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Abstract

Querying heterogeneous collections of data-centric XML documents requires a combination of
database languages and concepts used in information retrieval, in particular similarity search
and ranking. In this paper we present an approach to find approximate answers to formal user
queries. We reduce the problem of answering queries against XML document collections to
the well-known unordered tree inclusion problem. We extend this problem to an optimization
problem by applying a cost model to the embeddings. Thereby we are able to determine how
close parts of the XML document match a user query. We present an efficient algorithm that
finds all approximate matches and ranks them according to their similarity to the query.

1 Introduction

XML has gained much attention in both the information retrieval community and in the field
of database research. One reason is that XML offers a uniform and standardized way to repre-
sent and exchange both documents in the sense of information retrieval and data exported from
databases. On the one end of the spectrum of XML usage are text-centric documents with only
few, interspersed markups. On the other end of the spectrum are data-centric documents that
are solely created and interpreted by some application logic. Such documents have a well defined
structure and are typically stored in homogeneous collections. But XML is also considered as the
common format for the integration of a wide range of data. One example are federated digital
library catalogues that combine the data from several repositories which typically have differing
schemata. Another example are data warehouses storing all company-wide XML-formatted docu-
ments such as messages and database reports. Such document collections are data-centric but do
not have a common schema, i.e., they are heterogeneous.

To search in text-centric XML documents, techniques adopted from information retrieval are
appropriate. For querying data-centric XML documents in homogeneous collections, new query
languages have been developed (for an overview, see [FSW99, BC00]). However, for querying
heterogeneous collections of data-centric documents neither information retrieval techniques nor
query languages are appropriate. Classic information retrieval models like the vector space model
completely ignore the structure of the documents. Even if meaningful element and attribute names
are included in the creation of descriptors, the semantics of the nesting is lost. Query languages,
on the other hand, cannot cope with documents that are only similar to the query. A substructure
of a document either matches the query or it does not. The consequence of the binary decision
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process is that there is no ranking of the results according to the similarity of the query and
the document and that often not all desired results are returned. Note, that enriching a query
language with regular path expressions does not solve the problem of querying collections with
partially known schema as we will point out in Section 2.

We believe that for heterogeneous collections of data-centric documents the formalism of database
languages combined with the concept of uncertainty used in information retrieval will achieve
the best results. In this paper we integrate some aspects of the two concepts and present the
XML query language approXQL as a syntactic subset of XQL [RLS98]. Unlike XQL or any other
XML query language, results of approXQL are not only all strict matches to the query but also
results that have additional inner elements not specified by the query. This method returns
satisfying results even when the user does not know the exact structure of the collection. The
results of approXQL queries are sorted by their similarity to the query. Exact matches are given
first, followed by results with only slight deviations etc. Together with the language we present a
query-centric algorithm that efficiently answers approXQL queries.

In Section 2 we show that it is difficult for a user to query a heterogeneous document collection
using a traditional XML query language. In Section 3 we introduce the approXQL query language
and show how we interpret the queries and the data collection as trees. In Section 4 we review the
well-known unordered tree inclusion problem and extend it to the approximate tree embedding
optimization problem. In Section 5 we present our algorithm. In Section 6 we survey related work
and give an outlook of future improvements and extensions in Section 7.

2 Motivating Example

Assume that we have a collection of documents storing metadata about books. Figure 1 shows
a subset of this collection. It contains information about different books the author “Bradley”
contributed to.

Doc 1 Doc 2 Doc 3 Doc 4
book book book book

Qauthor  Otitle Qauthor  Otitle Olist Otitle Ochapter  Otitle
1 1 1 1 1 1 1 1

OpPcbATA OPcDATA  Oname OpPcpAaTA  Qauthor OPcDATA  Qauthor  (OPCDATA
"Brad/ey" "L L " "
(OPCDATA (OPCDATA (OPCDATA
"Bradley" "Bradley" "Bradley"

Figure 1: A heterogeneous collection of data-centric documents

Assume further that we need information about all books that have as author “Bradley”. We
specify an XQL query that exactly models our information need:

/book/author/text() = "Bradley"

Obviously, the only result of the query is document 1 — despite the fact that at least the documents
2 and 3 exactly match our information need too. Moreover, the document 4 may also be of interest.
Fortunately, all XML query languages support regular path expression. Even with the simplest
kind of regular path expression, the skip operator we can partly solve our problem:

/book//author//text() = "Bradley"



Unfortunately, in order to get the desired results we have to know that certain parts of the
documents have to be skipped and where they are. Coping with structural heterogeneity requires
knowledge of the entire data structure and often leads to complex queries. Furthermore, query
processors for XML query languages do not measure how many elements have to be skipped in
order to match the query. Therefore, no ranking according to structural closeness is possible and
the results are returned in an arbitrary order.

