
Super-Fast XML Wrapper Generation in DB2: A Demonstration

Vanja Josifovski, Sabine Massmann, and Felix Naumann
IBM Almaden Research Center, San Jose, CA 95120

vanja@almaden.ibm.com , smassma@us.ibm.com , felix@almaden.ibm.com

Abstract

The XML Wrapper is a new feature of the federated data-
base capabilities of DB2/UDB v8. It enables users and ap-
plications to issue SQL queries against XML data from a
variety of sources, including files and web services. The
XML Wrapper assumes hierarchical XML documents mod-
eled as families of virtual relational tables in a federated
schema, which can then be queried to extract information
from the XML and combine it with data from other sources.

Due to the nature of the problem, using the XML Wrap-
per is complex and several difficult steps must be under-
taken: (i) The hierarchical schema of the source must be
flattened to a relational form. (ii) Each relation of the flat-
tened schema must be registered in DB2 as aNICKNAME –
a complex virtual table definition containing several XPaths
as specialized options. (iii) EachNICKNAME must be ac-
companied by aV IEW – again a complex structure involv-
ing join conditions. Chocolate is a tool that alleviates all
three tasks: Chocolate provides several flattening strategies
and an interface allowing users to modify the automatically
generated target schema. Once the user is satisfied with
the schema, Chocolate automatically generates the corre-
spondingNICKNAME andV IEW definitions.

1 The XML Wrapper

In response to the dramatically increasing production
and consumption of XML data IBM offers the XML Wrap-
per, which uses the federated query processing capabili-
ties of IBM’s DB2/UDB database [3]. The XML Wrapper
enables optimized execution of SQL queries across an in-
tegrated schema that can include both relational data and
XML data from a variety of sources [2].

The core idea behind the XML Wrapper is that a hier-
archical XML document can be thought of as a set of re-
lational tables in which hierarchical nesting is replaced by
joins between parent and child tables. The XML data is not
stored in DB2, but is retrieved and processed on demand
from its source, e.g., by reading an XML document from a

file or by sending a SOAP request over the network.
When the query is executed, the wrapper retrieves a

stream of XML data from the source and extracts the in-
formation requested by the query. This data is returned to
the middleware engine in a relational form, where it can be
filtered, aggregated, joined with other data, etc.

NICKNAMES . The XML data is mapped to a set of vir-
tual relational tables, called NICKNAMES, in the integrated
schema. The XML Wrapper uses XPath [1] expressions to
establish a correspondence between portions of the XML
document and rows in the tables, and to identify values
within those document portions that correspond to each
row’s columns. The SQL statements of Figure 1 are exam-
ple NICKNAME definitions for customer elements and order
elements, originally nested under customers. This hierarchy
is expressed as the implicit key-foreign-key relationship be-
tween the two NICKNAMES.

To write such NICKNAME definitions the author must be
proficient in writing SQL statements, be aware of the struc-
ture of the XML document to decide which elements and
attributes should be part of the customer NICKNAME . Fur-
thermore, the author must be familiar with XPath expres-
sions which are used for each attribute and for the NICK-
NAME itself. Finally the author must be knowledgeable of
the XML type-system and the SQL type-system to decide
which types the NICKNAME attributes should have. The
Chocolate tool performs all these tasks automatically.

V IEWS. Queries against NICKNAMES of the XML
Wrapper must include the complete join path be-
tween each of the NICKNAMES queried and the root
NICKNAMEof the hierarchy. For instance, a query
against order nickname alone would be invalid.
Instead, the query would have to include the join con-
dition order nickname.customer FID = cus-
tomer nickname.customer id . To alleviate this
additional burden, a VIEW is defined over each NICK-
NAME, and DB2’s query rewrite mechanism is exploited
to transform queries submitted against these views to
the required format. Below is a VIEW definition for

1

CREATE NICKNAME customer_nickname
(name VARCHAR(48) OPTIONS(XPATH ’./name/string()’),

address VARCHAR(48) OPTIONS(XPATH ’./@address’),
customer_id VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))

FOR SERVER xml_server
OPTIONS(XPATH ’//customer’,

FILE_PATH ’C:\Chocolate\customer.xml’);

CREATE NICKNAME order_nickname
(amount DOUBLE OPTIONS(XPATH ’./amount/text()’),

date VARCHAR(48) OPTIONS(XPATH ’./date/text()’),
order_ID VARCHAR(48) OPTIONS(PRIMARY_KEY ’YES’),
customer_FID VARCHAR(48) OPTIONS(FOREIGN_KEY ’customer_nickname’))

FOR SERVER xml_server
OPTIONS(XPATH ’.//order’);

Figure 1. Two NICKNAME statements

order nickname . Note the join condition that estab-
lishes the connection betweenorder nickname and
customer nickname .

CREATE VIEW order AS
SELECT order.amount, order.date,

order.order_ID,
customer.customer_ID

FROM order_nickname order,
customer_nickname customer

WHERE customer.customer_ID
= order.customer_FID;

Again, the task of writing such VIEW definitions is quite
complex. The author must be familiar with SQL view def-
initions, and additionally with the hierarchy of the NICK-
NAMES, which reflects the hierarchy of the XML document.
Again, Chocolate automatically generates the appropriate
V IEWS.

