < 0.3.

However, it is not yet clear if the three completed plans are the best three
plans. HIQA must examine the remaining subplans. Therefore, it expands the
subplan ve with the views from Bjy. The subplan {vs,vs} can be discarded
because its maximal IQ score is too low. Only three more plans are considered,
which leads to the final set of plans {v1, va,v6}, {v2,v4,v6}, and {v1,v4,vs}.

v,,[0.7,0.9]

[ vy ] [v4,[0.6,0.8] | [v5[0.2,0.3] ] [v4[0.5,0.7] ]

[va 0.3] [vs, 0.4] [ve,0.5]

[ve 0.2] [vs50.3] [ve 0.5]

Figure2. Branch & bound example for N =3

In total, the algorithm calculated six complete plans. This is considerably
better than a brute-force method, which entails the construction and NP-
complete testing of |By| * | Bg| * | B3| = 12 plans.

4.1 Efficient Pruning — the Upper Bound

The efficiency of the branch & bound algorithm HiQA relies heavily on its
pruning ability. The more and the earlier branches can be pruned, the faster
optimal plans will be reached, and the less time will be spent constructing
plans that turn out to be of low quality.

Imagine HiQA has created a new subplan sp. We need to compute ub(sp),
i.e., an upper bound for the best possible IQ score of any plan containing sp.
Hence, ub(sp) must obey ub(sp) > max[iq(p)|sp C p]. The tighter this bound
is, the more efficient the algorithm will be. Clearly, we could calculate the
ezact bound by simply computing ig(p) for each p with sp C p. This would
require a complete enumeration of the search space in each step, and would
hence destroy the gain of the HIQA approach.
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Instead, we estimate ub(sp) efficiently by forecasting plan quality. Let
sp™® be a subplan of length i. We compute ub(sp(i)) as the IQ score of sp(?
itself combined with an artificial 1Q vector I for each remaining bucket:

ub(sp®) = iq (IQ(sp(i)) ol;;10...0 In)

A first attempt for I; (i < j < n) would be to simply choose the IQ vector
of the view from B; with the best IQ score. But this will not necessarily
result in the best possible plan, because the measure for plan quality is not
necessarily monotone; adding a view to a subplan can decrease the merged
scores for some criteria, while increasing the merged score for others. Simply
choosing the best view from B; is therefore not safe.

To compensate, we construct I; by choosing for each criterion the best
score of any view in the bucket. Since I; has a higher IQ score than any other
view in Bj, it is guaranteed that the IQ vector of a plan expanded by any
v € Bj is bound by I;.

Theorem 1. ub(sp') (1 < i < n) is an upper quality bound for plans con-
taining sp, i.e., ub(sp(*) > max [iq(p)|sp(i) Cpl.

For space constraints we omit a formal proof in which we show that
ub(sp(¥)) decreases monotonically with the length of the subplan. To deter-
mine the upper bound for each subplan we precalculate the artificial IQ vector
for each bucket. This calculation is in O (n - ¢ - |V'|) where n is the size of the
query (= number of buckets), g is the number of IQ criteria, and |V| is the
number of views. Then, during the bounding phase we must only include
the predetermined artificial I1Q vector to the IQ score of the subplan. This is
possible in linear time.

4.2 Efficient Branching

In the previous section we have shown that we can safely prune subplans using
upper quality bounds. Further improvements can be achieved by choosing an
intelligent branching strategy. We found the following two heuristics to be
particularly effective:

1. We sort buckets by increasing size to produce long subplans, and hope-
fully complete plans, more quickly. It is desirable to obtain some complete
plans as early as possible because we can only start pruning after we have
N complete plans.

2. At each branch the algorithm continues with the best subplan found so
far. This heuristics is most important in our branch & bound approach.
Without it, the algorithm would be reduced to a random, though non-
redundant, exploration of the search space. With it, we proceed purpose-
fully towards best plans.



8 Ulf Leser and Felix Naumann

5 Experiments and Evaluation

To evaluate the performance of the HiQA algorithm, we carried out several
simulation experiments and observed a dramatic performance increase for
different parameter settings such as the size of the query, the number of
sources, etc. The main cost factor of HiIQA is the number of branches, which
corresponds to the number of compatibility tests that are performed for each
new child node. Therefore, the focus of our experiments lies in counting the
number of compatibility tests performed.