We assume that the user has only partial knowledge of the data structure. The user specifies
queries that exactly meet his or her information need. The system retrieves results that exactly fit
to the query, but also relaxes the matching conditions to retrieve documents that have additional
elements not specified in the query. The results are ranked according to the similarity to the query.

3 Data and Query Modeling

In this section we introduce an elementary data model for XML. We use some normalizations to
map elements, attributes and PCDATA to a single node type. We further introduce the approXQL
query language.

3.1 Modeling XML Data

We model a collection of XML documents as a labeled tree with a single root. Currently, we
ignore ID-references and hyperlinks. To simplify our model, we only use a single node type. Each
node d of that type has a label, written as label(d). We use the notation parent(d) to refer to the
(unique) parent node of d.

We perform the following normalizations: Elements are mapped to nodes using the element name
as label. Each attribute is mapped to two nodes, the first one gets the name as label, the second
one gets the value of the attribute as label. PCDATA sections are mapped to nodes by treating
the whole text as label. Figure 2 shows an example of the normalization.

book () {year=1998}
book
author title +

+ + year Oauthor title
O PCDATA O PCDATA

Bradley XML (01998  (OBradley OXML
(a) Part of a XML data tree (b) Normalized version

Figure 2: Simplification of a data tree

Note, that we do not consider semantic heterogeneity of attribute and element names. We assume
that all elements modeling the same real world domain also carry the same label. This can be
achieved by providing a function that maps semantically equal names to a common label.

3.2 The ApproXQL Query Language

We introduce a simple pattern matching language called approXQL that is a syntactic subset of
XQL [RLS98]. Informally, approXQL consists of (1) the path operator “/”, (2) the filter operator
“[17, (3) the text () selector, and (4) the operators “=” and “$and$”. The following query requests
books that appeared in 1999 and have the author “Bradley”:



book [year/text () = 1999’ $and$ author/text() = "Bradley"]

Note, that the user does not need to know how the year 1999 is modeled in the original documents.
Due to our simplified data model, attribute values and element contents are both mapped to the
leaf nodes of the data tree. Thus, the query will match both cases. We do not require that query
paths end with the text () selector. The following query matches books that have a foreword and
at least one editor:

book [foreword $and$ editor]

An approXQL query can be interpreted as tree (see Figure 3). Each $and$ expression is mapped
to an inner node of the tree. The children of an $and$ node are the roots of the paths that are
conjunctively connected. We use the notation children(q) to refer to the set of children of ¢ and
the notation label(q) to identify the label of q. Note, that different query nodes may have the
same label. The result of an approXQL query is always a subtree of the data tree. In contrast to
XQL we do not allow queries with boolean results.

title author

book] title/text() = 'XML' $and$ XML O firstname lastname
author( firstname/text() = 'Neil’ $and$
lastname/text() = 'Bradley’ ]] O Neil O Bradley
(a) approXQL-Query (b) Query tree

Figure 3: Mapping of an approXQL query to a tree.

4 The Tree Embedding Problem

We have shown how to interpret both the data and the query as trees. With this interpretation,
the problem of answering a query can be mapped to the problem of embedding a query tree in
the data tree.

The ezact ordered tree embedding problem has been extensively studied (see [RR92] for an
overview) and is solvable in polynomial time. However, we are not interested in an ordered
embedding, because ordering in the data may be inconsistent forcing us to ignore it. Even if
it were consistent the order might not be known to the user. Also, we are not interested in an
exact embedding as we will see in the following sections. There, we first review the unordered
tree inclusion problem. Then, to answer user queries in a meaningful way, we extend it to an
optimization problem.

