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Abstract

Mediator-based information systems answer
global queries by rewriting them into a com-
bination of queries against physical data
sources. One assumption in most systems is
that only such combinations are considered
as valid that obtain values for each selected
attribute of the query. Another assump-
tion is that systems must compute and ex-
ecute all valid combinations, i.e., they strive
to retrieve all possible answers. These as-
sumptions frequently lead to user frustration:
First, in many scenarios an incomplete an-
swer is much more appreciated than no an-
swer at all. Second, if many valid combina-
tions exist, it is very time-consuming to exe-
cute them all.

We present a cooperative query planning
method that avoids both problems. First, it
treats incomplete and complete source com-
binations in a logically equivalent manner,
i.e., incomplete answers are also considered.
Second, it ranks and selects combinations
based on their information density, i.e., based
on the expected usefulness of the results.
Our selection process naturally prefers com-
plete answers, but can also cope with incom-
plete answers. Furthermore, users can guide
the ranking by specifying cost constraints
and preferences. We present algorithms to
counter the exponential nature of the prob-
lem.
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1 Cooperative Information

Integration

Information integration has two facets. In
mission-critical OLTP systems, information
integration stands for integrated access to a
given set of databases. For instance, globally
operating companies strive for decision sup-
port systems that allow queries ranging over
databases at different locations [14]. The ex-
pected behavior of such a database federation
is that of a central database. Therefore, an-
swers must be complete. The answer to a
query against the federated schema must con-
tain values for all selected attributes, and in-
clude tuples from all relevant data sources.
Furthermore, it is expected that the data
sources are well-maintained and reliable. De-
cision makers will not accept query results
of a low quality because incomplete or miss-
ing answers may result in wrong and possi-
bly costly decisions. However, recent years,
and especially the success of the World Wide
Web, have fostered different types of appli-
cations that also require information integra-
tion. In those applications, users do not ex-
pect perfect and complete query results. Ac-
tually, they do not even want “complete” an-
swers since a complete answer drowns them
in an undigestible flood of information. In-
stead, users expect cooperative behavior of
the query engine.

Example 1 Imagine a user searching for
some books written by Stephen King, includ-
ing book-title, reviews, and, if possible, the
publisher:



uq (title, publisher, review) —
books(ISBN, author, title, publisher,
review, price), author="King';

Imagine two data sources S7 and Ss pro-
viding information about books. S exports
authors and titles, and occasionally includes
a review. Sy offers reviews for each book it
has in its database. Answering user query
u1 using a traditional, non-cooperative query
engine fails because neither S nor S provide
publisher information. Most users will per-
ceive this answer as frustrating and mislead-
ing. By stating desirable but not necessary
variables in the query, the user inadvertently
reduces the result size.

Imagine that a cooperative user recognizes
the problem and poses a new query that does
not select publisher. A conventional integra-
tion engine will find that both S; and S5 can
Therefore, both
sources are accessed. However, it is likely
that the process will also be perceived as frus-
trating: First, it takes time to query both
sources. Second, there was no need to get
a complete answer because the user actually
wanted only some books. For both queries,
querying only S5 would have been the best
choice. O

contribute to the answer.

Other scenarios in which users expect co-
operative behavior — and not completeness at
any cost — include knowledge management
systems, web information portals, and bar-
gain finders [6]. In this paper we propose
a method to include cooperative behavior
into a mediator-based information systems
(MIS). MIS have recently become a popu-
lar infrastructure for the integration of in-
formation from autonomous and heteroge-
neous data sources [15]. In an MIS, users
query multiple data sources simultaneously
and transparently by accessing a mediator
with a single, homogeneous interface. It is
the task of the mediator to dynamically se-
lect data sources to find answers to a user
query. Following the tradition of federated
databases, research on MIS has focused on
providing correct and complete answers to

any query. Great effort is put into algorithms
that find all ways of answering a query. This
process is costly and unnecessary if perfect
and complete results are not required. Fur-
thermore, it is inflexible and cumbersome to
use. In the types of systems we envisage, it
is more important to obtain a sufficient sub-
set of all answers in reasonable time and at
a reasonable price.

