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1 Introduction

There has been an explosion of the data that is avail-
able to the biomolecular researcher. A recent esti-
mate suggests up to 600 public data sources! While
this explosion presents an opportunity, it is accompa-
nied by difficulties in harnessing and exploring this
data. An average research group can (simultane-
ously) utilize up to 40 databases many of which are
publicly available on the Web. Public life science
data sources represent a complex link-driven feder-
ation of sources. A fundamental problem facing the
researcher today is correctly identifying a specific in-
stance of a biological entity, e.g., a specific gene or
protein, and then obtaining a complete functional
characterization of this entity instance by exploring
a multiplicity of inter-related and inter-linked sour-
ces. An example question that could be answered by
such a correct and complete characterization is as fol-
lows: What cancer-related proteins have been identi-
fied and what relevant knowledge has been collected
by other researchers over the past two years?

Life science data sources contain data on classes
of scientific entities such as genes and sequences.
Each source may have data on one or more classes.
There is significant diversity in the coverage of these
sources. For example, NCBI Nucleotide, DDBJ and
EMBL Nucleotide have different attributes charac-
terizing (describing) sequences, but they all cover
the same sequences. On the other hand, while All-
Genes, RatMap and the Mouse Genome Data base
(MGD) all contain data on genes, they are targeted
at different organisms. MGD covers mouse genes and
RatMap covers rat genes. However, AllGenes con-
tains both human and mouse genes, so there is an
overlap between AllGenes and MGD. See [Nau02] for
a detailed discussion on various database related as-
pects of coverage.

Relationships between scientific objects are often
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implemented as physical links between data sources.
Each physical link between sources may be visualized
as a collection of individual links, going from a data
object in one source to another data object, in the
same or a different source. The physical implemen-
tation of these links may vary, e.g., embedded identi-
fiers, URLs, etc. Properties of the relationship such as
uni or bi-directional, 1:1 or 1:N, etc. may also vary
widely.

A scientist is often interested in exploring relation-
ships between scientific objects, e.g., genes and cita-
tions. These objects may be retrieved from various
data sources, e.g., PubMed for publications. Such an
exploration process typically starts from one or more
of these available sources, and continues by follow-
ing direct links, e.g., a URL, or traversing paths, i.e.,
concatenations of links via intermediate sources.

Given some start class in source S and target class
in source T, there may be multiple alternate paths.
Each path potentially yields very different results
with different properties. This depends on the fol-
lowing: the attributes characterizing each source; the
intermediate sources and corresponding entity classes
that are traversed in a path; and the contents of each
source and each physical link between sources. An ex-
ample property is result cardinality, i.e., the number
of data objects of the target class T that are obtained
by starting from (a relevant set of) data objects in S.
Note that result cardinality may vary based on the
choice of the path.

These properties are of interest from a number of
perspectives. For example, from a query evaluation
viewpoint, one can predict the cost of evaluating a
query given some specific sources and paths. This can
impact query optimization. One could also choose
specific sources and paths depending on some crite-
ria that are evaluated on these properties, e.g., to
maximize result cardinality or to maximize the num-
ber of attributes. Such criteria impact the domain
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Figure 1: A physical graph (PG) of Life Science Sour-
ces

specific semantics of the results.

There has been prior research on providing ac-
cess to life science sources [EKL00, ELR01, KRG99,
TKM99]. Example systems include DiscoveryLink
[HKR*00], Kleisli and its successors [DCBT01,
Won00], SRS [EA93, EV97] and Tambis [PSB*99].
Typically, these systems have not explored the se-
mantics of alternate sources and overlap in content.
Recent research in [MHTHO1, MSHTH(2] has ad-
dressed this problem but they do not consider the
semantics of multiple alternate paths. Properties of
links have been studied in the context of XML doc-
ument processing [PG02a, PG02b]; they do not con-
sider semantics associated with paths.

In this paper, we summarize two research tasks.
The first task involves algorithms to explore the
search space of links and paths between biological
data sources, and to efficiently identify paths that are
relevant to a query expressed by a scientist [LRV03].
The second task is to develop a framework to deter-
mine the properties that characterize (multiple alter-
nate) links and paths between two sources [LNRO3].
Together, these tasks provide a solid foundation to
support scientific exploration.

2 Physical and Logical Map of
Sources

We model life science data sources at two levels: the
logical and physical level. The physical level con-
sists of the actual data sources and the links that
exist between them. An example of data sources and
links is in Figure 1. The physical level is modeled

by a directed graph PG. Nodes represent data sour-
ces. Edges represent a physical implementation of
a link between two data sources. A data instance
in one data source may have a link to one or more
data instances in the other data source, e.g., a gene
in GeneCards links to a citation in PubMed. The
semantics of this physical link may vary, e.g., is it bi-
directional? how many objects participate? is it 1:1
or 1:N? A physical path in PG is defined in a straight-
forward manner by traversing the links of PG.

