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Abstract

An abundance of biological data sources contain data on classes of scientific entities, such
as genes and sequences. Logical relationships between scientific objects are implemented
as URLs and foreign IDs. Query processing typically involves traversing links and paths

(concatenation of links) through these sources. We model the data objects in these sources
and the links between objects as an object graph. We identify a set of interesting properties
for links and paths, such as outdegree, image of a link, cardinality of data objects and links,
the number of distinct objects reached by some links, etc. Analogous to database cost models,
we use statistics from the object graph to develop a framework to estimate the result size for
a query on the object graph. Analogous to training and testing, we use sampled data from
queries to estimate the result size. We validate our models using data sampled from four
NIH/NCBI data sources. Our research provides a foundation for querying and exploring data

sources.

1 Querying Interlinked Sources

An abundance of biological data sources contain data about scientific entities, such as genes and
sequences. Each source may have data on one or more logical classes. Logical relationships between
scientific objects are implemented as source links between data sources. Together, they form a
graph — the source graph. Each source link represents a collection of object links, each going from
a data object in one source to another object, in the same or a different source. An object graph
is formed of the data objects and links. Formal definitions are in Sec. 2.

Scientists are interested in exploring relationships between scientific objects, e.g., genes and
citations. Consider the query “Return all citations of PUBMED that are linked to an OMIM entry

that is related to some disease or condition.” To answer
such queries, biologists and query engines alike must fully
traverse links and paths (informally concatenations of
links) through these sources given some start object in
OwMmiMm. Fig. 1 illustrates the source graph for four data
sources at the National Center for Biotechnology Infor-
mation (NCBI). A scientist may choose the OMIM source,
which contains information related to human genetic dis-
eases, as a starting point for her exploration and wish to
eventually retrieve citations from the PUBMED source.
Starting with a keyword search on a certain disease, she
can explore direct links between genes in OMIM and ci-
tations in PUBMED. She can also traverse paths that
are implemented using additional intermediate sources
to learn about this relationship.
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Figure 1: Source graph for NCBI data
sources (and corresponding scientific
entities)



In all, there are five paths (without loops) starting from OMIM and terminating in PUBMED.
These paths are shown in Fig. 2.

(P1) OmiM — PUuBMED

(P2) OmiM — NUCLEOTIDE — PUBMED

(P3) OMIM — PROTEIN — PUBMED

(P4) OMIM — NUCLEOTIDE — PROTEIN — PUBMED

(P5) OMIM — PROTEIN — NUCLEOTIDE — PUBMED

Figure 2: All five paths from OMIM to PUBMED through the source graph of Fig. 1

The choice of paths has an impact on the result. For example, traversing a path via the PRO-
TEIN source might yield less and different citations compared to a path via the NUCLEOTIDE source.
This depends on the intermediate sources and corresponding entity classes that are traversed in a
path, the contents of each source, the contents of each source link, etc.

These properties of paths and their effects are of interest from a number of perspectives: From a
query evaluation viewpoint, one can estimate the cost and benefit of evaluating a query given some
specific sources and paths. In traditional database query optimization, cost models are typically
used to estimate the execution time, using statistics such as table cardinalities, selectivity factors
of certain operations, derived cardinalities of intermediate results, etc. In analogy, we use source
cardinalities, link cardinalities etc., to estimate the size of the intermediate and the final result.
While the query execution time is important to researchers, especially when sources are remote,
they are equally interested in the quality of the result. Quality covers multiple aspects such as
completeness of the source contents and link contents, reputation of the data providers, etc. This
paper provides a basis for the comparison of properties of different paths through interlinked data
sources and thus a means for optimization that recognizes the importance of both execution time
as well as quality of the results.

A second perspective that can profit from this work is that of data curation. Administrators
of cross-linked data sources are interested in providing not only correct data, but also complete
and consistent links to related data items in other data sources. For example, GeneReviews is an
alternate source of genetic information on diseases and it too has links to citations in PUBMED.
The results presented in this paper can help curators gain insight into the link structure of their
data. For example, we can compare the results of traversing the source link from OMIM to PUBMED
and compare the results with traversing the source link from GeneReviews to PUBMED. Based on
our analysis, a curator may identify an area of low connectivity that might profit from increased
curation efforts.

