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Abstract

Database integration and migration are important, but labor-intensive tasks. To transform
data from one representation to another, an expert user must identify and express correspondences
between different attributes of different schemata. There are potentially many attributes in a source
schema that might correspond to a particular target attribute. Our aim is to ease the burden of the
user by classifying source attributes so that they can be automatically and intelligently matched to
target attributes.

For categorical data, we present a novel variation of existing Naive Bayes classification tech-
niques based on domain-independent feature selection. For numerical data, we use a quantile-based
classification method, discovering characteristic distributions of the data. We show through exten-
sive experiments that automatic classification of attributes is both feasible and useful for identifying
potential matches. The techniques are exploited for several different tasks in Clio, a tool for semi-
automatic schema mapping.

1 Finding Attribute Correspondences

The basis of many systems that integrate data from multiple sources is a set of correspondences between
source schemata and a target schema. In general, correspondences express a relationship between sets of
source attributes, possibly from multiple sources, and a set of target attributes. These correspondences
determine how data from the sources is transformed and combined to appear at the target. Although
different approaches define the correspondences differently, they all have in common that a user or

domain expert must identify and express the correspondences.

Clio is an integration tool, that assists users in defining value correspondences between attributes
[HMH™01]. It presents an easy-to-use drag-and-drop interface displaying the source schemata and a
target schema. To express a correspondence between two attributes, the user draws an arrow from an
attribute of a source schema to an attribute of the target schema, as shown in Fig. 1. Each arrow in the
figure represents a correspondence. Based on the source and target schema information, Clio interprets
these lines to deduce the final mapping [MHHO00]. This schema-based mapping can be improved by an
instance-based matching component, which uses existing data in source and target databases to suggest
mappings. We address two opportunities to help the users by predicting and suggesting such correspon-
dences in Clio. First, in real life scenarios there may be many sources and the source relations may have
many attributes. The users can get lost and might miss or be unable to find some correspondences.
Second, in many real life schemata the attribute names reveal little or nothing about the semantics of
the data values. Only the data values in the attribute columns can convey the semantic meaning of the

attribute.
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Figure 1: A screen shot of Clio

Example 1. Consider again Fig. 1, where we examine two different schemata for bibliographic data.
On the left-hand side is a source schema with relations about scientific articles, authors, etc. On the

right hand side is a target schema with the same type of information, but modelled differently.

In order to migrate data from the source schema to the target schema, correspondences between
source and target attributes must be identified. For instance, it is unclear whether the source attribute
LOC refers to a geographic address or a bibliographic reference. The methods presented in this paper
can automatically detect that LOC is a reference and suggest an appropriate correspondence (e.g., to
REFKEY). O

The work presented in this paper relieves users of the problems of too many attributes and meaning-
less attribute names, by automatically suggesting correspondences between source and target attributes.
For each attribute, we analyze the data values and derive a set of features. The overall feature set forms
the characteristic signature of an attribute. There are more likely to be correspondences between at-
tributes with similar signatures than between others. The automation of the process solves the first
problem, because our methods systematically scan all available attributes. Our analysis of the data
values solves the second problem, because our methods do not depend on the attribute names but
rather on the actual data values stored in the tables. Other applications benefiting from methods for
automatically detecting attributes that store similar data are query formation tools, data exploration
tools, tools to check consistency and cleanliness, etc.

Our hypothesis is that a properly chosen small set of domain-independent features can mostly cap-
ture structural information of categorical (i.e., non-numerical) attributes and distribution of numerical
attributes. The focus of the paper is to verify our hypothesis through experiments on several real world
databases and one synthetic database.

Contributions. We propose a feature set composed of Boolean features based on the existence of a
single character or a set of related characters (Sec. 2). For classifying categorical attributes, we propose

the Naive Bayes classifier, for which we also present an intuitive confidence measure (Sec. 3). We show



through experiments that the feature set captures structural information as an overall good signature,

and we show good performance of the Naive Bayes classifier for our problem domains (Sec. 4).

For classifying numerical attributes, we show through experiments that quantile-based features cap-
ture distribution information of attribute values as an overall good signature. We propose to combine
two sets of quantiles, one for all values and another for non-zero values only (Sec. 5). The resulting
accuracy improves significantly over the use of either set of quantiles alone. Finally, we propose three
new similarity metrics, given the feature set, and show their effects and trade-offs on the accuracy of
the classifier (Sec. 6). Based on these successful studies, the methods were included in Clio in several
deployment modes, from automatically suggesting attribute correspondences to dependency discovery
(Sec. 7).

2 Attribute Signatures Using Features

To determine a signature for an attribute, we make use of the properties (features) of the values stored
for that attribute. For each data value, we examine certain features and note in a Boolean feature
vector whether the value has the feature or not. Features include the presence of certain characters,
such as the @-symbol or a space character, in the data field. Also, we examine aggregate features, such
as the presence of any upper case character. An attribute signature vector stores the average number

of occurrences (as a fraction) of the Boolean features for all of its values.

By determining the similarity of two vectors, we are able to classify attributes using signatures, and
hence, make suggestions about which attributes might correspond to each other. An email-attribute
at the source has a signature with a value close to 1 for the presence of @-symbols and periods, a
lower value for the presence of hyphens, and a value of zero for the presence of other symbols such
as parentheses. An attribute at the target having the same or a similar signature is very likely to be
an attribute also storing email addresses. A strong similarity between the two signatures suggests a

correspondence.

Three factors influence the success of our approach. The first two factors are under our control; the
third lies beyond our control for a given environment. Hence, we present results that suggest appropriate

choices for the first two, and examine the effects of the third.

Choice of features. The chosen feature set must be general enough to highlight the signatures of all
possible types of attributes, including numerical attributes, text attributes, dates etc. Knowledge
about the data type of the attribute is only a little help: For instance, a price can be stored
as a string, as an integer, or as a float and is thus indistinguishable by type from, say, an age
attribute.

Choice of classifier. Different classifiers have different discriminatory power and deliver different re-
sults. We examined the accuracy of several popular classifiers. For categorical data, we used the
Naive Bayes classifier, for numerical data a novel distribution-distance method.

Column size. All else being equal, the more data values are available to the classifier, the better the

signature represents typical data of that attribute. In order to find corresponding attributes in



two schemata, data should already be present in both.