The logical level consists of entity classes, i.e., con-
cepts or ontology classes. Entity classes are imple-
mented by one or more physical data sources or pos-
sibly parts of data sources. For example, a logical en-
tity class Citation may be implemented by the data
source PubMed. An entity class Sequence may be im-
plemented by NCBI Nucleotide, DDBJ and EMBL.
Each source that implements an entity class will pro-
vide a unique identifier for each entity instance and
will include attribute values that characterize the in-
stance. There may be as many identifiers for an entity
instance as there are sources. In some cases, there
may be multiple identifiers for equivalent instances in
the same source. Instances are semistructured with
respect to all the attribute values defined by that
source.

ENTITY DATA SOURCE
Sequence (seq) | NCBI Nucleotide
EMBL
DDBJ
Protein (prt) NCBI Protein
SwissProt

Citation (cit) | NCBI PubMed

Table 1: A Possible Mapping from Entity Classes to
Physical Data Sources

An example of a possible mapping from entity
classes to data sources in PG is in Table 1. We note
that the identification of entity classes and the map-
ping from these classes to physical sources may not
be unique. However, one can consider that a typical
or commonly accepted mapping exists.

3 Exploring Paths Between

Sources

To allow a scientist to explore relationships or asso-
ciations between the logical entities, we consider a
simple language based on regular expressions. While
we recognize that such a language has limited expres-
sive power and cannot express branching, predicates,
etc. it is sufficient for us to illustrate how queries are
answered on data sources. Given a regular expres-



sion as input, the objective is to interpret the regular
expression on the graph PG.

We refer to the set of entity classes as F, and use
the notation p: protein; s: sequence; g: gene; c: cita-
tion. For our example, we consider data sources Nu-
cleotide, EMBL, DDBJ, Protein, SwissProt, HUGO,
GeneCards and PubMed.

Query 1: p.c
Result: Protein — PubMed, SwissProt — PubMed

Query 1 expresses a query to retrieve all citations
linked to proteins. Entity p can be interpreted by
either the NCBI Protein data source or SwissProt
(Table 1. Entity c can be interpreted by PubMed.
There is a link from NCBI Protein to PubMed, and
there is a link from SwissProt to PubMed (Figure 1.
Therefore, both links Protein — PubMed and Swis-
sProt — PubMed are possible interpretations of the
regular expression. We note that these links have dif-
ferent physical inplementations. The link Protein —
PubMed may correspond to the Entrez capability to
search for a Citation from a Protein object. Swis-
sProt — PubMed may correspond to hyperlinks em-
bedded in the presentation of proteins in SwissProt.
Query 2: g.e.c
Note that the symbol e represents any entity in the
set of entity classes E.

Entity g may be interpreted by both GeneCards
and HUGO. e may be interpreted by any data source.
From Figure 1, there are 3 outgoing links from
GeneCards to PubMed, Sequence and SwissProt, re-
spectively. Similarly, there are 3 outgoing links from
HUGO to GeneCards, PubMed and SwissProt, re-
spectively. There is a link from PubMed to PubMed;
thus, GeneCards — PubMed — PubMed and HUGO
— PubMed — PubMed are paths that match the
regular expression. There is link from Sequence to
PubMed; thus, GeneCards — Sequence — PubMed
is a solution. There is a link from SwissProt to
PubMed; thus, GeneCards — SwissProt — PubMed
and HUGO — SwissProt — PubMed are solutions.
Finally, there is a link from GeneCards to PubMed;
thus, HUGO — GeneCards — PubMed is a solution.
To summarize, this query has 6 possible interpreta-
tions, including self references (loops) on PubMed.

A similar problem has been addressed in [MW8&9)]
where it was shown that for (any) graph and regular
expression, determining if a particular edge occurred
in a path that satisfied the regular expression and
was in the answer was NP hard and that finding all
paths was NP complete.

Our research addresses the following tasks:

e Efficient algorithms based on automata to ex-
plore the search space of life sciences sources.

The solution is polynomial in the size of the PG
when the PG is acyclic.

e Developing semantics to fully explore sources
and to choose paths that reflect user’s needs.

e Use of heuristics to limit the exploration of the
search space and to efficiently identify paths that
satisfy the regular expression.

We briefly review some examples of semantics.

e Path length semantics — [Minimize | Maximize]
the number of different sources that are visited
in a path assuming that PG is such that a node
may be visited more than once.

e Attribute cardinality semantics — [Minimize |
Maximize] the (total) number of attributes of all
the entities visited along the path.

e Result cardinality semantics — [Maximize | Min-
imize ] the cardinality of the results.

See [LRVO03] for details on the algorithm to iden-
tify paths that satisfy a regular expression and exper-
iments on the use of heuristics to efficiently identify
paths that satisfy the regular expression and the se-
mantics.