4.1 The Unordered Tree Inclusion Problem

Our goal is to approzimately embed the query tree into the data tree such that the labels and
the ancestorship of the nodes are preserved. I.e., we allow the data tree to have nodes in between
those found in the query tree, but their predecessor—successor relationship must still hold in the
tree. Figure 4 shows an allowable embedding. The query tree on the left is not perfectly embedded
in the data tree on the right: The name node in the data tree is skipped.
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Figure 4: Unordered inclusion of a query tree in a data tree.

To find all such embeddings, Kilpelédinen introduced the so called unordered tree inclusion problem
[Kil92]. The author proved that even the decision problem, i.e., the problem of deciding whether
one embedding exists, is NP-complete. We follow [Kil92] in describing the problem.

Definition 1 (Embedding) A function f from the set Q of query nodes into the set D of data
nodes is called an embedding if for all g;,q; € Q

1. fl@) = f(g) & qi = g,
2. label(q;) = label(f(qi)),
3. g; is the parent of q; < f(g;) s an ancestor of f(q;)

We call the data node that is mapped to the query root the embedding root. Note the difference
between parent and ancestor in condition 3. Between a node and its parent there exists an edge
whereas between a node and its ancestor there exists merely a path.

In [Kil92] the author also studied the problem of locating all subtrees (represented by their root
nodes) of the data tree that include the query tree minimally. However, in the framework of the
author the term “minimal” simply means that only those matching subtrees are retrieved that
do not include another matching subtree. In the following subsection we introduce a different
interpretation of a minimal embedding.

4.2 The Approximate Tree Embedding Problem

The tree inclusion approach is in itself only of limited value to the user because the solutions are
not ranked: The embedding roots are retrieved in arbitrary order independent of how many nodes
have to be skipped in order to perfectly embed the query. We do not only want answers that
perfectly match the user query. But they should match as well as possible. We solve this problem
by measuring the quality of an embedding. We use a cost function over the data nodes that must
be skipped to embed the query perfectly.

We use the cost model in two ways: First, among all embeddings that have the same embedding
root we only select the cost-minimal embedding. Thus, we avoid situations like that of Figure 4
where several embeddings refer to the same book. Second, we rank the cost-minimal embeddings
according to the cost. Embeddings where none or only a small number of nodes are skipped have
a low cost and are ranked high. To this end, we assign a deletion cost cost(d) to each data node.

Definition 2 (Embedding cost) Let f be an embedding of Q in D. Let f(Q) be the image of f
and P be the set of data nodes along all paths starting and ending at any two nodes d;, d; € f(Q).
Then the embedding cost of @ in D is C:= 3, p\ 4(q) cost(d).



We define a match as an embedding root together with its cost:

Definition 3 (Match) Let f be an embedding according to Definition 1. Let d be the embedding
root. We call the node d together with its embedding cost a match: m = (d,C).

We use the notation d,,, and C,, to refer to the components of m. Note, that we also use the term
match for embeddings of query subtrees.

Definition 4 (Minimal match) Let F' be the set of embeddings from a query tree into a data
tree and let M be the set of matches belonging to F'. We partition M into groups of matches that
share the same root node. For each group, the match with the minimal cost is called minimal
match.

The following section describes an algorithm that finds the cost-ranked set of minimal matches to
an approXQL query.

5 An Algorithm for the Approximate Tree Embedding Problem

The complexity result of [Kil92] suggests that there is no polynomial algorithm solving the approx-
imate tree embedding problem. We introduce a new algorithm for the approximate tree embedding
problem that is still exponential in the worst case. But in typical cases our algorithm only takes
sublinear time wrt. the database size. First, we sketch the basic idea of our approach and then we
discuss the details of the algorithm.

Our algorithm is based on dynamic programming. Its most important property is the query-centric
execution. For each query node only those data nodes are fetched that are members of a potential
embedding of the query tree in the data tree. The query tree is processed bottom up. For each
query node ¢ the embeddings of the query tree rooted at ¢ are combined from the embeddings of
the query trees rooted at the child nodes of q. Each embedding is represented by a match. The
matches belonging to a certain query node are grouped by their data nodes. From each group
only the minimal match is selected. The set of minimal matches belonging to the query root are
the results of the algorithm. They are sorted by increasing cost and retrieved to the user.

5.1 Constructing the Embeddings

We use a postorder numeration of the nodes in the query tree. The main loop of the algorithm
visits the query nodes in ascending order (see Algorithm 1, line 1). The postorder ensures that
for each child node of the current query node, the minimal matches have already been calculated
and stored in the match set belonging to that child node. Recall from Section 4 that a minimal
match m is a pair consisting of the embedding cost C,, and a data node d,,, that is the root of the
minimal embedding of a query subtree.