In our scenario of mapping source schemata to some target schema there is usually a sufficiently
large amount of data at the sources. However, since the data is to be migrated to the target
schema, data for this schema may not yet exist. If there is no data, we ask the user to enter data
examples. Our experiments show good results, even when target attributes have only a small

number of data values, e.g., fewer than five entries.

We divide attributes into two categories based on their data types: Categorical attributes include all
non-numerical types like Char and Varchar; numerical attributes include Smallint, Integer, Decimal,
and Double type attributes. We assume attributes to be database-like attributes with short data, as
opposed to text-like attributes with long paragraphs. First, we treat all attributes as categorical and
present classification techniques and an evaluation. That is, we convert numerical data to Varchar type
and apply classification techniques. Then, we present specialized techniques for classifying numerical

attributes only, again with an evaluation.

3 Classifying Categorical Attributes

Classification consists of two steps: Describing the classes and objects to be classified, and applying
a classifier to assign the objects to classes. Here, both the classes and the objects to be classified are
columns of data values from an attribute. We describe an attribute with a signature, reflecting innate
features of the values. After defining the signatures, we formulate the attribute classification problem.

We give a brief review of the Naive Bayes classifier and propose a confidence measure.

3.1 The Feature Set

A feature is a Boolean value describing a certain property of a data value. Features are combined to form
a Boolean data signature vector describing multiple properties of a single data value. The signatures of

all data values in a column are finally aggregated to an attribute signature vector with values in [0, 1].

Definition 1 (Feature) A feature f is a Boolean function that takes a data value t as input and

generates 1 (for true) or 0 (for false) as output.

A feature might check for the presence of an @-symbol, whether the data value contains the upper-case
character A, or whether it contains any digit. For the purpose of classification, a set of carefully chosen
features, called a feature set, is used as the basis for generating a data signature for each data value.
Instead of using Boolean features, we have considered using numeric features that count occurrences of
characters. McCallum and Nigam compare the Naive Bayes classifier as we use it (see Section 3.2) with
such a multinomial variation [MN98|]. They conclude that the former generally performs better at small
feature set sizes, which is the case for our setup. Additionally, Boolean features minimize computational

complexity and enable efficient ad hoc classification requests.

Definition 2 (Data Signature) Given a data value t and a feature set F = {f1, fa,- -, fx}, the data
signature of t with respect to F is F(t) == (f1(t), f2(t), -+, fu(t)).



Example 2. Let data values t; = ho@almaden.ibm.com, to = naumann@hu-berlin.de, and t3 =
123@yahoo.com. Let feature f; check whether the input contains an @-symbol, f; check whether the
input contains a hyphen, and f3 check whether the input contains any digit. Then with respect to
F ={f1, fa, f3}, the signature of ¢; is F(¢1) = (1,0,0), and F(t2) = (1,1,0), and F(¢t3) = (1,0,1). O

Definition 3 (Attribute Signature) Given an attribute a with n data values, t1,ta, - ,t,, and a
feature set F', the attribute signature of a is S(a) == %Z?:l F(t;).

Thus, the j-th element in the attribute signature &(a) is the average of the j-th value of the data
signatures of all values in a. This value is between 0 and 1 and represents the probability that a data
value in the attribute has this feature. We use this information to decide whether a new data value
should be classified as belonging to this attribute.

Example 3. Figure 2 shows three attributes with sample data. The attribute signatures of the emails
attribute (a1), the eAddresses attribute (az), and the Full_name attribute (a3) with respect to the

three features described in Example 2 are, respectively:

ot () + () + -+ () - (4] s

Already from this small example, the signatures of the two first attributes suggest a similarity in the
data, and a dissimilarity of the third. (]

Il
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al: emails

hoQalmaden.ibm.com
naumann@cs.hu-b.de

a2: eAddresses

helpQaltavista.com
HIGH5Q@internet.org

a3: Full_name

Xuqing Tian
Howard Ho

123@yahoo.com tim@w3c.org Laura Haas
superman@web.ac.uk laura@almaden.ibm.com Felix Naumann
dan_99Q@acm.org 12monkeys@tu-d.de Dan Rather
bill@hotmail.com sombody@somewhere Bill Clinton

Peter John-Carter
Barbara Bush

lou@us.ibm.com felix@almaden. ibm. com
tianxq@berkeley.edu
mike@123go.com

BillClinton@mme.net

Figure 2: Three attributes with data

We consider two types of features: singleton features and aggregate features. A singleton feature
checks if a data value contains a certain character. An aggregate feature checks if a data value contains
any character in a predefined aggregate set of characters. The aggregate set intends to capture characters
that are closely related at various levels. In this paper, we consider all singleton features that check
for a delimiter, a letter, or a digit. For the aggregate features, we consider the following: delimiter,
lower-case vowel, upper case vowel, lower-case letter, upper case letter, letter, digit, and alphanumeric.

Table 1 summarizes these 103 features.

Using these features, attributes with different semantics have different signatures. E.g., a phone
number attribute has high scores for the singleton digit features, for the singleton hyphen feature, and
a very high score for the aggregate digit feature. A last name attribute has low scores in all of those,

but high scores for the aggregate character and vowel features, and characteristic scores for the space



Singleton Features | Aggregate Features

{a}, ..., {z}, {@,-, ..., /, \}, {0,...,9%}
{a}, ..., {2z}, {a,e,i,o,u}, {A,E,I,0,U}
{0}, ..., {93}, {a,...,z}, {4,...,2}

{e}, ..., {\} {a,..., z,A,...,Z}

{a,..., z,A,...,Z,0,...,9}

Table 1: The feature set

and hyphen delimiters, reflecting the typical frequency of double last names. Recall that we assume
attributes to store database-like, short data values. For text-like attributes such as a book review, all
features will score 1 or close to 1. If only one such attribute is present, our classifier will correctly

classify it, if more are present, other features are necessary (see below).

Other features. In this paper we highlight only character-based features, to assess their potential
and show their suitability for our application scenario of small test sets and data-type attributes. Other
types of features are potential candidates for successful classification: schema meta-data, n-grams, entire
words, and domain-dependent features. All mentioned features are useful to some extent and in some
scenarios. A combination through some weighted aggregation of different classification results can be

quite powerful, and is to some extent used in Clio, but not reported on here.

