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1 Introduction

An abundance of life sciences data sources contain
data about scientific entities such as genes and se-
quences. Scientists are interested in exploring re-
lationships between scientific objects, e.g., between
genes and bibliographic citations. A scientist may
choose the Omim source, which contains informa-
tion related to human genetic diseases, as a start-
ing point for her exploration, and wish to eventu-
ally retrieve all related citations from the PubMed
source. Starting with a keyword search on a certain
disease, she can explore all possible relationships be-
tween genes in Omim and citations in PubMed. This
corresponds to the following query: “Return all cita-
tions of PubMed that are linked to an Omim entry
that is related to some disease or condition.”

To answer such queries, biologists and query en-
gines alike must traverse both the links and the paths
(informally concatenations of links) through these
sources, given some start object in Omim. Figure 1
illustrates a subset of data sources at the National
Center for Biotechnology Information (NCBI) that
may be explored to answer the above query1.

There are five paths (without loops or self-
references among the sources) starting from Omim
and terminating in PubMed. These paths are listed

1All four data sources can be accessed at http://www.ncbi.
nlm.nih.gov
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Figure 1: A source graph for NCBI data sources (and
corresponding scientific entities)

in Fig. 2. The large number of inter-related data sour-
ces, with dissimilar but overlapping content, and the
large number of complex inter-relationships among
these sources, raise a number of challenges in effec-
tively and efficiently exploring life sciences sources.

• Properties of links and paths: The metrics
(typically statistics) of links and paths may be
used to characterize query results, e.g., to pre-
dict the cardinalities of query results along some
path. These properties are useful to both biolo-
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(P1) Omim → PubMed

(P2) Omim → Nucleotide → PubMed

(P3) Omim → Protein → PubMed

(P4) Omim → Nucleotide → Protein →
PubMed

(P5) Omim → Protein → Nucleotide →
PubMed

Figure 2: Five paths from Omim to PubMed

gists and data administrators as discussed later.
The challenge is to identify and model interest-
ing metrics and to efficiently measure them (e.g.,
sampling) or to correctly estimate them (e.g.,
statistical analysis).

• Optimization for query answering: Answers
to explorative queries typically require traversing
a multitude of paths among highly inter-linked
sources. Each path differs in cost and benefit (re-
sult cardinality), making it non-trivial to choose
the best path or set of paths. To compound the
problem, the results of different paths overlap,
so cost and benefit must be considered not indi-
vidually but for combinations of paths.

• Semantics of links and paths: In life sciences
sources, links are implemented as physical refer-
ences between data entries. To support more
meaningful queries, these links must be enriched
to capture semantics. Enrichment includes se-
mantic labels and a more precise identification
of the link’s source and target elements within
the data entry. Combined with the properties of
links and paths, one can then perform a compar-
ison of paths that is meaningful to the biologist.

• Query language for scientific exploration:
The challenge is the development of a high-level
workflow-style language with appropriate opera-
tors and semantics that allow domain scientists
to explore the contents and relationships cap-
tured in the sources. The operators and seman-

tics of this language must be at the level of the
biologist’s procedures and experiments, which
may then be translated into lower-level data ma-
nipulation operators.

In this extended abstract we present a simple
model of life science data sources and then discuss
our research in addressing these challenges.

2 Models for Life Science Data
Sources

Life science sources may be modeled at two levels:
the physical and logical level. The physical level cor-
responds to the actual data sources and the links that
exist between them. An example of data sources and
links is shown in Figure 1. The physical level is mod-
eled by a directed Source Graph, where nodes rep-
resent data sources and edges represent a physical
implementation of a link between two data sources.
A data object in one data source may have a link
to one or more data objects in another data source,
e.g., a gene in GeneCards links to multiple citations
in PubMed. An Object Graph represents the data
objects of the sources and the object links between
the objects. Each link in the source graph then cor-
responds to a collection of object links of the object
graph, each going from a data object in one source
to another object, in the same or a different source.

The logical level consists of classes (entity classes,
concepts or ontology classes) that are implemented by
one or more physical data sources or possibly parts
of data sources. For example, the class Citation may
be implemented by the data source PubMed. Each
source typically provides a unique identifier for the
entities of a class and includes attribute values that
characterize them. The following table provides a
mapping from the logical classes to the physical data
sources. A more detailed description of this model is
in [6].
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CLASS DATA SOURCE

Sequence (s) NCBI Nucleotide database
EMBL Nucleotide Sequence database

DDBJ

Protein (p) NCBI Protein database
Swiss-Prot

Citation (c) NCBI PubMed

Table 1: A Possible Mapping from Logical Classes to
Physical Data Sources

3 Properties of Links and
Paths

As seen in Figures 1 and 2, a query on the four sources
produces five potential paths that can be evaluated
to produce results. It is important to characterize the
properties of the links and thus obtain properties of
the paths. These properties can be used for multiple
purposes: One is for query planning and optimiza-
tion, to determine the cost of evaluating the results
of some path. Another is to estimate the size of the
result, and the overlap among the different paths so
that a user may choose to obtain answers from one
or more paths (depending on the domain specific se-
mantics of the paths; see also Section 5).