Assume that g; is the current query node. Now, the algorithm fetches all data nodes that have the
same label as ¢; (line 3). For each matching data node d, the algorithm tries to embed the query
subtree rooted at ¢; in the data subtree rooted at d. To construct those embeddings the algorithm
builds all combinations of matches where each combination consists of & matches, one from each
match set. Each combination represents a potential embedding of the query subtree rooted at g;
in the data subtree rooted at d. To choose the proper combinations out of the set of potential
ones, the algorithm checks for each combination S whether all data nodes of the matches in S are
descendants of d and whether the matches in S are not blocking. We first formalize the terms
blocking matches and proper combination. Afterwards we explain how the algorithm incrementally
constructs the proper combinations.



Algorithm 1 Retrieving the sorted list of minimal matches of a query tree in a data tree.

Input: @@ — a list of query nodes sorted in postorder
D — a set of data nodes
Output: The sorted list of minimal matches

1: for all ¢; € Q do // Iterate through the query nodes in postorder
2 Mg, =10 // The match set belonging to ¢;

3 for all d € D such that label(d) = label(g;) do

4 S:={0} // The set of proper combinations

5: for all g; € children(g;) do

6: S":={0}

7 for all m € M, such that d is an ancestor of d,,, do

8 for all S € S do // At least, O will be selected

9: if d,, is no ancestor or descendant of any d,,, from m’ € S then

10: S":=S'u{Su{m}} // Append S’ by a new partial combination
11: end if

12: end for

13: end for

14: S:=¥¢

15: end for

16: if S# {0} then // There is at least one proper combination
17: My, := M,, U{selectminimal match(d,S) }

18: end if

19:  end for

20: end for

21: output The match set of the query root sorted by increasing cost

Definition 5 (Blocking matches) Let m; and m; be two matches with the data nodes dp,
and dy,; respectively. Let D;,D; C D be the node sets of the subtrees rooted at dp,, and dp;
respectively. Two matches m;, m; are blocking if the subtrees they refer to share common nodes,
i.e., D;ND; # 0.

As an example, see Figure 4 on page 5. The query subtrees rooted at the chapter and the author
node respectively both have two matches. In particular, they both have one match in the middle
part of the data tree. But the data subtree rooted at the chapter node contains the subtree rooted
at the author node. Therefore, those matches are blocking.

The blocking of two subtrees can be determined efficiently: Two subtrees are blocking if their root
nodes are identical or if the root node of one subtree is an ancestor of the other (line 9).

Definition 6 (Proper combination) Let ¢; be a query node and d be a data node to which g;
is mapped. Let Mg, be the match set belonging to q; € children(q;). Each tuple S of the cartesian
product quechildmn(qi)qu is called a proper combination if (1) the data node d,, of each match
m € S is a descendant of d and (2) if each pair of matches m;, m; € S is non-blocking.

Our algorithm incrementally constructs the proper combinations for a query node ¢; and a data
node d. First, the set of proper combinations is empty (line 4). The temporary set of combinations
S’ just collects all matches attached to the first child node of ¢; (lines 7—13). Then, S is set to S’
(line 14). The second loop combines all matches of the second child with the matches of the first
child now stored in S. That is, combinations of length two are constructed. The loop beginning
at line 5 finishes if all k child nodes of g; are processed, i.e., if proper combinations of length k are
constructed. Each proper combination S represents an embedding of the query subtree rooted at
¢; in the data subtree rooted at d.



We are only interested in the minimal embedding for ¢; and d. Therefore, the embedding cost of
each combination S has to be calculated. In Section 5.3 we introduce an algorithm that efficiently
calculates the embedding costs in order to select the minimal match. In the following subsection
we show how the ancestor-descendant relationship of two data nodes can be tested efficiently. This
crucial test is both needed in Algorithm 1 and for the calculation of the embedding cost.