Schema meta-data like data type, attribute length (number of Bytes allocated to the attribute),
attribute name, and functional dependencies are usually readily available, but often are of little
use. Typically, data types and length alone do not convey the semantics of an attribute, e.g., a

varchar-type attribute could store a date, an ID, a name etc.

An attribute name can contain some semantic meaning, and Clio indeed uses an edit-distance
measure between attribute names to complement and enhance automatic classification. We do

not report on these enhancements in this paper.

n-grams are character sequences of length n, i.e., the singleton features are 1-grams. N-grams were
introduced as features for text classification and have proven to be very useful [Dam95]. A
disadvantage of using n-gram features is the increased time- and space-complexity of the classifier.
In the dramatically increased signature space small data sets will not have a signature that is
detailed enough to be comparable. Consider a training set of say 10 last names. Only a few of
the numerous n-grams appear in those names, rendering it likely that a test set with say 5 other

names will have no matching n-gram and is thus not recognized as a match.

Entire words as features, an approach developed for text classification, are used for instance in [AJS00,
DDHO01]. Word-based features, possibly enhanced by the use of an ontology, are not appropriate
for the problem at hand: We assume data-type attributes, not text-like attributes. Using word-
based features would drastically reduce the ability of the feature vector to express the signature

of an attribute category, for the same reasons as for n-grams.

Domain-dependent features and domain-dependent matching techniques are suggested by Doan et
al. [DDHO1]. For instance, the occurrence of predefined words such as beautiful and great point

to the description attribute of a real-estate database. The goal of our paper is to present a general



classifier, that is not restricted to a specific domain and that must not be adapted with each new

usage. Domain-dependent features can and should complement our approach at deployment.

3.2 The Attribute Classification Problem

We describe the problem of finding corresponding attributes as a classification problem. Given m
attributes and n data values per attribute, we generate m - n training data records. Each contains k
input values (corresponding to the k feature values) and a class label: the attribute ID. For the testing,
we are given t data values from some (unknown) attribute a,,1 < z < m, with equal probability and
undisclosed to the classifier, and ask the classifier to predict the attribute ID. In general, any type of
classifier can be used. In the following paragraphs we present the Naive Bayes classifier and discuss

several alternatives.

Naive Bayes classifier. The Naive Bayes model as a classifier was introduced by Good [Goo65]. We
use the multi-variate Bernoulli model for the Naive Bayes classification, as laid out by McCallum and
Nigam [MNO98|. Given a test data value ¢, the Naive Bayes classifier estimates the posterior probability

of ¢ belonging to source attribute a; (training data) via Bayes’ rule:

P(t|ai) . P(ai)

P(ai|t) = P(t)

(1)
This term is evaluated for each attribute a;, and we assign the test column to the attribute that
maximizes the product of the probabilities of all ¢ in the test column. We ignore P(¢) in the denominator
and P(a;) in the numerator, because in our model they are the same for all a;. To estimate P(t|a;), we

“naively” assume that all the features of ¢, f;(t), 1 < j <k, are independent to get

k
P(tla;) = TT P(fi()]a). (2)
j=1

P(f;(t)|a;) is the fraction of occurrences of the particular feature in all data values of a;. To avoid

situations where P(f;(t)|a;) = 0 and thus P(t|a;) = 0, we apply Laplace’s law of succession [Goo65] to

arrive at
lai]- & (ai)+1 : _
‘J lf fj(t) =1
P(fjt)]a;) = lol+2 (3)
I |ai|'(1‘_aﬁi(2ai))+1 if f;(t) =0

where &;(a;) is the average value of feature j for training column a;, and |a;| is the size of the training

column.

Example 4. Given the emails attribute a; and the Full_name attribute as of Fig. 2, we want to



classify the data values of the eAddresses column. The first value, help@altavista.com, is classified:

3
11 10 8 880
P(help@alta...|a;) = jl;[lP(fj(help@)alta. c)]ar) = 1B 13198~ 0.51
3
1 8 9 72
P(help@alta...|a3) = H P(f;(help@alta...)|as) = 1010 10— 1000 = 0.072

<
Il
—

In the same way, we classify the six other data values and compare the probability that all 7 data values
belong to a; against all of them belonging to as. We correctly conclude that as and a; match better

than as and as. O

Other classifiers. Distance-based classifiers calculate the distance of signature vectors in the k-
dimensional cube, where k is the number of features. The vector closest to the test signature vector
is then suggested as a corresponding attribute. We performed tests using different distance measures
(Manhattan distance L;, Euclidean distance Ly, and maximum distance Lo,) and found Naive Bayes
to consistently outperform all distance-based classifiers. This observation matches the results of other
work like [LIK92, DP97]. Lewis and Ringuette compared the Naive Bayes classifier with a decision-tree
learning algorithm [LR94]. The authors conclude that both perform similarly well for the categorization
of text documents.

Finally, Agrawal and Srikant propose a revised Naive Bayes classification for catalog integration
[ASO1]. The authors make use of the intuition that if two documents are in one category of a source
catalog, it is likely that they belong to one category of the target catalog. The analogy to our problem
is that if two attributes are in one source table, it is likely that they correspond to attributes of the
same target table. Testing the usefulness of this intuition in the schema mapping domain remains future
work. In Sec. 8 we discuss related work on attribute classification using other classifiers, such as neural

networks.

3.3 A Confidence Measure for the Naive Bayes Classifier

In order to suppress suggestion of which Clio is not sure and to rank suggestions, we propose a confidence
measure for the results of the Naive Bayes classifier!. Recall that a target attribute a, is classified as
corresponding to source attribute a;, if a; maximizes the probability that all data values from a,
“belong” to a;. That is, a; maximizes [[;c, P(a;[t). The value P(a;[t) in turn is calculated as the
probability that each feature of ¢ corresponds to the average feature value of a;. That is P(a;|t) =
11 i P(f;(t)|a;). Together, the final probability that a target attribute corresponds to a source attribute
is [[;eq, [}, P(fj(t)|a;). This probability is in [0, 1], where 1 is reached only if for all values of a; and
a, all features are 1.

For data-type attributes we expect this never to occur, and never observed it for the databases of our

tests. For most features, probabilities are 0 or close to 0. In consequence, the probability that all 103

1We do not use the word confidence in the mathematical sense, but as a measure to give users a feeling for the surety
of the result.



features match is small, and thus, the final probability is also very small, decreasing with the number
of features and test tuples—a typical probability result in our experiments ranges between 1073000 for
the top ranked attribute and 107°%%° for the lowest ranked attribute. Clearly, these numbers cannot be
used as confidence values for our choice—a user will not accept suggestions that have a confidence of

virtually 0, and whose confidence is almost indistinguishable from that of other choices.