To this end, we introduce density scores
and thereby improve the flexibility of query
answering in MIS. Density scores qualita-
tively describe data sources. A mediator uses
density scores to guide the generation and
selection of query plans. Intuitively, den-
sity scores measure the fullness of the at-
tributes exported by a sources. We include
two other features into our planning model to
further increase its ability to provide satisfy-
ing, but not necessarily complete, answers.
First, we allow for user- and query-specific
attribute weightings, since not all attributes
are of equal importance in all queries. Sec-
ond, our planning algorithms carefully obey
a cost constraint, which expresses an upper
border on the cost of computing answers.

Example 2 Recall the previous example.
The user query with a user weighting is now:

us(title[10], publisher[5], review[8]) <+
books(ISBN, author, title, publisher, re-
view, price), author="King';

The numbers give the importance of each
attribute in the query, where 10 means
“mandatory” and 1 means “negligible”. At-
tributes of selection predicates are always
considered mandatory. Hence, uy requests
answers which must contain title and which
should contain the publisher and review. Fur-
thermore, suppose that the user states that
at most one source should be queried, since a
few answers are already satisfying. The two
available sources are described as:

S1(ISBN[1],author[1],title[1],review[0.5]);
S2(ISBNJ1],author[1],title[1],review[1]);



Here, the numbers give the ratio of objects
which have a non-null value for the corre-
sponding attribute. The fact that S; has
only some reviews is reflected in a low score
for this attribute. Given the user weighting,
density scores, and the cost constraint, the
mediator chooses which sources are more ap-
propriate for the query at hand. Both sources
will be punished for not providing publisher,
but this will not exclude them from further
consideration. On the other hand, Sy will
benefit from providing more reviews. There-
fore, the mediator will select S5. O

Our approach incorporates various elements
of cooperative behavior:

e Users always obtain some answers, even
if complete answers are not possible.

e Users may constrain the amount of work
performed during query execution. This
shields users from unsatisfyingly long re-
sponse times.

e Users may express preferences for the
importance of attributes. This weighting
is used to tailor the quality estimation of
plans to the specific query needs.

Related work. Information integration
using a MIS architecture is addressed by
many research projects, such as TSIMMIS
[2], Information Manifold [8], and Aurora
[16]. Our data model is similar to that of
Yerneni et al. [17]. However, none of these
projects can cope with queries for which no
complete answer exist, and none is capa-
ble of selecting plans based on their useful-
ness. In [11] we proposed a framework for
selecting query plans based on information
quality. However, there we described algo-
rithms which find the N best plans, while,
in this paper, we aim at algorithms that
find the single best plan, i.e., the best set of
Our understanding of cooperative
behavior is close to that described by Minker
[9]. However, the seven different aspects re-
viewed there cannot be adopted easily to the

sources.

types of MIS that we consider. Regarding
their classification, we concentrate on wuser
goals and preferences and on relaxed answers.
Minkers work aims at explaining why certain
queries have no answers, e.g., by giving inten-
tional answers, while we focus on somehow
producing reasonable answers. Gaasterland
and Lobo describe a central database system
that offers support for cooperative behavior
in two aspects [3]: First, users can annotate
queries with preferences. Second, facts (and
rules) are annotated with a degree of confi-
dence. Incomplete answers are not consid-
ered.

Structure of this paper. The following
section gives an overview of our system. Sec-
tion 3 defines density scores and introduces
our approach to use the scores for informa-
tion integration. In Section 4 we present two
algorithms that produce cooperative query
execution plans based on density scores and
different cost models. Section 5 concludes the

paper.

2 Overview

We use a mediator-wrapper architecture as
proposed by Wiederhold [15] (see Figure 1).
The goal is to access a given set of hetero-
geneous data sources through a single query
interface. Therefore, each source is encap-
sulated by a wrapper. The mediator pro-
vides a global schema, accepts user queries
against it, and plans query execution across
the sources. If a query against an data source
is to be executed, it is passed to the appropri-
ate wrapper. This wrapper translates the re-
quest into some form understandable by the
source, e.g., by filling out a WWW form or by
compiling an SQL query. The wrapper then
submits the query to the source and receives
the results. Finally, those results are refor-
matted and returned to the mediator. Since
this paper concentrates on the task of the me-
diator, we use the terms wrapper and source
synonymously.
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Figure 1: The general mediator architecture

The mediator represents the data com-
prised by the MIS through a relational, global
schema. For simplicity in this paper, we
assume that the global schema consists of
only one relation. The extension to global
schemas with more than one relation can be
found in [10]. However, notice that a single
relation is a sufficient and convenient model
for many applications. Especially on the web,
it is often considered as too complex if users
must pose queries including joins.