Finally, the properties presented in this paper uncover semantics of the data sources and links
between sources. Consider the source graph in Fig. 1; there are five alternate paths from OMIM to
PUBMED. Each of these paths yields a different number of distinct objects. Ordering these paths
based on the cardinality of objects in PUBMED or comparing the overlap of objects among these
alternate paths correspond to useful semantics that the researcher can exploit.

In this paper, we develop a model for the source graph paying attention to properties of links
and paths and properties of multiple alternate links and paths. We identify properties of the source
graph, including the cardinality of objects in a source, the cardinality of objects participating in
a link, etc. Given some statistics (for these properties) for a particular object graph, we develop
a framework for cardinality estimation in the source graph. This framework allows us to estimate
properties of the result graph, i.e., the graph generated as a response to a query that samples the
object graph. Finally, we compare the properties of alternate paths, i.e., paths with the same start
and end sources but different intermediate sources. This analysis includes comparing the result
cardinality for each of the alternate paths in some result graph, and the overlap of target objects,
for pairs of alternate paths. The approach is analogous to database cost models, where statistics



of the database instance are used to predict the result cardinality for a query.

We consider four data sources from NIH/NCBI and the statistics of the corresponding object
graph. We sample data from these sources to construct some results graphs, and we validate the
accuracy of our framework to estimate the properties of the result graph. Together with related
work in [LNRV03] and [LRV03], our research provides a foundation to effectively query and explore
data sources.

1.1 Related Work.

There has been prior research on providing access to life science sources [EKL00, ELR01, KRG99,
TKM99]. Example systems include DiscoveryLink [HKR00], Kleisli and its successors [DCB*01],
SRS [EA93, EV97] and Tambis [PSB199]. Recent research in [MSHTHO02] has considered multiple
alternate paths through sources but they have not addressed the properties of paths. Kleinberg
et al. are interested in distinguishing characteristic shapes and connectivity in graphs but not in
estimating the number of objects reached etc. as is our interest [Kle99].

Properties of links and paths have been studied in the context of XML document processing
in the XSketch project [PG02a, PG02b]. Given an XML document and the corresponding graph,
the authors consider label-split graphs and backwards/forwards bi-similar graphs to obtain a
synopsis of the original graph. The objective is a compact but accurate synopsis. Assuming
statistical independence and uniform distribution, they determine the selectivity for complex path
expressions using such synopses. Like us, they use these synopses in an estimation framework.
Their approach differs from our approach in that we use statistics such as cardinality and average
outdegree from the data graph, rather than detailed synopses.

2 Definitions

This section includes several definitions describing our model of the world and the data within. A
logical graph LG with scientific entities as nodes is an abstraction (or schema) of the source graph
SG with data sources as nodes. In turn, the object graph OG is an instance of SG. Finally, the
result graph RG is a subset of OG and contains the data objects and links specific to a particular
query. LG, OG and RG are (somewhat) analogous to the schema, database instance and result
of a query.

Definition 1 (Logical Link and Graph) A scientific entity represents all instances of a class
of objects, e.g., gene, sequence, etc. A logical link is a directed relationship between two scientific
entity classes. The set of scientific entity classes and the logical links between them form the
directed logical graph LG.

Queries, such as the one posed in the introduction, choose a single node in the logical graph as
a starting point and another single node as an end point. I.e., users start with a certain scientific
entity (the starting point) and are interested in its relationship with a certain other entity class
(the end point). The purpose of this paper is to explore different paths from starting point to end
point by examining the properties of the paths (Sec. 3).

Definition 2 (Source) A source S is a real-world accessible data source.

For simplicity of notation, we assume that a source provides data for a single scientific entity
class. Thus, in analogy to databases, a source acts as a table. If a real world source provides data
for more than one class, we model it as one source for each of its classes. In turn, there can be
multiple sources per scientific entity class, leaving users and query planners with certain choices.

Definition 3 (Source link & graph) A source link is a directed edge that connects two sources
and corresponds to a logical link. The source graph SG is the set of sources and the set of source
links.