A simple and effective method to solve this problem is to report only a ranking of suggestions
without confidence scores, or to scale the scores so that the top choice has confidence/probability 1 and
the others are below. However, apart from the probability as calculated above, a confidence score for a
correspondence suggestion in Clio should also reflect the number of test and training tuples involved.
Intuitively, the more training and test tuples there are, the higher the confidence is. This intuition is
strongly supported by the results of our experiments. There is no single, correct way to scale the scores

to meet these requirements; we present a method meeting these criteria and successfully used in Clio.

To deal with the extremely small probability values, we used their logarithmic values for all calcula-
tions. With 100 test and training data, a typical result lies within —3000 for the top ranked and —5000
for the 10th ranked attribute (in Clio, we only consider the top 10 attributes). For scaling purposes, we
enter the test attribute itself as an additional training attribute. Because this new training attribute
will have the same signature as the test attribute, it is always ranked first, and it is ranked with the
best possible score. We scale all other values against this score: Let P(a;) be the final (logarithmic)
score for the newly added attribute, and let P(a;)i=1,...m be the scores for all other attributes. We
define classification confidence ¢(P(a;)) = P(at)/P(a;). This scaling has the property that the best
possible matching of a;—the one with itself—has confidence 1, and all others have a confidence that
takes into account the number of participating tuples. The higher the number of tuples, the lower the
probability of a match as calculated by the Naive Bayes classifier will be, but the higher the confidence
will be, because the probability appears in the denominator. In the experiments we observed practical
confidence scores: Good matches have confidence scores of over 0.9.

4 Evaluation of Classification Methods — Categorical Attributes

We used several different domains to test the features and Naive Bayes classifier. The first is a set
of three bibliography databases from academia. The second is a set of columns taken from three
different real estate Web sites. We also conducted experiments with a commercial database collecting
information about semiconductor manufacturers and an insurance database storing data about life
insurance contracts. Due to space limitations, we do not present the results for those databases here,
but these results are consistent with the ones we do present.

In each experimental run for a database, for each attribute of the training database we choose
n € {50, 100, 250, 500, 1000} random non-null data values as a training column to construct the signature
for that attribute. Then, we choose for each attribute of the test database a set of size m of random
non-null data values as a test column. We vary m as appropriate for each experiment. Given this input,
we classify test data values as a column, i.e., we let the classifier decide, from which of the attributes this
column was chosen. Knowing the correct answer, we note whether the classification of the corresponding

attribute was correct or not. Such a run is repeated 1,000 times and an average misclassification rate



is taken over all runs and over all attributes.

First, we use this experimental setup to decide, which feature set produces the best result (4.1). To
quantify the difficulty of classifying attributes of the three databases, we perform confusion distance
measurements (4.2). Using the Naive Bayes classifier and a combination of singleton and aggregate
features as the best performers, we present the classification results for the different databases (4.3—
4.4).

4.1 Choosing a Feature Set

Table 1 in Sec. 3.1 lists two classes of features: singleton features and aggregate features. To find out
which feature set is the most useful, we performed five tests with different combinations of features using
the Naive Bayes classifier. The results for the bibliography database are shown in Fig. 3. Each line
represents a misclassification rate obtained by averaging the individual rates for different sized training

columns.

We observe that using aggregate features alone

creates a mismatch for about every third attribute. 50 ‘ ‘ : ‘ ‘
o . aggregate features —+—
Delimiter features alone already yield good results, 45 delimiter features - 1
. . . . . 5 a0 | delimiter + aggregate features -
but using all singleton features (including delim- & ) singleton features 8
] ] S 351l singleton + aggregate features ---m--
iters) performs best. Complementing the latter g 20 &
] < : : . : : f f
two feature sets with aggregate features yields a é 25 .5
slight gain for each. Using all singleton and aggre- & 20t ;2
)
gate features together yields the best result. Using & 157 % e g 1
A ] L B e e
all singleton and aggregate features covers proper- < 12 I * X ;g
ties of both a wide range of string attributes, such 0 ﬁ‘“»i”,,_i - % ® ® = = =

as names and addresses, and numerical attributes,
. # Test data

treated as strings, such as date or phone. For the

following experiments we use the singleton and ag- Figure 3: Choosing a feature set

gregate features together.

4.2 Confusion Distance Measurement

Intuitively, the misclassification rate depends on the classifier chosen, the features chosen, and the
contents of the data. In this section, we give a metric for measuring the degree of difficulty in classifying

attributes of a database.

Definition 4 (Attribute Distance Matrix) Given m attributes ai,...,an, each with a signature,
S(a;), we define the attribute distance matriz M as an m x m symmetrical matriz, where a matric

element x;; = ds(a;, a;) is the Euclidean distance between signatures S(a;) and &(a;).

Definition 5 (Confusion Distance) The confusion distance cpr(a;) of an attribute a; is cpr(a;) =

ming; {zi;}.

10



Thus, the confusion distance of an attribute is the Euclidean distance to its closest neigbour in the

vector space of signatures.

Figure 4 shows the confusion distances for the attributes of the bibliography and real estate data-
bases. Each curve shows the confusion distances of the attributes in a database, sorted in ascending or-
der. Lower values represent a higher difficulty in ac-

curately matching the attribute. For the real estate

: 0.3t * /" bibliography B1 —+—
database Ry, we have already clustered attributes ; O bibliography B2 -
. . : " bibliography B3 -
with a distance of less than 0.01. o 025 real estate R1 (|
3 real estate R2 =11 g
S 02 real estate R3 - & ™ |
We observe the real estate database Ry to be & : o7 ma
. . ° g ma
the most difficult, and database R3; the easiest. § 015 DDDDEf’“
7] 15| b
Ry stores many attributes of similar semantics and % 01 "
contents, such as boolean values about whether ©
0.05 ¥
there is a fireplace/patio/golf course. .. or not. The Yesc
confusion distance gives us a better feel for how 0 20 25 20
well our classifier is really working with respect to Atribute ID

the similarity of attributes of the databases to be

classified. Figure 4: Confusion distances

4.3 The Bibliography Domain

For testing out techniques, we used three different bibliography databases (B;, B2, B3) containing cate-
gorical attributes, such as article ID, title, authors, pages, month, etc., and numerical attributes, such
as volume, number, and year. Each contained over 1,000 records from different sources on the Web.
For the purpose of this testing, we treat all numerical attributes as categorical, increasing the difficulty.
Bibliography data typically has many null-values due to the many different types of publications. After
removing from consideration those attributes that do not have enough non-null values to fill the training

column, 11 attributes remain in Bj, 12 in By, and 8 attributes in Bs.