We denote each tuple in the global rela-
tion an object, which has an identifier (OID)
and a set of attributes. For example, in a
book information system a book is an ob-
ject. Its identifier is the ISBN; possible at-
tributes are title, author, etc. We use the
OID to merge results obtained from different
sources, as explained in Section 3.2. We do
not require that OIDs are keys. However, we
do assume that OIDs are consistent across
sources, i.e., if two sources present an ob-
ject with the same OID, then the MIS deems
these objects to represent the same real-world
entity. Such global identifiers exist in many
domains: Stocks have ticker symbols, books
have an ISBN, persons have a passport num-
ber etc. Often, OIDs can be constructed from
other values, such as building a person ID
from the person’s name and address.

2.1 Describing Data Sources

An MIS comprises a set S = {S1,...,S,}
of data sources. Only the sources store and
manage information physically and perma-
nently. A source S; represents a set of ob-
jects, its size is | S;|. We assume that the con-
tent of a data source can be retrieved through
some interface, but we make no assumptions
about whether or not a data source is capa-
ble of performing selections on attribute val-
ues. If a user query contains conditions that
a source is not able to execute, the mediator
may first download all objects and then apply
the conditions himself. The problem of de-
ciding where operations should be executed
is orthogonal to the problem we are consid-
ering (see for instance [5] or [1]). Schemat-
ically, a source S; is a relation with a sub-
set of the attributes of the global relation.
Each source must provide the OID. Other
attributes may be missing. We call the at-
tributes that are provided by S; the exported
attributes of S;. Each query submitted to a
source S; is associated with a cost ¢(S;). We
assume that this cost is independent from the
amount of data retrieved. Hence, any infor-
mation service charging per-query conforms
to this model. We discuss two variations of
our cost model in Section 4.

Example 3 In the example our MIS has the
global relation

books(ISBN,author,title,publisher,review,price);

and comprises the following four data

sources:

S1(ISBN,author,title,review);
S2(ISBN,author,title);
S3(ISBN,author,title,publisher);
S4(ISBN,author,title,review,price);

a

In Section 3 we extend the description of
data sources with density scores; each ex-
ported attribute of a source is annotated with
a number indicating the ratio of objects in



this source which have a non-null value for
this attribute. We use density scores to quali-
tatively describe the content of data sources,
and to describe the expected quality of an-
swers that are merged from multiple sources.

2.2 User Queries

A user query u is a selection of attributes
of the global relation, possibly together with
conditions on the attribute values. Each at-
tribute of u is annotated with an importance
weight, i.e., a number indicating its impor-
tance to the user. The weighting can be given
within any common range; we use the range
from 1 (not important) to 10 (very impor-
tant). Attributes that are not in u are implic-
itly assigned the weight zero. The mediator
will use the weighting to decide which sources
are most useful for the query. Together with
every query the user may specify a total cost
limit L.

Example 4 The user query from the intro-
duction is:

ug(title[10],  publ.[5], review[8]) <«
books(ISBN, author, title, publ., review,
price), author="King’;

Given this weighting, a user will probably
be more satisfied with answers obtained from
S4 than with answers obtained from Ss3, be-
cause S3 lacks the important review attribute,
while S; only lacks the less important pub-
lisher attribute. O

2.3 Answering User Queries

The purpose of the mediator is to answer a
user query u by accessing data sources. The
purpose of cooperative query answering is
to find a set (or a plan) P C S of sources
such that (a) the information requirement of
the user expressed through v is fulfilled opti-
mally, and that (b) the cost of accessing all
sources in P does not exceed the cost limit
L. Essentially, we compute P in the follow-
ing way: First, we assume that each data
source virtually exports all attributes of the

global relation. The density score of those at-
tributes that a source does not export phys-
ically are set to zero. Next, we consider all
possible combinations of data sources. Let
P’ be such a combination. If the cost of
P’ if higher than L, then P’ is immediately
discarded. Otherwise, we compute the ex-
pected density d,,(P') of the result obtained
by accessing all sources in P’ and merging
the results. Computing d,(P’) takes into ac-
count the density of each source for each at-
tribute that is in u, favoring sources with high
density scores over sources with low scores.
Eventually, the set of sources with the high-
est expected density is chosen.