For simplicity, we assume that there is only one source per scientific entity. Thus, the logical and
source graphs have the same shape. In analogy to databases, source links replace join operations.
Instead of keys and foreign keys, sources store links to related objects. Figure 1 shows a source
graph with four sources (nodes); each source is annotated with the scientific entity class. Each
edge represents a source link. For our example query, the OMIM source is the starting point. To
answer the query, OMIM is accessed by directly retrieving objects from that source (using the
name of a disease as a keyword). All other sources are accessed by following links.

Definition 4 (Source path) A source path p is a path from one node (starting point) of the
source graph G to another node (end point) of the source graph G. Sources along p are denoted
ST, ..., SP, where n is the length of the path.

Figure 2 lists the five source paths connecting starting point OMIM and end point PUBMED of our
example graph.

Definition 5 (Object Link & Graph) A object link is a directed edge between two data objects
in two different sources. Each object link implements a source link among the same two sources in
the same direction. Given a source graph, the object graph OG is a directed graph, in which the
set O of all data objects stored by the sources are the nodes, and the set L of object links between
these objects are the arcs.

The object graph represents our model of all the objects and links that we consider. Please
note that

e there may be many real links in the sources that are not represented in our model, e.g., a
data object could have a link to another data object in the same source. Future work will
drop the assumption that object links are among different sources.

e a data object can have multiple outgoing and incoming links.
e not all objects have incoming object links.
e not all objects have outgoing object links.

e the graph is not necessarily connected.

Next, we define a result graph as representing the answers (result) of a query against the OG.
A result graph is a subset of the object graph.

Definition 6 (Result graph; result) Recall that OG = (O, L) is an object graph. Then the
result graph RG = (O', L) is a graph where O' C O, L' C L, and O’ is induced by L’.

Definition 7 (Result path) A result path RP is a subset of a result graph along a single source
path of SG.

In related work [LNRV03], we have defined a regular expression based query language over the
entity classes of LG. A regular expression is satisfied by a set of result paths. Each path is a
subset of data objects and object links from OG, We can use the models developed in this paper
to rank paths.

The actual construction of the result graph with a set of real world databases is described in
more detail in Sec. 4.1. These graphs were used to test our model.

3 Characterizing the Source Graph

To further our goal of supporting queries on life sciences data sources, we introduce our framework
of properties of the source graph such as outdegree, result cardinality, etc. The framework uses
statistics from the object graph OG such as source cardinality, link cardinality, etc. As we include
additional properties and statistics, we further refine the framework and suggest a (refinement to
a) formula to estimate the result cardinality of a path.



3.1 Node and Link cardinality

The number of objects stored at a source and their link structure to other sources are among the
most basic metadata to obtain, either from the administrators of the sources themselves, or by
analyzing source samples. We formally define node and link cardinality for any graph G. Below,
we apply these definitions to object graphs and result graphs as defined in the previous sections.

Definition 8 (Node cardinality) The cardinality ¢ (S) of source S is the number of data ob-
jects at that source in a graph G. The estimated cardinality cS,,(S) of source S is the estimated

number of data objects in that source in a graph G. The set of data objects of S in a graph G is
denoted {S|a}.

Definition 9 (Link cardinality) The link cardinality lG(Sm') denotes the number of links of G
from all data objects of source S; in G pointing to data objects of S; in G.

A useful derived property is the average number of outgoing links from data objects:

Definition 10 (Outdegree) We define the link outdegree 1o, (S; ;) of source S; as the average
number of links of each data object in S; pointing to an object of source S;.

Along a path! p, the average outdegree can be calculated as lou: (S} ;1) = 199(S7;,1)/c99(Ss).
For brevity, we omit the path index p where the belonging of a source to a path is obvious.

Estimating result cardinality. Let m; be the number of starting objects found in source 5.
Following a given path p through sources Sy, ..., Sy, we construct the result path RP. Assuming
independence among object links and no two links pointing to the same object (no overlap), we
can calculate the number of distinct objects (i.e., the result cardinality) found of source Sy, in RP:

cht(Sy=mi- I low(Siipr), k>1. (1)

The above calculation makes severely simplifying assumptions. The first assumption is link in-
dependence along a path. Informally, the probability of a link from an object in source S;_1 to
an object o in source S; is independent of the probability of a link from object o in S; to an
object in source S;4+1. Future work will examine different dependency cases among links, such as
containment, disjointness, etc. The second assumption is link overlap. Informally, two links from
source S;_1 to S; may reach one or two distinct objects in S;. We relax this assumption in the
following.