5.2 Testing the Ancestor-Descendant Relationship

In a tree, the test whether a node is an ancestor of another node can be done in constant time
after a linear time preprocessing of the tree [Hav97]. This method uses a preorder numeration
of the nodes. If a node d; is a descendant of a node d; then number(d;) < number(d;). If the
comparison is true, then d; is either a descendant of d; or d; is in a subtree right of d;. The latter
case can be excluded if the number of the right-most leaf node of d; is known. We explicitly store
this log(|D|) number for each node d; and access it with the function bound(d;). Now the test
whether a node d; is an ancestor of a node d; can be performed as follows:

d; is an ancestor of d; <= number(d;) < number(d;) and bound(d;) > number(d;).

5.3 Calculating the Embedding Cost

To calculate the embedding cost for a given data node d and a proper combination S two steps
are necessary. First, we sum up the cost attached to the matches in S. Second, for each data node
d., belonging to a match m € S we add the cost of the path between d and d,,,. This is performed
by traversing the parent links starting at d,, and ending at d. During traversal we add the delete
cost cost(d;) of each visited node d;. Note, that the paths may share common nodes — but for
each node, the delete cost is included only once.

The preorder numeration together with the right-most leaf node numbers can be used to efficiently
calculate the embedding cost. In Algorithm 1 the embedding cost of a query node ¢; and a data
node d is calculated using a set of proper combinations S belonging to the child nodes of g;
(line 17). In the following we assume that each S € § is a list sorted ascendingly by the preorder
node numbers. The operator shift(S) retrieves the first component (i.e., match) of S and deletes
this component from S.

S has three important properties that follow from its construction:

1. d is an ancestor of all d,,,, m € S,
2. no node d,, is an ancestor or descendant of another node d,,;, and therefore

3. if number(d,,;) < number(d,,,) then d,,; is in a subtree to the right of d,,,.
These properties lead to a simple algorithm for calculating the embedding cost (see Procedure 1).
It calculates the embedding cost starting at the left-most data node d,, being part of a match
m € S. Because of the preorder numeration this is the node with the smallest number among all
data nodes belonging to matches in S. The algorithm traverses the path starting at d,, to the
root node of the embedding d, setting d; to each inspected node (line 2). The delete cost cost(d;)
is summed up while traversing the path (line 3). Whenever another matching data node d,, is
a descendant of d; then the procedure calculate_cost is called recursively using d; as root and
dp, as the new left-most node (line 5). After the path costs for all matching nodes in the subtree
rooted at d; have been added the algorithm proceeds with the parent of d; (line 8). Note, that for
each m € S the path between d,, and d is traversed only once. Therefore, the runtime complexity



Procedure 1 Calculating the embedding cost.

Procedure calculate cost(d,,d;,C,S)
Input: d, — the root node of the subtree for which the cost is calculated
d; — the data node currently inspected
C — the embedding cost calculated so far
S — a proper combination (in-out parameter)
Return: The embedding cost
1: m := shift(S)
2: while number(d;) > number(d,) and (m = nil or bound(d;) < number(d,,)) do
3 C := C + cost(d;)
4 while m # nil and bound(d;) > number(d,,) do
5: C := C + calculate_cost(d;,dpm, C,S) — cost(d;)
6: m := shift(S9)
7 end while
8 d; := parent(d;)
9: end while
10: return C

is bound by O(k - h) where k is the maximal number of children of any query node and h is the
height of the data tree.

The only step left is an algorithm that selects the minimal embedding and retrieves the accompa-
nying minimal match to the Algorithm 1. This is performed by the simple Procedure 2 that uses
Procedure 1 as subroutine.

Procedure 2 Selecting the minimal match.

Procedure select minimal match(d,S)
Input: d — a data node that is the root of the subtree embeddings
S — a set of proper combinations
Return: The minimal match
C:=x
for S €S do
m := shift(S)
C := Cy, + min(C, calculate _cost(d,d,0,5))
end for
return (d,C)

5.4 Runtime Complexity

The tree inclusion problem which is contained in our approximate tree embedding problem is
NP-complete. However, real world instances often have favorable properties. Our algorithm is
especially designed for such instances and in fact solves them in polynomial or even sublinear
time, yet its runtime complexity remains exponential. First, we analyze exactly the worst-case
complexity and then we discuss why the algorithm is nevertheless fast for queries and data used
in practice.