Fortunately, it is not always necessary
to consider all 2!5| combinations of sources.
In Section 4 we present two algorithms in
O(]S|?). The first addresses a uniform cost
model and achieves optimal results, the sec-
ond addresses a variable cost model and we
show bounded optimality.

3 Density Scores

In this section we describe how the useful-
ness of a plan for a given user query is com-
puted. We define usefulness as the amount
of data a plan returns or its completeness.
Completeness includes both the number of
tuples returned (coverage) and the percent-
age of non-null values in the result (density).
We present the entire completeness model in
[10]. In this paper we focus on the density
measure and how it can be used to improve
query results in a cooperative manner.

We proceed as follows: First, we define the
source-specific attribute density (see Defini-
tion 1). FEssentially, density measures the
amount of non-null values in that attribute.
For instance, book information sites do not
(and often cannot) provide reviews for all
books, an address information service will
not have the email address of all listed people,
etc. Next, we define the density of a source
wrt. user query u as the average density of the
attributes requested in u (see Definition 2).



Definition 3 adds the user weighting, which
determines the usefulness of a single source
for answering u. In Section 3.2 we show how
to compute the density of a plan, i.e., a set
of sources, explaining how data from different
sources is logically merged.

3.1 Density of a Source

Since each attribute in each source typically
is filled to a different degree, the basis of our
measure is the attribute level.

Definition 1 Let A be the set of attributes
of the global relation. The density of attribute
a € A in source S; is

_ |{o € S;|o[ak] # null}|
|S;]

ds;(ag)

Density of an attribute can be interpreted
as the probability that an object has a non-
null-value for that attribute. We assume
that all sources export the OID attribute,
and that this attribute always has a density
of 1. An attribute of the global schema that
is not exported by a source, is assigned a den-
sity score of zero. All other attributes have
values between 0 and 1.

Example 5 For our example we assume the
following attribute densities for the four
sources:

S1(ISBN[1],author[1],title[1],review[0.5]);
S2(ISBN[1],author[1],title[1]);
S3(ISBN[1],author[1],title[1],publisher[0.5]);
S4(ISBN[1],author[1],title[1],review[0.25],
price[0.9]);

Consider sources S7 and S3. They corre-
spond to the global schema in different ways
(see Figure 2). Both sources export ISBN, au-
thor, and title, each with density 1. Source S;
additionally exports review, while Source S3
additionally exports publisher, each with dif-
ferent density scores.

Density

Sl ISBN author title publ.  review price
1 1 1 0 0.5 0
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
Il Il Il Il Il

S3 ISBN author title publ.  review price

1 1 1 0.5 0 0
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

Figure 2: S; and S3 with density scores

Now we define the density of an entire
source S; wrt. a given user query u. There-
fore, we consider the attributes of u in the
following manner: An attribute exported by
S; that is not in u does not contribute to the
source density. An attribute that is in u but
not exported by S; is assigned a density score
of 0 and hence lowers the overall density score
of the source. The density of S; wrt. u is the
average density of all attributes of u.

Definition 2 The density of a source S;
with respect to a user query u is

ZakEU dSz‘ (ak)

Jul

where |u| is the number of attributes in u.

Definition 3 Let wy(ax) denote the weight
of a in u. The weighted density of a source
S; wrt. a user query u is:

ZakEu dSi (ak) : wu(ak)
Zak Eu wu(ak)




Example 6 For u(title[10], publisher[5], re-

view[8]), we obtain the following source den-
sities:

duz (Sl) = %;

du2 (53) = %7

duz (S2) = %;

du1 (54) = %_ga

Hence, S; would promise the most useful re-
sult for uy if only a single source were used.

Merging results from several sources promises
better results. O

Definition 3 can already be used for query
dependent source selection. Sources with
a high density score promise better results.
Note again, that we do not consider the size
of the source here. Density is only one aspect
of the completeness of a source.