To consider overlap of object links, we must determine the likely number of distinct objects
found in S, if randomly choosing m objects from all ¢?“(Sy) objects in Si. The probability to
find exactly z distinct objects when picking m times from a set of c?“(S},) objects in a source is
(see [Fel68])

oG
() ()

(m-i—cOG(Sk)—l) : (2)

m

For notational simplicity, we define mj to be the expected number of links from source Si_; to
Shk:
my = CRP(Sk_l) . Zout(Sk_Lk), k> 1.

est

The expected number of distinct objects found in a source is the sum of all possible outcomes =
multiplied with their probability from (2):

mi, if k= 1;
(coc(Sk))‘(mkfl)

x mp—x

C .
Z?jlx'W, ifk>1.
( my, )

B (Sk) =

(3)

1We use path in the usual graph theory sense, i.e., a set of successive directed links through the object graph.



In this formula, we must recursively replace the input value my with the number of distinct objects
found in the previous source along the path. In our experiments, m is the initial number of records
for the starting point source.

Note that we are likely underestimating the overlap due to our independence assumption. In
reality, links among semantically related objects are not independent. Most likely they point to a
subset of semantically related objects in the other source and link overlap is high. This behavior
becomes apparent when we compare the estimated cardinalities with the actual measurements in
Sec. 4.

3.2 Image cardinality

The link image of a source link is the set of data objects that are reachable in its implementation.

Definition 11 (Image cardinality) The link image size l;,(S; ;) is the absolute number of data
objects in S; that have at least one link pointing to it from parent source S; in the source graph.

We are interested in the size of the link image, because this metadata can improve the accuracy
of our estimations.

Estimating result cardinality. Including image cardinality into result size estimation modifies
the Formula (3) by potentially increasing the overlap. Wherever the cardinality of the source goes
into the formula, we replace it with the link image size, since only the objects in the image can
participate in RP.

ma, if k=1,

(lim(sk;Lk:Sk)),(::::i)

RP
Cest (Sk) = ~ .
Z’lekl € - (mk‘*"im(skfl,k‘sk)—l) if k> 1.
’77Lk

est

(4)

with my, as before for Formula (3).

4 Validating the Framework

We report on an experiment on data sources of the National Center for Biotechnology Information
(NCBI) to illustrate that querying well curated sources managed by a single organization may
result in different semantics, depending on the specific link, path and intermediate sources that
are chosen. Our experiment was limited to the source graph described in Fig. 1; the four data
sources hosted at NCBI are NCBI NucLEOTIDE, NCBI PROTEIN, PUBMED, and OMIM. We
sampled data from these sources to construct several results graphs RG. Using our framework,
we estimated result cardinality and compared the measured values of RG against our estimates
to validate the framework. We also compare the properties of alternate paths.

4.1 Creating Samples and Measurements for RG

The methodology to create sample results graphs to validate our framework corresponds to the
scenario of retrieving bibliographical references from PUBMED that are linked to genes relevant
to a given disease or medical condition. We fully explore all links and paths that exist between
objects in the four resources, given some start set of objects in OMIM.

Consider again the query of Sec. 1: “Return all citations of PUBMED that are linked to an
OMIM entry that is related to some disease or condition.” The study focused on three medical
conditions: cancer, aging, and diabetes. For each of these conditions domain experts provided a
list of relevant keywords. For example, osteoarthritis, impotence, dietary restriction, maximum
work rate, and arthritis characterize the medical condition aging. Each set of keywords was used
to retrieve relevant genes from OMIM via the E-Search utility supported by NCBI. These relevant
genes constitute the starting set of objects.



The execution of this query then explored all paths from the starting objects of OMIM, and
ended in objects of the end point source PUBMED. We used a wrapper, implemented in Java and
Perl, to make successive calls to the E-Link interface provided by NCBI, to follow the links from
OMIM records to each of the other 3 sources, as well as to traverse all potential paths (of length
2 and 3) from OMIM to PUBMED.

We created 12 datasets, 4 for each of the conditions. Each dataset starts with a collection of
between 140 to 150 OMIM records. The overlap among these OMIM records was very low, and was
Zero in many cases.