Tests for accuracy. In this test, we partition all columns of a database into two parts—a training
part and a test part. The classifier returns a correct result if it classifies a test column as belonging to
the training column taken from the same database column. Figure 5 shows the misclassification rate as
a function of test column sizes for various training column sizes. For example for database Bs, with a
training column size of 500 and a test column size of 8, the misclassification rate is 5%, meaning 95%
of all attempts, the classifier predicts the correct corresponding attribute over 7 attributes. Clearly, the
larger the test column is, the more accurate the classifier is. We emphasize that in a typical application
scenario for Clio, for which we developed these methods, there is little to no test data. In cases where
no test data is available, the user is asked to enter sample tuples. We observe that misclassification is

already very low for only four test values. Hence, this is not an undue burden for users.

Throughout the experiments we observed misclassification rates to remain fairly constant after
the test set size surpasses the training set size. As the test set size increases, its signature variance

approaches zero, i.e., the test signature reflects more and more the true signature. Further test values
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Figure 5: Misclassification for bibliography databases

do not decrease variance, and thus do not improve classification, which is determined by the constant

variance of the training set signature. For a more detailed analysis of this behavior, see Appendix A.

Tests for sensitivity. The previous experiment draws the training column data values and disjoint
test column data values from the same database. However, the aim of Clio is to create mappings
from multiple sources to a different target source. Therefore, an attribute-matching classifier should
recognize matching attributes using training data from one source and test data from another. Figure 6
shows the results of two experiments, both with Bs as test database and with B; and By as training
databases, respectively. The attributes of Bs are a subset of each of the training databases, i.e., we ask

the classifier to find a match for each test attribute.
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(a) 11 training attr. (B1) and 8 test attr. (Bs3) (b) 12 training attr. (B2) and 8 test attr. (B3)

Figure 6: Misclassification among different bibliography databases

The Naive Bayes classifier shows an overall slightly lower performance, because of different format-
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ting of the data. Despite the difficulties, the classification results are satisfying. Intuitively, this is
because our choice of feature set is based on the character set distribution (histogram), not the com-
monly used word frequencies of a typical text classifier. So even when the data comes from different

sources with different content, the classifier detects semantically matching attributes.

4.4 The Real Estate Domain

We use data collected from three real estate Web sites (R1, Ra, R3) providing information about houses
for sale?. The real estate domain is considerably more difficult than the bibliography domain, because
there are more attributes that are indistinguishable looking only at their data values. For instance, no
system will be able to distinguish a phone number from a fax number, using only data values. There
are also attributes that are unique to a certain source, i.e., there is no correct match for that attribute.
In general, the domain lends itself more to word-based classification and for us presents an excursion

to non-traditional information sources.

To account for these difficulties we change the paradigm of attribute matching slightly: We no
longer ask for the best match for each attribute; instead we ask for the best match or no match for each
attribute. This shift is in the spirit of Clio, which does not overwhelm users with an enormous amount
of possibly incorrect matches, but only suggests matches of which it is confident.

10 : . . 20 . . .
50 training data —+— 50 training data —+—
100 training data - 100 training data -
gl 250 training data % | 3 250 training data -
1 500 training data —& 15 RN 500 training data &3
c c L
o o i
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[S] [S]
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0 Ea % EE 0 L L L L L L
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
# Test data # Test data
(a) 30 training attr. (R1) and 20 test attr. (R3) (b) 50 training attr. (R2) and 20 test attr. (R3)

Figure 7: Misclassification among different real estate databases

The results presented in Figure 7 are achieved by attempting a match only if its confidence is greater
than 90%, according to the confidence measure introduced in Section 3.3. In all experiments, approxi-
mately one third of all suggestions have confidence greater than 90%; for the remaining attributes, no
match is suggested. If no match with that confidence is found, Clio can suggest the top k matches, even
at lower confidence. We observe that the problem becomes more difficult with an increasing number

of training attributes to choose from. However, the results remain at an acceptable level, especially

21t is the same data as reported on in [DDHO1], which the authors kindly supplied.
3Clio additionally considers attribute names when suggesting matches, but we do not report on this technique here.

13



considering that they are to be confirmed by a user in Clio.

5 Classifying Numerical Attributes

Recall that the objective of the paper is to help users identify semantically equivalent attributes, given
a target attribute, and so specify correspondences between different schemata. We support this process
by finding such attributes using feature analysis. Consider an insurance database containing many
numerical attributes of similar range and distribution, such as the number of eligible drivers in the
family and the number of insured cars, the start and end date in 8 digit form etc. Clearly, many
simple techniques can be used to distinguish numerical attributes with mostly disjoint ranges. Also,
the Naive Bayes classification of the previous sections is suitable to classify numerical attributes in
many cases. However, to distinguish numeric attributes with similar ranges and similar distribution,
a more advanced algorithm is required. As before for categorical attributes, we characterize numerical

attributes using features.

5.1 The Feature Set

Definition 6 (Numerical Feature) A numerical feature g is a function that takes a column of nu-

merical data and returns some statistical value of the data distribution as output.

Note that generally a numerical feature is not Boolean. Simple examples of numerical features are min,
max, mean, and median. To best model the range and distribution of the values of an attribute, we
choose the following 18 features for our implementation.

e The 10%, 20%, to 90% quantiles ¢, ..., qo of each data column. That is, ¢;(a) is the data value

at position Lll‘g ‘J, after sorting the values of attribute a.

e The 10%, 20%, to 90% quantiles ¢}, ..., q4 of each data column after removing all data of value

zero.

We show from experiments on two real-world databases later that combining the two types of quantiles
classifies better than either one of them. We do not choose min and max features to avoid being misled
by possible outliers. We have seen many cases in which the “unknown” value for numerical data is stored
as a zero value rather than using null. In real-world databases, there are many numerical attributes

with mostly null values, which are now stored as zero. Hence the need for the second set of quantiles.