3.2 Density of Merged Results

Definitions 1 to 3 define density for single
sources.
eral not answered by accessing only a single
source, but by merging results from a set of
sources. We call such a set a plan as intro-
duced in Section 2.3. In this section we define
the density of plans.

However, a user query is in gen-

Combining attributes. In general, a re-
sult merged from two sources will contain (i)
attributes that are exported by both sources
(ISBN, author, and title in Figure 3), (ii) at-
tributes exported by only one source (pub-
lisher and review), and (iii) attributes that are
not exported by either source (price). For the
second type of attributes, all available values
are used in the merged result, and the den-
sity score of the merged result will be the
density score of the only attribute providing
the data. In the third case, the result will
have an empty column, and the density score
of this column is 0. The first case is more
complicated. Both sources compete in fill-
ing the result table with attribute values for
those objects that are present in both. Three
cases can occur for each object :

e Both sources have a null-value = The
result has a null-value at that position.

e Exactly one source provides data = The
result uses that data at that position.

e Both sources provide data = Some res-
olution function must determine what
value will appear in the result table.
Resolution functions can be of various
types, depending on the type of at-
tribute, the usage of the value, and many
other aspects [18, 13].

Calculating merged density. Let
ds;(ax) and ds,(ay) be the density scores
of the attribute aj in the sources S; and
Sj, respectively. Let dg, (ax) denote the
density score of ap of the merged result.
Note that we assume mutual independence
of attribute values, i.e., the probability that
an attribute has a non-null-value for an
object represented in S; is independent from
its appearance in S;.

Theorem 1

ds, ;(ax) = ds,(ax) + ds, (ak)
— ds;(ax) - ds; (ax)

The formula of Theorem 1 is associative
and commutative but not monotone, i.e.,
dSi(a’k) < dsj(ak) + dsi,k(ak) < dsj,k:(a’k)‘
This fact makes optimization difficult as we
will see in Section 4.1.

Example 7 The density of the review at-
tribute of the merged result of S; and Sy is:

ds, 4 (publ.) = 0.5 4 0.25 — 0.5 - 0.25 = 0.625

The calculation of the density of the overall
merge result essentially remains as in Defini-
tion 3, but we now use the merged attribute
density scores:

Definition 4 The merged density of two
sources Si, Sj for a user query u is

Eakeu dSi,j (ak) ' wu(a’k)

du(S;, S;) =
( .7) ZakEu wu(ak)
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Figure 3: Merged result of S7 and S3 with new density scores

This definition only calculates the merged
density of two sources but due to its asso-
ciativity it can be applied to larger sets of
As already mentioned, we do not
consider the number of objects in a source
in this paper. This is equivalent to assum-
ing that all sources cover the same objects.
Density is only one aspect of an overall com-
pleteness measure. Again, we refer to [10] for
the completeness model that includes source
sizes and different overlap situations between

sources.

sources.

Example 8 To illustrate, we give the den-
sity scores of the merged results of source Sy
with the other three sources:

duy(S1,52) = 335

dyy(S1,54) = ;—?,

du,y (51, S3) = 1825

Hence, the best combination of two sources
is S1 and S3 in the example. O

4 Density-driven Planning

This section describes how we create query
execution plans. A plan is a set of sources,
representing queries performed by wrappers.
These queries need not be executed in a spe-
cific order. After execution, each wrapper
returns a set of objects, each object with an
identifier and some attributes. It is the task

of the mediator to merge these objects to a
common response to the user. Our goal is
to do this in a way that satisfies users most,
even when only parts of the query can be an-
swered, and even when only a certain number
of sources can be queried.

We assume a cost model in which the me-
diator must pay some price for each query
issued towards a source. This cost model
can be found often in existing applications.
A mediator that accesses distributed data
sources will either pay a price for the data
or will have some other license agreement as
to how many queries can be submitted dur-
ing a given period. Based on this cost model,
our algorithm strives to find the best possible
set of sources within a cost limit L, specified
together with the user query. Parallel execu-
tion of queries is possible, but not rewarded
since response time is not part of our opti-
mization goal. We present two variations of
our cost model: The simple case assumes the
same cost for each source (uniform cost). For
this case we develop an optimal algorithm.
The general case assumes variable costs of
the sources (variable cost). We develop an
algorithm for which we can prove bounded
optimality.