The outer loop of Algorithm 1 iterates over the |@Q| query nodes (line 1). For each query node ¢;
there are at most s < |D| data nodes that have the same label as ¢; (line 3). We assume that
fetching those matches needs I cycles, e.g., I = log|D|. The loop at line 5 iterates over all k
children of ¢;. Assume that we are at jth child (1 < j < k). There are at most s/~! (partial)



combinations in S. Each combination S € S consists of exactly j — 1 matches. We have s matches
for the current child. This leads to s7~1-(j —1)-s = (j — 1) - s/ comparisons. Note, that the set of
combinations S may grow exponentially. Thus, at the end of the iteration over all child nodes of
¢;, we needed at most E?ZQ (j—1)-87 = O(k® - s*) loops. The calculation of the embedding cost
of one proper combination (see Procedure 1) can be done in O(k - h) where h is the height of the
data tree. Because there are at most s* proper combinations, the selection of the minimal match
takes at most O(s* - k - h) cycles (Procedure 2). Therefore, the overall runtime complexity is

o(Q|-T-s-(K*-s"4+s"-k-n) = 0(Q|-I-s"" k- (k+h)).

One should not be scared off by the worst case runtime complexity of the algorithm. First,
no factor of the formula depends directly on the size of the data. The number of data nodes
influence only the time for the index lookup I, the selectivity s, and the height of the data tree
h. Second, the only factor that rises exponentially is s¥. This factor represents the number of
proper combinations belonging to a query node and a data node. It rises exponentially only in
pathological cases, e.g., if all query nodes and data nodes carry the same label. For real data,
this factor is typically decreasing during query processing. If the tree structure is non-recursive
(i.e., no node has an ancestor with the same label) then the number of proper combinations is
bound by O(K*) where K is the maximal number of children of a data node. If both k and K are
bound by a constant then K* is just a constant value. First experiments with our prototypical
implementation show that the above arguments are true in practice. But further experiments have
to be done to confirm our claim.

6 Related Work

Our work has four related areas: query languages for semistructured data, structural queries in
information retrieval, structure matching in graphs, and distance metrics for trees.

Many query languages for semistructured data and XML in particular have been developed during
the last years [AQMT97, RLS98, DFF 98, CJS99, Moe00]. All languages support operators that
allow to skip certain parts of the data. However, as already mentioned, they require that the user
knows which parts have to be skipped. Furthermore, they do not consider how many nodes have
to be left out in order to match the query. Thus, no ranking depending on structural similarity is
supported.

There are also many proposals of query languages in the field of information retrieval. Here, the
endeavor is to integrate content and structure in the query answering process. A good overview
of existing methods can be found in [NBY96]. Again, to the best of out knowledge no approach
measures the structural similarity between the query and the documents.

The problem of tree and graph embedding has also been studied in the theory of graphs and in
formal query answering models. The work most closely related to ours is [Kil92] that introduced
the tree inclusion problem. This approach was also taken up and modified in [Meu98]. Both
approaches do not measure the closeness of the query tree and the data tree. Other tree and
graph matching approaches, e.g., [BF99, NS00] also do not quantify the similarity between the
query and the data.

Several measures for the similarity of trees have been developed [Tai79, JWZ94]. In the ordered
case they are computable in polynomial time. But as we argued in this paper, ordered mappings
are not useful for querying XML data. The problem of finding the minimal edit or alignment
distance between unordered trees is MAX SNP-hard [AG97]. The complexity results suggest that
both measures are not useful for querying trees. Even algorithms for restricted forms of the edit
distance [Zha93, ZWS95] are bound by O(|Q| - |D| - K) where K depends on the maximal degree
of the nodes. We believe that algorithms that touch every data node are not applicable for large
databases.
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7 Outlook

For future research we conceive two directions—improvement of the algorithm power and execution
time and improvement of the usefulness for the user.

Goldman and Widom introduced strong DataGuides as a schema for semistructured data [GW97].
Our algorithm can make use of such schemata to greatly accelerate the search for embeddings in
the data tree. Further optimization techniques make use of certain properties of the query and
the data. Also, we plan to relax the tree assumption and allow directed acyclic and even cyclic
data structures.

The current version of our algorithm compensates under-specification of the user query: Missing
nodes in the user query are skipped in the data. An over-specified user query has nodes that do
not appear in the data. We plan to compensate by skipping nodes in the query in the same way as
we do in the data. Further, we plan to investigate methods for learning the delete costs. Currently
each node has the same delete cost regardless of the importance of the node.
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