We choose quantiles in 10% intervals to avoid over-sampling and to reduce computational complexity.
To obtain more precise signatures, the intervals could be reduced when more training and test data is

available.

Definition 7 (Numerical Signature) The signature of a numerical attribute a is the vector M(a) =
(q1(a), -, q0(a), q1(a), .., qo(a)).
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5.2 Quantile-based Classification

We introduce three quantile-based classification methods—VOTE, SUM, and RANK and give an example
below. As before, we generate one signature for each numerical attribute from the training column. We
then generate the signature for the numerical test attribute to be classified. Let a; (1 < i < m) be the

training attribute and let a, be the test attribute. With this input the classifiers are:

VoOTE: For each feature value ¢;(a;), 1 < j <9, a vote is given to that attribute a; where |g;(a;) —
g;(a;)| < |gj(az) — gj(ag)| for all 1 < k < m, (k # i). When a tie occurs, the vote is evenly
distributed among the winners. An analogous rule applies to q} (az). The voting method classifies
a, as belonging to the attribute with the most votes. In case of a tie, in our experiment, the
attribute is randomly classified to one of the winners. In Clio, we let the user choose from all the

winners.

Sum: For each attribute a; this method determines the sum of feature value differences 23:1 lg;(az)—
gj(ai)| + 23:1 |gj(az) — qj(a;)|. 1t classifies a, as belonging to the a; that minimizes this sum.

RANK: RANK is similar to SUM, but it sums differences in feature value ranks of interpolated values.
Specifically, let rd(i, x, j) be the rank deviation between the ideal rank j and the projected rank
of g;(a;) in the list of gj(a;), 1 < j <9, using linear interpolation.* We define rd’ (i, z, j) similarly
for the second set of quantiles q}, 1 < j < 9. RANK classifies a, as belonging to the a; that
minimizes Z?:l(rd(i,x, j) + rd’'(i,z,7)). This method is stable, even when data values of an

attribute do not follow a single distribution. We apply the Sum method as a tie breaker.

Example 5. Figure 8 shows an example of the three quantile-based classifiers for the first set of quan-
tiles g1, ...,q9 with two training attributes (ai, as) and one test attribute (a,). For the RANK classi-
fier, consider the derivation of rd(1,x,4) as an example. We are interested in projecting the rank of
ga(a;) = 43 in between g4(a;) = 47 (of rank 4) and ¢3(a;) = 35 (of rank 3). With linear interpolation,
the value 43 is projected into rank 4 — (47 — 43)/(47 — 35) = 4 — 1/3. Thus, rd(1,z,4) = 1/3, i.e., a

1/3 deviation from ideal rank 4. O
| | e | @ | a5 | a1« | a5 | a6 | av | as | go | total [ winner

Train a1 10 22 35 47 56 64 73 81 90
Train as 10 21 32 44 54 63 72 80 90
Test a, 10 22 32 43 54 64 72 80 90
VoOTE a1 | 0.5 1 0 0 1 0.5 3
VOTE a2 | 0.5 0 1 0 1 1 |05 6 vV
SuMm ay 0 0 3 4 2 0 1 1 0 11
SUM as 0 1 0 1 0 1 0 0 3 v
RANK a1 0 0 3/13 | 4/12 | 2/9 0 1/9 | 1/8 0 1.02
RaNKaz | 0 | 1/11| 0 |1/12] 0 |1/9] 0 | 0 | 0 | 029 |

Figure 8: Example of three quantile-based classifiers

4or extrapolation for g;(ay) smaller than gi(a;) or larger than go(a;).
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6 Evaluation of Classification Methods — Numerical Attributes

We evaluate the quantile-based classification methods by applying them to two real world databases
and a synthetic data set. The first database is a collection of numerical attributes taken from a large
biochemical database (Sec. 6.4); the second is an insurance database (6.5). Often, real world attri-
butes have a distinct and easy-to-recognize distribution. Therefore, to test classification in a more
difficult situation, we generated several data columns with synthetic data and only slightly differing
distributions (6.6-6.7).

6.1 Confusion Distance Measurement

As before for categorical attributes, we want to examine the difficulty of classifying numerical attributes.

That is, we need a measure to compare the distance/similarity of two distributions.

Definition 8 (Distribution Distance) The L; distance between any two distributions of attributes
a; and a, of domain D is defined as di(ai,az) = Y ,cp |Pi(t) — Py(t)|, where Pi(t) is the probability of

data value t occurring in a;.

The L; distance is between 0, reflecting identi-

. . . . . ] Biochemical attributes —+—
tions. Figure 9 quantifies the difficulty of classify- Insurance attributes -

80 ><

cal distributions, and 2, reflecting disjoint distribu- 100 : " —

ing the attributes from the real-world databases. It
shows the L distance for each attribute to the clos-
est other attribute. The higher the distances, the
easier the attribute is to classify. For convenience,

60 %«

Confusion distance

we scale the L, distance to a percentage.

We deem any numerical attributes with a dis-

80 100 120 140
Therefore, we cluster such attributes, leaving 61 Attribute #

tance of less than 5% as virtually indistinguishable.

attributes for the insurance database and 26 at-
tributes for the biochemical database. Eventually, Figure 9: Confusion distances

Clio presents all elements of such a cluster to users,

leaving them to decide which correspondence is semantically correct, possibly using the attribute name

as an additional indicator.

To evaluate the difficulty of classifying data from the biochemical and the insurance database, the two
graphs of Figure 10 show respectively the distribution of the columns cumulatively—one graph for each
attribute. Even though the curves are scattered over the entire plot signalling differing signatures and
hence easy classification, in both databases there are several columns of similar distributions accounting

for higher misclassification rates.
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Figure 10: Cumulative distribution of numerical attribute values (one graph per attribute)

6.2 Choosing a Classifier

To compare the classifiers presented in Sec. 5.2, we performed measurements for both real life database
and several synthetic data columns. For each experiment we chose equal training and test column
sizes, but observed similar results for other settings. From the results shown in Fig. 11(a) and the
measurements on different synthetic data columns not shown here for space limitations, we can conclude
that the RANK method outperforms the SUM and VOTE methods. Hence, for the remainder of this
paper, we use the RANK method. Additionally, we observe that VOTE performs better where data
values do not follow one distribution (insurance database), SuM performs better in classifying a set of

similar distributions (biochemical database).