4.1 Uniform cost

All queries against sources have the same uni-
form cost C. Thus, the number of sources
that can be queried within the limit is fixed
at [éj Maximizing density would be sim-
ple if the density formula were monotone. A
greedy algorithm which in each step simply
chooses the next most dense source would
produce optimal results. However, choos-
ing one source changes the additional den-
sity that the remaining sources can supply in
a non-monotone way.

Example 9 Consider the simple example of
three sources and two attributes:

ai az
Si (0.6 0.6)
S (10
S3 (0 1)

A greedy algorithm with a cost limit of
two sources would choose S; first and next
either S5 or S3. However, the optimal so-
lution would be to choose only Ss and Sjs.
A greedy algorithm misses this optimum be-
cause dy(S1) > dy(S2) but dy(S1,53) <
du(SQ, 53). Od

To cope with the exponential nature of the
problem we present a slightly refined greedy
algorithm (Algorithm 1). It is greedy because
in each step it locally chooses the source
that will contribute the most (function get-
MaxSource()). After selecting a source, we
reassess the density scores of all remaining
sources such that the new scores reflect the
additional density a source contributes, given
the set of sources already selected. If plan
P is the set of sources already in the plan,
then the reassessed density score for S; ¢ P
is dy(Si) = du(P,S;) — du(P). This refine-
ment “looks ahead” one step as compared to
a simple greedy version.

Algorithm 1 initializes a set R of remain-
ing sources with all sources and a set P of
already chosen sources which represents the
plan. Because all sources have cost C' and
the limit is L, we can query Léj sources. In

the loop we choose the remaining best source,
move it from R to P and reassess all sources
in R according to the new current plan P.

The first step of the algorithm simply
chooses the source with the highest density.
The next source chosen will be the one that
complements the first source best. Typically
this will be a source that exports different at-
tributes than the first source, since the scores
for these attributes were not reduced during
reassessment.

Algorithm 1 Uniform Cost High Density
Planning
Input: Sources St,...S,, user query u, user
weighting w, cost limit L, uniform cost C

Output: query plan for u

1: R= {Sl,...,Sn};

2: P= {},
3: fori=1to [%J do
4: S = getMaxSource(R);
5. remove S from R;
6
7
8
9

add S to P;
reassess scores in R;
: end for
: execute P;

Example 10 Recall the density scores wrt.
ug of the four sources:

duy (S1) = 337 dus (82) = 33;

33
du2(S3) = %; du2 (54) = %

Let L = 3 and C = 1, i.e., 3 sources can
be queried. The algorithm greedily chooses
S1 to be queried first, i.e., P = {S1} and
dy,(P) = 14/23. The reassessed density
scores of the remaining sources are
du,(S2) = é_g - % =0;
duy (S3) = % - % =

duy(S1) = 33 = 35 = 25-

25,
23

Hence, S5 is chosen next, i.e., P = {S1,S3}
and dy,(P) = 16.5/23. Again the density
scores are reassessed

_ 16.5 16.5 _ .
duy(52) = 53° — 235 = 0;

_17.5 16.5 _ 1
duy (S4) = 533° — 55 = 335



and the final plan is P = {S1, 53,54} with
17.5

an overall density score of dy,(P) = 55°. O

The computational complexity of Algo-
rithm 1 is O(n?) because the loop is per-
formed | 5| < n times and within the loop
we search for the best source and reassess all
remaining sources. Algorithm 1 yields op-
timal results as we show with the following

property:

Theorem 2 Let P be the set of already cho-
sen sources and let S be a source among the
set R of remaining sources. If d,(P,S) >
du(P,S;) for all S; € R, then d,(P,S,P") >
dy(P, S;, P'") for all plans P' containing only
sources from R.

PROOF:

du(P,S, P
=dy(P,S) + dy(P') — dy(P, ) - d,,(P")
> dy(P, ;) 4 du(P") — dy(P, S;) - dy(P")
=d(P,S;, P") O

That is, if an algorithm chooses the source
S that fits best to the current plan P, the
resulting plan will be better than any other
plan, regardless of the plan suffix P'. Algo-
rithm 1 follows this choice model.