We developed a simple model to estimate the prop-
erties of the paths. Given a start source and target
source of a link, we used properties such as the aver-
age outdegree of objects in the start source, the per-
centage participation of objects in the start source,
the image cardinality of the target, etc., to estimate
path properties, such as the number of object link in-
stances or object path instances (in the object graph),
for some path, or the cardinality (the number of dis-
tinct objects of the target source) that are reached
in a path. The simple model made some assump-
tions such as uniform distribution of links across all
objects, and independence of links.

Based on sampled data from the four NCBI sources
of Figure 1, for several diseases and conditions, we
were able to determine that the prior assumptions
do not hold. We then extended the simple model
with metrics obtained from the sampled data. This
included a duplicate factor for a link, i.e., the number

of duplicate target objects given some set of object
links, as well as a path dependence factor, i.e., given
a path, the probability of an object participating in
two consecutive links (inlink and and outlink) of the
path. Our extended model based on the sampled
statistics was able to better predict the properties of
paths. Details of our model and experimental results
are in [6].

Given the overlap of content of the sources and
the connectedness of the sources, different paths will
typically show some overlap. Determining the level
of overlap is important both to a user as well as for a
system that is evaluating the paths. We use our data-
base of sampled data to study overlap among paths.
Given the set of links of a source graph, we define
views corresponding to all paths of length greater
than 1, e.g., all paths from Omim to PubMed, or
from Omim to Protein, etc. We define queries to
obtain statistics corresponding to these views, so as
to determine path properties such as the cardinal-
ity of results (target objects) in each pair of paths,
and the corresponding overlap between pairs of paths.
We must now address the task of effective assessment
of the overlap, including the problem of determining
which views (paths) to materialize and which views
to use to determine the overlap between any two
paths. The problem is similar in nature to determin-
ing which views to materialize in a data warehouse
environment, and query optimization using views,
given some query workload. In our example, the
query workload corresponds to the (pairs of) paths
for which overlap is to be determined.

Future work in the BioFast project concentrates
both on the extension and generalization of the set of
properties and on the usage of the presented proper-
ties for different scenarios, such as query optimization
and data curation (see next section).

4 Query Answering and Opti-
mization

We briefly ongoing research in the BioFast project re-
lated to query optimization and evaluation. A typical
query posed by a biologist (or a query used to popu-
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late an experiment or analysis pipeline) is quite com-
plex, involving multiple entities distributed across
many sources. Query evaluation may involve expen-
sive predicates, e.g., similarity search, and other high-
level operators such as clustering, grouping, ranking,
etc. Thus, query planning and optimization of such
queries poses many of the challenges that are ad-
dressed by database optimizers for mediation based
architectures [4, 10]. Special challenges of life science
queries are addressed in [1, 2, 3, 11].

In this discussion, we focus on the challenges of
navigational queries, and on data overlap between
the results of alternate paths. Consider a naviga-
tional query corresponding to a simple regular ex-
pression expressed over the logical scientific entities,
such as those in Table 1. As discussed, a navigational
query can be answered by multiple alternate paths in
a source graph. The problem of determining if an
edge in a graph occurs in a path that satisfies a regu-
lar expression has been shown to be NP hard [8]. We
have developed an efficient algorithm based on a de-
terministic finite automaton to exhaustively enumer-
ate all paths satisfying a regular expression [7]. It is
polynomial for acyclic graphs and enumerates simple
paths where an edge is not visited multiple times in a
path. We further improve on this search by employ-
ing a breadth-first search strategy. The breadth-first
search ranks sources based on a utility function that
determines if this source will contribute towards the
benefit of a path through this source. An example
benefit criterion is the estimated number of distinct
objects that are reached in the target source of a path
(see previous section). Our research has shown that
ranking sources based on their benefit contribution is
not always a good heuristic to generate paths with
the highest benefit and we are developing a heuristic
that ranks all subpaths that have been generated.

In general, each path is associated with both a cost
and a benefit and the objective is to generate some
k best paths with the least cost and highest benefit.
This is a multi-criteria optimization problem simi-
lar to the problem identified in [9]. A user may be
interested in selecting those paths with the highest
benefit to evaluate and obtain results. Alternately,
a user may wish to choose multiple paths subject to
an upper bound on evaluation cost or delay to ob-

tain results. This requires the choice of some best
k paths, i.e., the best combination of k plans. This
task is compounded by the overlap of results of the
target source along multiple paths, so that the ben-
efit of a path is determined by the other paths cho-
sen for evaluation. This problem corresponds to the
budgeted maximum coverage problem [5], which has
been studied in the logistics context of determining
the optimal location of warehouses to cover multiple
suppliers.