4 Characterizing Properties of
Paths

Consider a start source S and end source T'. There
are two tasks that are of interest. The first task is
estimating (predicting) properties such as the result
cardinality, for any path from S to 7. The second
is comparing the properties of alternate paths. Com-
paring alternate paths could compare their relative
result cardinalities. Alternately, they could deter-
mine the overlap in the data objects in T', for each
path. Finally, they could obtain a (partial) order of
paths based on either the result cardinality or over-
lap.

A physical graph can have several roots and leaves.
This occurs since there may be multiple sources rep-
resenting the root entity class, and/or several sources
for the leaf entity class. For simplicity, we assume
a graph with unique root and unique leaf, and one
source per entity class. Thus, the logical and physi-
cal graphs are the same.

Figure 2 shows a physical graph with four sources
(node); each source is annotated with the scientific
entity class. Each link represents physical links be-
tween the sources. We note that these 4 sources are
NIH/NCBI sources.
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Figure 2: The physical graph PG, with sources (and
scientific entities)
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Figure 4: A result graph RG4

Figure 3 shows a sample data graph DG;. Infor-
mally, each source in the data graph stores a set of
objects (labeled a, b, ¢, etc.) and a set of links (un-
labeled).

Finally, a result graph RG; as shown in Figure
4, is a subset of the data graph. Details on how
the data was collected is in [LNROQ3]; this graph is
circa. February 2003. In this example, the result
graph starts with OMIM data objects that are re-
lated to the medical condition aging and terminates
in citations from PubMed. There are 5 alternate
paths om-pu, om-nu-pu, om-nu-pr-pu, om-pr-pu and
om-pr-nu-pu, where om, nu, pr and pu represent the 4
sources, OMIM, Nucleotide, Protein and PubMed, re-
spectively. For ease of presentation, we do not display
all links from one data object to another. Instead, for
each link between two sources, S; and S;41, we note
the number of data objects in S; that have links to
Si+1, and the number of links from S; to S;y1. Note
that there may be duplicate objects in S;41. for ex-
ample, in Figure 4, 141 OMIM objects had links to
7149 PubMed objects; however, there were only 7031
unique PubMed objects in this set!.

In [LNRO3], we develop a framework to estimate re-
sult cardinalities of paths. The framework is flexible
and can exploit available statistics on DG. We note
that for the NIH/NCBI data sources, accurate up-to-
date statistics on D@ is maintained [LL03]. How-
ever, most data providers typically may not maintain
accurate statistics. We validate the accuracy of this
framework for predicting the shape and result cardi-

I The notion of duplicate objects in PubMed is defined with
respect to the internal identification of the source, e.g., MED-
LINE identifiers for citations in PubMed.



nality for several results graphs that are a subset of
D@Gq. Our research addresses the following issues:

e Develop a framework to use statistics obtained
from the DG to completely characterize the
properties of a link and a path. Typical prop-
erties include Participation, Image, and Outde-
gree. Informally, given a link from S; to S;41,
the Participation is the number of objects of S;
that participate, and the Image is the number of
objects of S;;+1 that participate, in the link.

e Refine the framework to consider dependencies
between links, e.g., if there is a link from an ob-
ject in S; to an object in S;41, then the proba-
bility that there is a link from the object in S; 41
to an object in S;12 may be different from the
probability that any object in S;y; has a link to
an object in Siyo.

e Compare overlap between alternate paths. Use
overlap and / or result cardinality to obtain a
(partial) order of paths.

As an example, starting from 141 OMIM records in
RG@G, the direct link from OMIM to PubMed yielded
the largest number (7149) PubMed records; of these
7031 were unique. Paths of length 2, through Nu-
cleotide or Protein, yielded fewer records, and paths
of length 3 yielded even fewer records. Note that
there may be duplicates among the records. For ex-
ample 141 OMIM records yielded 2160 Nucoleotides
(2119 unique Nucleotide) records, and 4635 PubMed
records (1736 unique PubMed records) via these Nu-
cleotide records.

Next, we consider overlap between paths. Of the
7149 PubMed records (7031 unique) in the direct link
from OMIM to PubMed, 661 records were in overlap
with the 4635 records (1736 unique records) obtained
from the link from OMIM to PubMed via Nucleotide.
Of these same 7149 records (7031 unique), 941 were
in overlap with the 6667 records (3275 unique) ob-
tained from OMIM to PubMed via Protein. Finally,
of the 4635 records (1736 unique) obtained from the
link from OMIM to PubMed via Nucleotide and the
6667 records (3275 unique) obtained from OMIM to
PubMed via Protein, 1531 records were in overlap.

Due to space limitations, we are unable to present
our analysis and results. We refer the reader to
[LNRO3] for details on the framework and results on
accuracy in predicting result cardinality.