We compare HiQA with two other algorithms. The first uses a brute-force
enumeration of the search space, i.e., it enumerates the cartesian product of
all buckets. No branching or pruning technique is used. The results are labeled
as ‘no branching’ in Figs. 3 and 4. The second algorithm uses branching but
no IQ pruning. This approach also enumerates the cartesian product of all
buckets, but already requires considerably less compatibility tests. The results
are labeled ‘branching’ in the figures. Our algorithm, labeled HiQA, includes
both pruning and branching techniques.

i I I I
3 - no branching -
g 10000 il branching -->~= 7
= [ HiQA <7~ --- ]
= 1000 T TS
= - =TT h
+= - .-
g [ o ]
£ 100 :—/ o0 E
Q -
(] [,/ .

10 | | |
5 10 15 20 25

Number of views

Figure3. Scalability in the number of sources

Figure 3 shows the behavior of the algorithms on a logarithmic scale for
an increasing number of sources. Since access to many sources is one of the
main opportunities of the Internet, these tests are highly relevant for the type
of systems we consider.

Figure 4 plots the number of compatibility tests on a logarithmic scale for
different query sizes, i.e, for an increasing number of literals in the user query.
This experiment shows the limitations of only branching and the impressive
efficiency of I1Q pruning. While branching still has some advantage compared
to a naive algorithm, only IQ pruning overcomes the exponential increase of
compatibility tests and thus of the overall performance. Both results show
the superiority of the HiQA.
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Figure4. Scalability in the query size

6 Related Work.

The Local-as-View approach to information integration is — for instance —
used in the Information Manifold [5] and the Infomaster [2]| projects. The In-
formation Manifold introduced the bucket algorithm (BA) for query planning.
The BA constructs buckets in a similar way as the HiQA. It then enumerates
all elements of the cartesian product of all buckets and tests for each whether
it is contained in the user query. The HiQA can be considered as an efficient
implementation of the BA, enhanced with quality reasoning.

The Infomaster project uses the inverted facts algorithm (IFA). Given a
user query u and a set of LaV views, the IFA generates a DATALOG program
which computes the answers to u. Generating the program is polynomial; ex-
ecuting the program essentially amounts to traversing the entire search space
of the HiQA. The IFA has the advantage that it can deal with recursive views
and functional dependencies, but it cannot cope with built-in comparisons.
A similar algorithm is described by Qian [8].

To the best of our knowledge, [7] was the first paper to consider IQ criteria
for query planning, although IQ reasoning is known to be very important for
large-scale distributed information systems as pointed out by Redman [9].
In [7], we wrapped the BA with 1Q considerations. We pruned poor sources
before planning and identified and executed best plans after planning. In
contrast, HIQA integrates these phases into a much more efficient one-step
algorithm.

Some projects have chosen only one or few IQ criteria for examination.
Motro and Rakov, for instance, have studied the completeness and soundness
criteria and suggest to use these to improve query results [6]. However, the
authors do not go beyond a general definition of the terms and only state
possible application areas, whereas we actually use the criteria for planning.
The Data Warehouse Quality (DWQ) project also considers IQ criteria, but
also, no algorithm is suggested to actually implement their usage [3].
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7 Conclusions

In this paper, we have pointed out the importance of information quality
reasoning when integrating autonomous WWW information sources. Build-
ing on a logical query planning method using view-based query rewriting
mechanisms, we showed how to seamlessly integrate 1Q aspects.

The main contribution of this paper is an efficient method for the prob-
lem of finding the best N plans to answer a query in a heterogeneous and
distributed environment. Our HiQA algorithm has as distinguishing features
(a) a way of enumerating query rewritings that is more efficient than pre-
viously published algorithms, (b) an intelligent branching strategy, and (c)
1Q scores to prune away non-promising plans. Especially its pruning ability
greatly reduces the search space. We have shown the usefulness of IQ prun-
ing in several experiments. Essentially, many user queries simply cannot be
answered efficiently without IQ pruning.
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