5 Enriching the Semantics of
Links and Paths

As outlined before, data entries in different life sci-
ences data sources have relationships that are ex-
pressed as links among them. However, these links
are syntactically and semantically poor. The links
are syntactically poor because they exist only at a
high granular level: the data entry level. The links
are semantically poor, because they carry no explicit
meaning other than the fact that the data entries are
somehow “related”.

Links are added to data entries for many different
reasons: Biologists insert them when discovering a
certain relationship, data curators insert them to re-
flect structural relationships, algorithms insert them
automatically when discovering similarities among
two data items, etc. To represent such subtle and di-
verse relationships, simple links are insufficient. Con-
sider a Swiss-Prot entry with a link to an Omim en-
try with a certain ID. In the flat structure of the
Swiss-Prot entry this logical link is represented as a
top-level attribute with an embedded Omim ID, and
possibly an HTML hyperlink to a data source storing
that particular Omim entry. A link in that form nei-
ther represents the part of the Swiss-Prot entry that
the link refers to, nor does it represent that part of
the Omim entry to which the link points, nor does it
represent the reason why the link was inserted. Bi-
ologists reviewing the Swiss-Prot entry rely on their
experience and can sometimes infer these link prop-
erties by closely and often time-consumingly exam-
ining both entries. Machines and algorithms cannot
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perform such analysis at the necessary level of detail
and precision.

In the Biofast project, we are developing a model
for links that allows the storage of links at a finer level
of granularity and that allows users and machines to
enrich the links. In the previous example, the link in
question perhaps should not originate from the Swiss-
Prot entry itself, but rather from the CC-DISEASE
attribute within that entry. The link should also not
represent a generic “relationship”; it should rather be
labelled as a “causal” relationship, informing humans
and machines that the protein may cause the disease
described in the Omim entry.

Clearly, a data model alone is not enough, in par-
ticular because there already exist huge amounts of
links that are not syntactically and semantically en-
riched. The BioFast project will develop user-friendly
tools to help a biologist to semi-automatically per-
form this enrichment, by analyzing the linked data
entries and by soliciting information from biologists.

The benefits of this structural and semantic enrich-
ment are numerous. Structural enrichment allows for
a better and finer analysis of link structures as out-
lined in Section 3. It also spares biologists from hav-
ing to infer or even guess the meaningful source and
target of the link. Semantic enrichment is not only
useful for humans reading data entries, but also al-
lows to semantically compose multiple links to gener-
ate meaningful paths through life sciences data sour-
ces. Finally, tools that are used to enrich links may
also be used to help identify when the links are in-
correctly inserted or are missing.

The BioFast project will develop an inventory of
link semantics and will include a set of possible se-
mantic labels for links together with their respec-
tive domains for link-source and link-target. Next,
we will explore techniques for automated and semi-
automated link-enrichment, and finally, we will inves-
tigate the composition of such semantics.

6 Query Language for Scientific
Exploration

An appropriate biological query language should en-
hance the scientist’s querying ability by the following
features:

• Provide an intermediate query language between
scientific workflows and traditional query lan-
guages such as SQL.

• Provide high-level operators such as ranking and
validation, which are currently not made directly
available by traditional query languages and are
often difficult to express (by complex queries).

• Constrain the evaluation of operators by various
operator specific semantics.

An example high-level operator is the Collection op-
erator; informally this operator has the function of
collecting data from various data sources to increase
the cardinality of explored entries, or to increase the
characterization or the functional description related
to entries, i.e., increase the cardinality of attributes.
The corresponding semantics may involve maximiz-
ing (minimizing) the number of sources along a path,
or maximizing (minimizing) the number of entries
(objects in the target source) or the attribute car-
dinality either along the entire path or of the target
source.

We note that understanding and generating the
mapping from a desired experiment or data analysis
protocol, expressed as complex workflows, to a set
of operators and their semantics is often difficult and
requires extensive domain expertise. The challenge is
to define the operators and semantics at the appropri-
ate level to be both able to express complex queries
and to still be accessible to the biologist. The BioFast
project will explore the definition of such high-level
operators and their semantics, and will develop tools
to allow domain experts to formulate queries using
this language. The acceptance of the scientific query
language and its semantics by biologists will depend
on the enriched semantics of links and paths, as de-
scribed in section refsec:semantics. Efficient evalua-
tion of these queries will depend on research on the
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metrics of links and paths (section 3), and on efficient
query evaluation (section 4).

7 Conclusions

Research in the BioFast project is a starting point
to understand and exploit life sciences sources and
their relationships with one another. Only close co-
operation with domain experts will ultimately lead to
success of the Biofast project and the BioFast team
is collaborating with domain experts from NCBI,
Humboldt-Universität, and IBM Life Sciences, to ad-
dress the challenges described in each of the sections
of this paper.
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