4.2 Variable cost

If we drop the uniform cost assumption, we
turn the problem into a variation of the knap-
sack problem, which is NP-complete [7]. In
the knapsack problem, we have a number
of items (sources) with different costs and
different benefits (density scores), a limit,
and the goal of optimizing the overall ben-
efit. Our problem differs from the traditional
knapsack problem, again because the bene-
fit of a source is not fixed, but varies non-
monotonically, depending on the sources al-
ready queried. Considering the exponential
nature of the knapsack problem, it is almost
impossible to guarantee an optimal solution
for any reasonable number of sources. Poly-
nomial approximation algorithms with opti-
mality guarantees of —+ and beyond have

1+

been presented for the knapsack problem
[12]. We use one of the most simple approxi-
mation algorithms, which guarantees results
within 50% of the optimum [4] and adapt it
to our problem.

Algorithm 2 is also greedy, but extends the
previous algorithm in two ways: First, to ac-
count for variable costs, it selects sources by
their density/cost ratio and not simply by
their density (function getMaxRatioSource()
in Line 5). Also it cannot simply choose a
fixed number of sources, but must keep track
of the remaining budget (Line 12). Second,
before executing sources in that greedy or-
der, the algorithm compares in line 15 the
final expected density score with that of the
single source with the highest density (not
the highest ratio) obtained in Line 14. The
better of the two choices is executed. This
well-known technique avoids notorious worst
cases.

Algorithm 2 Variable Cost High Density
Planning

Input: Sources Si,...S, with costs ¢(S;),
user query u, user weighting w, cost limit
L
Output: query plan for u
: R={S1,...,S:};
P ={}
usedcost = 0;
for i =1tondo
S = getMaxRatioSource(R);
remove S from R;
if usedcost+c(S) > L then
break;
end if
add S to P;
reassess scores in R
usedcost — usedcost + ¢(S);
: end for
: Smax = getMaxSource( {}, {51, ...
¢ if dy(P) < dy(Smax) then
P = Smax;
: end if
: execute P;

[ B e S o S S St
L N v
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The complexity of Algorithm 2 also is



O(n?). The results of the algorithm can be
further improved for instance by “filling in”
inferior sources if the cost limit is not yet
reached. The following theorem shows that
the algorithm finds plans that reach a density
that is at least 50% of the optimal solution.

Theorem 3 Algorithm 2 yields 50% opti-
mality.

PROOF: Let Ra be the density result of the
algorithm without lines 14-16, i.e., without
the technique of choosing the single best
source. Let Al be the density result of the
complete algorithm, let Sy.x be the single
source with maximum density, and let Opt
be an optimal solution. Let Fr be the frac-
tional solution obtained by adding to Ra a
fraction of the next source Syext to be cho-
sen. This fraction of a source has the size to
exactly use up the cost limit. Trivially Fr
> Opt, i.e., the density of plan F'r is greater
than or equal to the density of an optimal
plan. We distinguish the two cases of the al-
gorithm choosing either the greedy sequence
or the single largest source.

Ra > Spax :
2Al = 2Ra > Ra + Smax
> Ra + SNext = Fr > Opt
Ra < Smax :
2Al = 25max > Ra + Smax
> Ra + Snext = Fr > Opt O

5 Conclusions

The seamless integration of several informa-
tion systems poses great challenges to infor-
mation management, many of which are well
described in research literature. However, lit-
tle work has been reported towards coopera-
tive query answering. We contribute to this
issue by extending a mediator-based informa-
tion system with the ability to (a) answer
queries even if no complete answer is avail-
able, to (b) constrain the amount of money or
time invested in query answering, and to (c)

obtain qualitatively good or even optimal an-
swers in a fraction of the time it takes to com-
pute the complete answer. To this end, we in-
troduced density scores, which quantify and
qualify the amount of information returned
by an data source. Using this measure, we
relaxed the traditional conditions on query
planning in information integration, i.e., re-
turning complete answers. Instead, our co-
operative query answering method aims at
producing satisfying plans and answers. For
a monetary cost model, we described two al-
gorithms that find such answers.

Density of plans is only one aspect of a
completeness model for plans. The combina-
tion of density scores with coverage score that
reflect the size of a source calculates the true
completeness of a source. Future work will
include algorithms that optimize complete-
ness for plans.
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