5 Conclusions

In this paper, we reviewed the challenges of exploring
life sciences sources, where multiple sources describe

scientific entity classes and there are multiple alter-
nate links between sources. We then reviewed two re-
search tasks: The first task explores the search space
of links and paths between biological data sources,
and efficiently identifies paths that are relevant to a
query expressed by a scientist. The second task is
to develop a framework to determine the properties
that characterize (multiple alternate) links and paths
between two sources. Together, these tasks provide a
solid foundation to support scientific exploration.

6 Acknowledgements

We thank David Lipman and Alex Lash of
NIH/NCBI for their expertise on NCBI data sour-
ces and for providing statistics, Barbara Eckman of
IBM Life Sciences for discussions on life sciences ex-
ploration, and Damayanti Gupta and Hyma Murthy
for data collection and analysis.

References
[DCB*01] S. Davidson, J. Cabtree, B. Brunk,
J.Schug, V. Tannen, C. Overton, and
C. Stoeckert. K2/kleisli and gus: Exper-
iments in integrated access to genomic
data sources. IBM Systems Journal,
40(2), 2001.

[EA93] T. Etzold and P. Argos. Srs: An index-
ing and retrieval tool for flat file data
libraries. Computer Applications of Bio-

sciences, 9(1), 1993.

[EKLOO] B. Eckman, A. Kosky, and L. Laroco.
Extending traditional query-based in-
tegration approaches for functional
characterization of post-genomic data.

Biolnformatics, 17(2), 2000.

[ELRO1] B. Eckman, Z. Lacroix, and L. Raschid.
Optimized seamless integration of
biomolecular data. Proceedings of
the IEEE International Symposium
on Bio-Informatics and Biomedical

Engineering, 2001.

[EVIT] T. Etzold and G. Verde. Using views for
retrieving data from extremely hetero-
geneous databanks. Pacific Symposium

on Biocomputing, pages 134-141, 1997.

[HKR100] L. Haas, P. Kodali, J. Rice, P. Schwarz,
and W. Swope. Integrating life sciences

data - with a little garlic. Proceedings



[KRG99)

[LLO3]

[LNRO3]

[LRV03]

[MHTHO1]

[MSHTHO02]

[MW89]

[Nau02]

[PG02a]

[PGO02D)

[PSB+99]

of the IEEE International Symposium
on Bio-Informatics and Biomedical En-
gineering, 2000.

G. Kemp, C. Robertson, and P. Gray.
Efficient access to biological databases
using corba. CCP11 Newsletter, 3.1(7),
1999.

A. Lash and D. Lipman. Statistics on
nih/ncbi data sources. Personal com-
munication, 2003.

Z. Lacroix, F. Naumann, and
L. Raschid. Characterizing prop-
erties of paths in biological data
sources. In preparation, 2003.

Z. Lacroix, L. Raschid, and M.E. Vidal.
Exploring the search space of paths in
biological data sources. In preparation,
2003.

P. Mork, A. Halevy, and P. Tarczy-
Hornoch. A model for data integration
systems of biomedical data applied to

online genetic databases. Proceedings of
the AMIA, 2001.

P. Mork, R. Shaker, A. Halevy, and
P. Tarczy-Hornoch. Pql: A declarative
query language over dynamic biological
data. Proceedings of the AMIA, 2002.

Alberto O. Mendelzon and Peter T.
Wood. Finding regular simple paths in
graph databases. In Proceedings of the
International Conference on Very Large
Data Bases, pages 185-193, 1989.

Felix Naumann. Quality-driven Query
Answering for Integrated Information
Systems, volume 2261 of Lecture Notes
on Computer Science (LNCS). Springer
Verlag, Heidelberg, 2002.

N. Polyzotis and M. Garofalakis. Statis-
tical synopses for graph-structured xml
databases.  Proceedings of the ACM
SIGMOD Conference, 2002.

N. Polyzotis and M. Garofalakis. Struc-
ture and value synopses for xml data
graphs. Proceedings of the Very Large
Data Base Conference, 2002.

N.W. Paton, R. Stevens, P.G. Baker,
C.A. Goble, S. Bechhofer, and Brass.

[TKM99]

[Won00]

Query processing in the tambis bioinfor-
matics source integration system. Pro-
ceedings of the IEEE Intl. Conf. on Sci-
entific and Statistical Databases (SS-
DBM), 1999.

T. Topaloglou, A. Kosky, and
V. Markovitz. Seamless integra-
tion of biological applications within a
database framework. Proceedings of the
Intl. Conf. on Intelligent Systems for
Molecular Biology (ISMB), 1999.

L. Wong. Kleisli: Its exchange format,
supporting tools, and an application
protein interaction extraction. Proceed-
ings of the IEEE International Sympo-
sium on Bio-Informatics and Biomedi-
cal Engineering, 2000.