6.3 Choosing a Feature Set

As for categorical data, we must choose the features (quantiles) to use for classification. In Sec. 5 we
proposed three variations of using quantiles—the first (normal) using all available data, the second using
only non-zero data, the third as a combination of the first two. To decide which variation classifies most
accurately, we performed tests on both real world databases. Figure 11(b) shows misclassification rates

for different features, for equal training and test column sizes.

We observe that a combination of both normal and non-zero variations performs best. Interestingly,
for the biochemical database the first two variations produce mediocre results but they complement
each other, so that the combination gets good misclassification rates. This is because the database
stores two types of attributes. The first type reflects some measured values (observed as curved lines
in Fig. 10, left), the second type reflects category-type values with only 2 or 3 distinct values (observed
as steps in Fig. 10, left). Each type profits from a different feature set for classification.

For the insurance database, the normal quantile alone produces poor results because of the large
number of zero-values in the data (seen in Fig. 10, right, as many lines beginning with high cumulated

value percentages). Only by disregarding the zero-values do we produce low misclassification rates.
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Figure 11: Averaged misclassification results

6.4 Biochemical Database

The biochemical database is a large customer database with the results of experimental tests of various
potential drug candidates against possible targets. We extracted 26 numerical columns from the main
results table, consisting of the results of various experiments, status fields showing what stage of analysis
or certification the results have reached, fields that cross-index other tables in the database for further
descriptions of the experiments, time-stamps for various steps of the experiment, and so on. In each
experimental run and each attribute, we chose different columns of training and test data and counted
the number of misclassifications. We performed several hundred runs, depending on the stability of the

results (standard deviation), and display the average misclassification results in Fig. 12.

A first observation is the high rate of misclassifi-
cation when little training or test data is available. 25

16 training data —+—
Only when both columns of data are larger than 32 training data -~
64 training data -
128 training data &3
256 training data --—-#--
512 training data -
2048 training data -

20

1,000 does the classification achieve results compa-
rable to that of the Naive Bayes classification for

categorical attributes, i.e., under 5%. The reason

is that many of the numerical attributes are really

% Misclassification

used as categorical attributes. For instance, one at-

tribute encodes a date as an integer; another acts

as a boolean value, containing only 0 and 1 values.

16 32 64 128 256 512 1024 2048

A classification of this categorical data using the
# Test data

Naive Bayes classifier produced equally good re-
sults. The quantile method proves its effectiveness Figure 12: Biochemical database
for “truly” numerical data.

As for categorical data, we also observe that the more training data we use, the lower the misclassi-
fication rate. Further, although additional test data also improves accuracy, it does not compensate for

a smaller training column. Briefly, the misclassification rate is related to the variance of the statistics
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of the training columns. Even when the variance of the same statistic in the test column is small, the
misclassification rate is still bounded from below by a function of the sum of variances of the training
columus (see Appendix A for details).

6.5 Insurance Database

The insurance database has a size of 2 Gigabytes with 19 tables and 141 numerical attributes total. After

clustering (see Section 6.1) 61 attributes remain

to be classified. Figure 13 shows the classification 14 ‘ ‘ ‘
. . . 16 training data —+—
results for those attributes, obtained in the same 32 training data —<——
. 5 12 ¢ 64 training data % ]
manner as for the biochemical database. For test 128 training data @
. . S 10} 256 training data ---m--
and training set sizes over 32, we observe very good g 512 training data. ---0---
. . . £ gl 2048 training data @~
misclassification rates below 2%. 2
g 6
In summary, the misclassification rates for real = ) I
L 3 . ]
world databases are low enough to successfully em- RO DS oreerreen) SSS—
ploy the RANK method for attribute classification '

256 512 1024 2048
more difficult settings, we test the methods on syn- # Test data

in Clio. To prove the virtue of these methods in

thetically generated data values with only very sub-

tle differences between attributes. Figure 13: Misclassification for insurance database

6.6 Uniformly Distributed Data

In this experiment we randomly generate data for 10 numerical attributes with increasingly shifted
uniform distribution. That is, the ranges are [0, n], [ns,n + nsl, - - , [9ns, n + 9ns], respectively, where
s is the shift factor and n was chosen as 100. In Fig. 14(a) we fix the shift factor as 10% and vary the
training column size for different curves. As expected, the misclassification rates are higher than for
the real world data, but are at an acceptable level for training and test column sizes above 128. The
Naive Bayes classification for this data failed, with all misclassification rates usually at a rate equivalent
to random picks, and never better than 50%. This insight justifies the use of different classifiers for

different types of attributes.

In Fig. 14(b) we fix the training column size for each of the ten attributes at 2048, and vary the
shift factor s from 1% to 10%. Data with a lower shift are more similar, and hence, more difficult to
classify. In this experiment the limitations of automatic classification become apparent: With a small
amount of test data and with only slight variations in the values, automatic classification of attributes

is sometimes reduced to mere guesswork.

6.7 Gaussian Distributed Data

The same experiments for Gaussian distributed data yielded very similar results. We generated data
for ten Gaussian distributions, (i, o), where the mean g =50+ 1007 - s for ¢ € {0,1,---,9} and shift
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Figure 14: Uniform distribution

factor s. We chose standard deviation o = 25. For the first experiment we chose a fixed shift of 10%
and varied the number of training data for each curve, for the second we fixed the training column size
at 2048 and varied the shift factor.

In both experiments we observed the same behavior as for the uniform data distribution, i.e., good
results for test and training column sizes above 128 with a 10% shift factor, and poor results for low
shift factors.

7 Deployment in Clio

Currently, Clio has four deployment modes of the attribute matching techniques: correspondence dis-

covery, dependency discovery, rapid table matching, and relation hiding.

Correspondence discovery. In a typical deployment of Clio, the user knows the target schema well
but knows little about the source schemata. In particular, source attribute names may mean nothing
to the user or may convey a different semantics than the one intended. To help, the user can ask Clio
to find source attributes that are similar to a certain target attribute. Clio uses the attribute matching
techniques to find the top matches and present them to the user, annotated with the confidence level

(Fig. 15). The user can then browse the suggestions and accept the correct ones.