The data was collected in February and March 2003. We note that it took between 20 to 24
hours to download all the data for one set of approximately 150 OMIM records, following the limits
on frequency of queries imposed by the NCBI site. We further note that in many cases, there were
extremely low levels of time-out errors from E-Link, despite the high volume of requests. These
details are of interest since an eventual application of our framework will be in query optimization
to reduce query execution time.

Figure 3 shows the results of one experiment
for the condition aging, starting with 141 OMIM
records. It shows the measured values for differ-
ent paths through the result graph. Each edge la-
bel shows the link cardinality. For example, there
are 1,651 links from the 141 OMIM records to PRO-
TEIN records. Each node label shows the number
of distinct objects found by following those links
(node cardinality). For example, of the 1,651 links
from OMIM to PROTEIN, only 1,590 distinct PRO-
TEIN records are found. We note that outliers were
(recursively) eliminated from the RG. To identify 1665} {1570} {6099} {1538} {2916
outliers, we determined the average outdegree for
the data sampled in a link, and eliminated those
records whose outdegree far exceeded the average.
The number of outliers was typically < 1%.

The following table compares the link and node cardinality. The first row shows the link
cardinality for the last link of each of the five paths enumerated on Page 2. Note that this number
reflects the elimination of outliers?. The second row shows the node cardinality (after elimination
of duplicates and outliers).

Figure 3: The result graph from experiments
on aging

Path P1 P2 P3 P4 P5
PUBMED entries with duplicates 6216 | 4495 | 6215 | 3517 | 3675
PUBMED entries without duplicate | 6099 | 1665 | 2916 | 1538 | 1570

This table indicates that the amount of link overlap measured in the five alternate paths differs
significantly. Path (P1) has few duplicates (less than 2%) whereas the other paths have more than
50% duplicates (Paths P2 through P5). Such significant variation in the number of duplicates in
these paths violates our assumption of independence among the links. It is clear that in those
paths with more than 50% duplicates, the probability that an object participates in one link is
not independent of the probability that this object participates in another link. We return to this
assumption when we validate our model.

4.2 FEstimations for RG

As an input to our formulas, we obtained statistics on the object graph OG for February 2003 from
NCBI [LL03]. These statistics are summarized in Appendix A. These include node cardinality for
each of the sources and link cardinality for any pair of sources. The statistics were used within

2An outlier is a record that has a statistically significantly larger number of links compared to the average
distribution for the records in that source.



our framework and applied to Formula (4) to estimate the number of distinct objects found at each
node.

Figure 4 shows the results of these estimations.
The number of OMIM entries (141) in the start node
was chosen to exactly correspond to the result graph
RG of Fig. 3. In Fig. 4 node labels give the esti-
mated number of distinct objects encountered along
a path and edge labels give the estimated number
of links.

Consider for example the highlighted path
OMIM (Om) to NUCLEOTIDE (Nu) to PUBMED (Pu).
From the 141 Om entries, based on the average outde-
gree from Om to Nu, we expect to find 2514 outgoing Figure 4: The result graph from calculations
links to the NUCLEOTIDE data source. Assuming independence of the data objects and links, and
knowing the link image of Nu, we estimate to find 2464 unique objects of Nu. We further estimate
the number of outgoing links from Nu to Pu to be 612 links of which we expect 609 unique objects
of Pu.

{609} {356} {852} {181} {1322

4.3 Comparison

We now compare the estimations in Fig. 4 with the measurements of Fig. 3. To understand the
discrepancies, regard Table 1. For each link in the five paths, we report the number of measured
links (LnkMs), the number of estimated links (LnkEst) and the error in estimation as the ratio
of estimation and measurement (LnkEst/LnkMs). The last three columns are analogous for the
number of distinct objects. Note that in our estimation, we use statistics from the object graph.

The error fractions indicate that only for links Om-Nu, Om-Pr and Om-Pr-Nu, the estimates of
link cardinality (1.164, 1.076, and 0.810 respectively) and number of distinct objects (1.163, 1.088
and 1.032 respectively) appear to be reasonably close and within some error of approximation.
However, if we consider the link Om to Pu, the error is significant. The estimate are 862 links and
852 distinct objects of Pu, whereas the measured values are 6216 and 6099, respectively. This is
clearly a gross misestimation.