An additional obstacle in the rapid deployment of the
XML Wrapper is often the sheer number of necessary def-
initions. A common XML schema in the life sciences do-
main is the SwissProt XML Schema [4]. Converting each
repeating element of this schema into a NICKNAME and a
V IEW results in 98 definitions and some 70 kByte of SQL
code. The Chocolate tool completely automates all these
steps within seconds, while retaining the ability of the user
to intervene when needed.

2 Mapping XML Schemas to the Relational
Model

To map an XML document to a set of tables, its schema
must be mapped to a set of (virtual relations). This map-
ping should be lossless in the data, i.e., all data of the docu-
ment has a place in the tables. This mapping should also be
lossless in the structure, i.e., no association implied by the
original hierarchy shall be lost. In addition to the definition
of the mapping, the names of the tables and their attributes

must be decided. There must also be a translation from the
XML data types to the relation data types of DB2. Choco-
late performs all these tasks in two steps. First, the entire
XML schema is mapped to a set of virtual relations. Next,
the user can edit this schema through various operations like
adding and deleting attributes, changing types, etc.

Automatic Strategies. Chocolate supports two strategies
of automatically generating a relational schema from an
XML schema. The first strategy is calledfull normalization
and creates a relation for every repeating set. Repeating sets
are identified in the XML schema either through the<se-
quence> tag or through themaxoccurs attribute of an
XML element. Figure 2 shows a screenshot of the Choco-
late GUI with the result of this strategy applied to an XML
schema. The left half of the GUI shows the original XML
schema as a tree. A repeating set is shown as aSet node.
The direct children of eachSet node form the attributes
of the corresponding relation. The right half of GUI shows
the resulting relational schema as a set of NICKNAMES. In
addition to the relational schema, we see for each regular at-
tribute the XPaths showing the source of the attribute data.
Additional attributes are the virtual keys and foreign keys,
used by the XML Wrapper to reconstruct the hierarchy of
the XML document.

The second strategy to form a relational schema is called
single relation. Here, only a single relation is formed with
an attribute for each leaf element of the XML schema. In
this case, no virtual keys or foreign keys are necessary. In
general, there are many more potential automatic strategies,
ranging anywhere betweensingle tableand full normal-
ization and even beyond. Currently we are researching a
strategy that optimizes response time of queries through the
XML Wrapper.

User Modifications. After having automatically gener-
ated a relational schema, Chocolate allows the user to mod-

2

Figure 2. Chocolate – Automatic mapping from hierarchical schema to relational schema

ify this target schema in a variety of ways. Available mod-
ification operations are, Add/Delete attribute, Add/Delete
NICKNAME , Rename attribute/NICKNAME , Change data
type, and Split/merge NICKNAMES. Not all operations are
valid at all times. Chocolate checks their feasibility and ei-
ther warns the user or prohibits the operation. Once the user
is satisfied, the modified schema can be saved and reloaded
at a later time.

Users have additional options to influence the NICK-
NAME statement generation, such as, changing the schema
name, the default length for data of the XML string type,
etc.

Mapping Web-Services to the Relational Model. The
XML Wrapper can process queries against XML data from
many different sources: XML documents can be stored lo-
cally in a file system, or in a database column, or they can
be retrieved remotely using a Web-Service. The former two
choices are expressed as special single-line options in the
NICKNAME statement. The latter is somewhat more com-
plex, because Web-Services (i) are defined by a different
type of schema (WSDL), (ii) are activated by sending com-
plex messages, (iii) and expect input parameters in the XML
format. Chocolate alleviates these difficulties by being able
to parse the WSDL, generate the correct NICKNAME op-
tions containing the Web-Service SOAP calls etc., and by
defining a SQL user-defined function that takes input pa-
rameters and tags them appropriately as XML input for the
Web-Service.

3 The Chocolate Demo

The demonstration of Chocolate will comprise the load-
ing and conversion of many different schemas, including
small schemas to demonstrate special cases, and very large
schemas like the SwissProt XML schema [4] to demon-
strate scalability. We will showcase the different strategies
of mapping an XML schema to the relational model and let
users modify the converted schema. The automatically gen-
erated NICKNAME and VIEW statements will be registered
in DB2 and queries will be executed against these virtual
tables. In particular the usage of large schemas and large
XML documents will demonstrate the advantage of Choco-
late to rapidly deploy an new XML data source in DB2, and
will demonstrate the usefulness ad efficiency of the XML
Wrapper in issuing SQL queries against XML documents.

References

[1] J. Clark and S. DeRose.XML Path Language (XPath) Version
1.0 – W3C Recommendation. World Wide Web Consortium,
1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

[2] V. Josifovski and P. Schwarz. Querying XML data sources in
DB2: The XML Wrapper. 2003. Submitted to ICDE 2003
industrial track.

[3] V. Josifovski, P. Schwarz, L. Haas, and E. Lin. Garlic: A new
flavour of federated query processing in DB2. InProceedings
of the ACM International Conference on Management of Data
(SIGMOD), Madison, WN, 2002.

[4] SP-ML: The SWISS-PROT/TrEMBL XML Format.http:
//www.ebi.ac.uk/swissprot/SP-ML/ .

3