Dependency discovery. The overall goal of Clio is to create a mapping between a source schema
and a target schema. This problem is equivalent to discovering a transformation query on the source
schema that produces data for the target schema [MHHO00|. Foreign key dependencies are used to
suggest the join paths of the transformation queries. When these dependencies are not given as schema
meta-data, Clio discovers them. Foreign key discovery is tedious, because one must expensively test

every combination of attributes with same data types between two relations. Attribute pairs of the
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Figure 15: Schema Discovery with Clio

same source schema, discovered with our matching techniques, are good candidates for testing, and we

thus save a large amount of computation and database access®.

Rapid table matching. Because source databases and target database store similar information,
tables in source and target often have similar attributes. Recognizing this, Clio relieves the user of
having to tediously specify obvious matchings: After the user specifies one matching between two
tables, Clio suggests the top matching attribute in the same source table for each remaining target
attribute—up to a certain confidence threshold. If they are correct, the user can accept all suggestions

at once (Fig. 16), rapidly matching an entire set of attributes.

Relation hiding. Clio aims at scenarios with possibly very large source schemata that the user is not
familiar with. Users can be overwhelmed by the large number of relations and may not know where to
start and on which part to focus. On the other hand, we assume some user familiarity with the target
schema. Users can focus on a certain part of the target schema (e.g., a target relation), and Clio will
hide source relations whose relevance to that part is below a certain threshold. Currently, relevance is
calculated as the average matching confidence of all attributes in the target relation to the best match

in the source relation. We are investigating more refined confidence aggregation.

8 Related Work

With the growing number of sources available for integration, the bottleneck of creating mappings from

the source schemata to the target schema has been recognized by several projects. For instance, there

5Note that for this deployment we do not find matchings between source and target attributes. Rather, we compare
only source attributes with one another.
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Figure 16: Rapid Table Matching with Clio

are tools to simplify the creation of such mappings in the form of wrappers [LPH00, SA99]. Several
attempts have been made to automate this task (see [RBO1]), including the work of Gibson et al.
[GKR9S], the rule-based schema matching approach of Milo and Zohar [MZ98], and the approach of
Sciore et al. introducing a semantics-aware variation of SQL [SSR94]. The Cupid approach employs
a tree matching algorithm to find similarities between two schemas [MBRO1]. While projects like
Cupid have the same goal as we do, i.e., mapping one schema to the other, we are aware of only two
projects using not only meta-data (schema-based matching) but also the data to improve the mapping

(instance-based matching):

Doan et al. describe the LSD system, which provides methods to match nodes of a schema tree
derived from XML-documents [DDHO1]. The authors use four classifiers—among them a Naive Bayes
classifier—whose results are combined to produce a final classification. The usage of the Naive Bayes
classifier differs in that the authors do not use alphanumeric features, as in our approach, but word
frequencies, as often used to classify documents. The word-based approach does not adapt well to the
attribute matching problem because data values rarely contain more than one or two words. How-
ever, their ability to combine different classification methods should allow them to include our new

classification methods, promising even better results.

Li and Clifton present a neural network classifier for the same problem in the Semint prototype
[LCY5]. The authors encode two types of meta-data into a feature vector: (i) specification of attributes,
such as data type, constraints, data formats, etc., and (ii) aggregate features determined from the data
values, such as the average number of digits in a value. The authors do not use singleton features for
classification, as we do—the features they extract from the data are complementary to ours. A neural
network must be constructed of the training attributes under user supervision; test attributes are then
classified using the network. In all experiments, similar attributes are clustered and treated as one, and
the authors only compare columns taken from the same database. As expected in such a setup, the

reported misclassification rates are low, but not comparable to ours.
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9 Conclusion

The contributions of this paper are the application and adaptation of well known classification tech-
niques, new types of features, and novel similarity measures to the problem of finding correspondences
between attributes of different schemata. In particular, this work examined which classification tech-
niques are most suitable for categorical and numerical values, which features are most discriminatory,

and which training and test column sizes are necessary to reach satisfactory classification results.

To show the effectiveness of our approach, we applied them to well studied real world data sets and
to synthetically created data. The misclassification results were very low, justifying deployment of the
methods in the Clio system. There, users are successfully supported in finding correspondences between

attributes.

For future work, we plan to extend these approaches to find not only corresponding attributes,
but also corresponding tables. Other work will refine the feature selection and will include the ability
to apply different weights to the features, reflecting different significance. With this work we have
instantiated a further component of Clio, which further enhances the user’s ability to perform schema

transformations.
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A Probabilistic Analysis of the Classifiers

Let X and Y be independent normal random variables with expectations pu; and po, respectively, each
with variance 1/N, where N is the size of a sample. Intuitively, X and Y are sample means from two
different distributions, each with variance 1. Furthermore, they could be the approximate values of
sample means from binomial distributions. The connection to our problem is that X and Y represent
training sample means from two distinct columns. Thus NV is proportional to the size of the training
sample. Let Z be a normal random variable independent of X and Y, with expectation p; and variance
1/n. The connection to our problem is that is a test sample mean from the same column as X, but
in reality we do not know that and the goal is to decide whether Z is from the same column as X,
or the same column as Y. Thus, n is proportional to the size of the test sample. We are interested
in the probability of the event A = {|Z — X| < |Z — Y|}, i.e., the event in which Z turns out to be
closer to X than to Y, in which case we would conclude correctly that Z is from the same column as
X. The remainder of the analysis is aimed at understanding the dependence of the probability of A on

the sample sizes.

Denote by E the event {X < Y} and denote by F the event {Z < Zt¥}. Thus, Pr(4) =
Pr(E)Pr(F|E) + (1 — Pr(E)) Pr(F|E). It is well-known that X +Y and X — Y are independent,

hence
Pr(A) =Pr(E)Pr(F)+ (1 —Pr(E))(1 —Pr(F)) .

Since X — Y is normal with expectation p; — p2 and variance %,

Pr(E)_q><\/N-”1“2> .

V2
Since Z — XY is normal with expectation X152 and variance 75 + 1,
1 —
PI‘(F):(I) _/1/22/1/1
1,1
vt
Denote § = W—Jiﬂ Thus,
1 1
Pr(A) = B(VN - 6)B(— e - 6) + D(=V/N - §)(—— e - )
L V2 1 V2
N n N n

It is easy to see that for any fixed n, Pr(A) tends to 1 as N tends to infinity, whereas if N is fixed, then
as n tends to infinity, Pr(A4) tends to

[@(VN - 6)] + [@(~VN - 0))* .
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