For links where the error fraction for both links and objects is close to 1.0 (low error), what
appears common is that the number of distinct objects is in the same range as the number of
links. The independence assumption for links(objects) of our model appears to be upheld here.
However, for the rest of the links where the error fraction is close to 0.0 (high error), we observe
that the number of distinct objects is significantly lower than the number of links. This indicates
that the assumption of an uniform distribution with independence among links(objects) is not
supported.

ERROR = ERROR =
Link | LnkMs | LnkEst | LnkEst/LnkMs | ObjMs | ObjEst | ObjEst/0ObjMs
Om-Pu | 6,216 862 0.139 | 6,099 852 0.140
Om-Nu | 2,160 2,514 1.164 | 2,119 2,464 1.163
Om-Pr | 1,651 1,776 1.076 | 1,590 1,730 1.088
(Om-)Nu-Pu | 4,495 612 0.136 | 1,665 609 0.366
(Om-)Pr-Pu | 6,215 1,333 0.214 | 2,916 1,322 0.453
(Om-)Nu-Pr | 1,652 235 0.142 | 1,342 235 0.175
(Om-)Pr-Nu | 1,779 1,441 0.810 | 1,394 1,439 1.032
(Om-Nu-)Pr-Pu 3517 181 0.051 | 1,538 180 0.117
(Om-Pr-)Nu-Pu | 3,675 357 0.097 | 1,570 356 0.227

Table 1: Fractional error in estimation for “aging”



5 Training and Testing

Having twelve result graphs RG, one for each set of OMIM starting objects, we enhanced our
estimations by training an estimator and testing it. I.e., we used all but one of the result graphs
to gain insight into expected path cardinalities given certain input parameters (training). The
single remaining result graph served as the test data set, and predictions from the eleven RGs
were compared with the actual value of the twelfth RG (testing).

5.1 Model for Training using RGSs

For the result graph RG we present some definitions and an expression for our estimation.

Definition 12 (Link cardinality in RG) [9(S; ;) denotes the number of links from all objects
of source S; in RG pointing to data objects of S; in RG.

Definition 13 (Link Participation in RG) [5%(S, ;11) is the number of objects in S; in RG

par
having at least one outgoing link to an object in S;+1 in RG.

Definition 14 (Link Image in RG) lf,,%.nG(Si’i+1) is the number of data objects in S;y+1 in RG
that have at least one incoming link from objects in S; in RG.

Definition 15 (Outdegree in RG using Participation) Link outdegree [557""(S; ;) of source

S; is the average number of links of each data object in S; in RG pointing to an object of source

Along a path p in RG, average outdegree based on participation is calculated as lfﬁQ(Si’iH) =
Lo (Sii1) [ lpar (Sisig1)-

We define path dependence factor to capture the statistics from the RGs of an object in .S;
having both an inlink from .5;_; and an outlink to an object in S;41.

Definition 16 (Path Dependence Factor(pdf)) Let p(i,i+1,i+2) be a path of length three.
Then pdf (Siiv1ive) = LG (Siv1,ive) /LT (Sii1)-

We define duplication factor to capture the statistics from the RG of two links from .S; pointing
to the same object in S; 1.

Definition 17 (Duplication Factor(df)) The duplication factor is the ratio of the number of
objects in S;+1 with an inlink from S; and the number of outlinks from S; to Siy1: df (S;i+1) =
U35 (Siien) /15igi (Sisisn)-

Estimating result cardinality. Let m; be the number of starting objects found in source ;.
Following a given path p through sources Si,...,S5,, we construct the result path RP. Recall
that assuming independence among object links and no two links pointing to the same object (no
overlap), we calculated the number of objects found of source Sy in RP:

et (S)=mi- I low(Siivr), k>1. (5)
i=1,...,k—1
Using df (S;.i+1) and Average Outdegree based on Cardinality (£G1(S; ;41)
cli(S)=mi- I W85 (Siiea) - df (Siirr), k> 1. (6)
i=1,....k—1

Let my be the number of participating objects found in source S;. Using pdf (S;i+1,i+2) and
average outdegree based on participation I£G%(S; ;11), we can estimate the number of links, the
path cardinality, as follows:

B (Sk) =ma - 15 (S12) - [ pdf(Sicisinn) - 1553 (Sia), k> 2. (7)



We can estimate the number of object, Object Cardinality as follows:

Cese (Sk) = mu - Ugi*(S1,2) - df (S1,2)
H pdf (Si-1i11) - 102 (Siig1) - df (Siig1), k> 2. (8)
i=2,...,k—1

5.2 Validating the Model Using the RGs

For each of the 12 datasets (see Sec. 4.1), outliers were eliminated (recursively) and statistics, such
as path dependence factor, duplication factor, average outdegree, etc., were calculated. We then
chose two datasets, namely agingl and diabetes4, to make predictions on by using the average
value taken over the remaining 11 datasets. For agingl, the average was calculated over aging?2
through diabetes4, and for diabetes4 the average was calculated over agingl through diabetes3.
The result graphs for agingl and diabetes4 are shown in Fig. 5.

"diabetes"

OMIM
"aging"

Nucleotide Protein

{1680} {1198} {2297} {1748} {2117}

{1730} {1246} (1897} {1770} {2128

Figure 5: The result graph from predictions on agingl and on diabietes4
The predictions are compared with the values from experiments and tabulated in Table 2 for

agingl and for diabetes4. The tables are similar to Table 1, where we tabulate errors in estimation
assuming independence of links(objects).

For agingl, three of the links (Om-Nu-Pu, Om-Nu-Pr, and Om-Nu-Pr-Pu) have good predictions
with the fractions for prediction of links (objects) ranging from 0.91-1.21 (0.92-1.1). Five of them
have a moderate prediction for links (objects) with ranges of 0.79-0.88 (0.73-0.84). The only poor
prediction is for the link Om-Pu, where the error of prediction for the links(objects) is 0.31 (0.31).
However, in agingl the behavior of Om-Pu is very different from the other datasets (agingl for
Om-Pu has an outdegree of 44.1 while the average is 13.3).

For diabetes4, unlike agingl, most of the values are overpredicted. The link Om-Pu, however
shows a good prediction for links (objects) with the fraction of prediction for links (objects) being
1.18 (1.16). The only comparatively poor value of prediction is for the link Om-Pr-Nu-Pu, where
the values are 0.74 (0.53). The prediction values indicate an overall better performance in agingl
than diabetes4. This also emphasizes the difference in natures of aging and diabetes datasets.

6 Further properties

Our framework to model the source graph only considered a limited number of interesting link
properties. This will probably impose a limitation on the correctness of estimation using the
model. We plan to extend the framework and consider the following properties in future research:

e Link indegree and link outdegree distributions: Our current model assumes uniform dis-
tribution of links among the data objects of a source. In reality, there can be significant
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“agingl” ERROR = ERROR =
Link | LnkMs | LnkEst | LnkEst/LnkMs | ObjMs | ObjEst | ObjEst/0ObjMs

Om-Pu | 6,216 1,968 0.317 | 6,099 1,897 0.311

Om-Nu | 2,160 1,783 0.825 | 2,119 1,634 0.771

Om-Pr | 1,651 1,466 0.888 | 1,590 1,333 0.838
(Om-)Nu-Pu | 4,495 4073 0.906 | 1,665 1730 1.039
(Om-)Pr-Pu | 6,215 5,130 0.825 | 2,916 2,128 0.730
(Om-)Nu-Pr | 1,652 1509 0.913 | 1,342 1241 0.925
(Om-)Pr-Nu | 1,779 1,488 0.836 | 1,394 1,183 0.849
(Om-Nu-)Pr-Pu 3517 4268 1.214 | 1,538 1770 1.151
(Om-Pr-)Nu-Pu | 3,675 2,935 0.799 | 1,570 1,246 0.794
“diabetes4” ERROR = ERROR =
Link | LnkMs | LnkEst | LnkEst/LnkMs | ObjMs | ObjEst | ObjEst/0bjMs

Om-Pu | 2,016 2,381 1.181 1,966 2,297 1.168

Om-Nu | 1,279 1,864 1.457 | 1,256 1,708 1.360

Om-Pr 947 1,542 1.628 917 1,401 1.528
(Om-)Nu-Pu | 2,875 4,078 1.418 | 1,457 1,680 1.153
(Om-)Pr-Pu | 5,789 5,149 0.889 | 3,002 2,117 0.705
(Om-)Nu-Pr | 1,088 1,562 1.436 822 1,291 1.571
(Om-)Pr-Nu | 1,095 1,556 1.421 900 1,231 1.368
(Om-Nu-)Pr-Pu | 3,911 4,252 1.087 | 2,148 1,748 0.814
(Om-Pr-)Nu-Pu | 3,896 2,908 0.746 | 2,246 1,198 0.533

Table 2: Fractional errors in prediction for “agingl” and “diabetes4”

variance in the outdegree distribution, and we consider the impact of this variance when val-
idating our model; based on the link distribution, we know that an object that participates
in multiple links reaches as many distinct objects as it has links. With this (reasonable)
assumption, we can improve our estimations.

e Link dependencies: Seldom are the links along a path independent. The existence of an
incoming link into a data object changes the likelihood of an outgoing link to another object.
We have already explored this property and plan to further enhance our estimation model
to reflect such dependencies.

e Link quality: The information quality of a link’s source and target can be used as parameters
towards a link quality function. Quality includes parameters like the reputation of a source,
whether the link was manually or automatically generated, etc.

e Data source coverage and density: When deciding between alternative paths, a sources size
both in number of objects and in number of attributes is of relevance.

Being an additional source of information, the first two properties can serve as input to our
prediction model and thus refine it. The latter two properties extend our model in another
dimension: Instead of studying the mere cardinalities of results, users are often interested in the
quality of the data. In analogy to the cardinality model, a quality model over links can help
systems and users compare different paths.

7 Conclusions

The presented research is only a starting point of understanding Web life sciences sources and their
relationships with one another. Future work concentrates both on the extension and generalization
of the set of properties and on the usage of the presented properties for different scenarios. A list
of suggested property extensions was already given in Sec. 6. Additionally, we plan to extend
our model by allowing other distributions of links, by including multiple sources for individual
scientific entities, and by considering more complex link structures, including cycles and loops.
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Despite many experiments on NCBI data sources there is yet much data to explore. Only
tight cooperation with domain experts reveals properties and semantics of link structures that are
particular to certain sources. For instance, NCBI distinguishes curated links, i.e., links that are
generated and checked by humans, and non-curated links, which are generated automatically and
are thus of poorer quality. In a next step, we will partition the object graph according to that
distinction. For each partition we will determine path properties and compare them. A result of
this comparison will give hints on improvement of the automated linking mechanisms.

From these extensions it is a logical next step to use the gained insight to compare links and to
compare paths for the applications mentioned in the introduction: Query optimization and data
curation. Different semantics, such as path length or result cardinality, can be used to choose the
best among several alternative paths through a link structure. Together with results presented
in [LNRVO03] and [LRVO03], this application area promises biologists the ability to efficiently and
effectively query interlinked data sources, such as those at NIH/NCBI.
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A Statistics Provided by NCBI

Table 3 presents metadata about four NIH/NCBI data sources [LLO03]. For each source we show
their cardinality (c®“(S)) in the first line. The next lines present cardinalities concerning the
source links between two sources: the overall number of links from one source to the other (link
cardinality 19%(S; x)); the number of data objects having at least one link to the other (link
participation l,q,(S; k)); and the number of objects of the other having at least one incoming link
from the first source (link image l;, (Si x)).

Notice that the links in this particular set of sources are symmetric. I.e., for each link in one
direction the administrators of the NCBI sources inserted a reverse link. Thus, link participation
of one direction and link image of the reverse link are equal. For other sets of sources, in particular
if they are maintained by different organizations, this behavior cannot be expected.

OMIM NUCLEOTIDE | PROTEIN | PUBMED

OMIM 14,759

19G(S; 1) - 263,129 | 185,861 90,261

Lpar (Si k) - 9,863 9,637 13,666

Lim (Si k) - 122,826 67,568 73,807
NUCLEOTIDE 24,051,882

196¢(S; 1) 263,129 - 12,293,022 | 5,971,098

lpar (Si k) 122,826 - | 1,006,755 | 5,439,522

Lim (Si k) 9,863 - | 2,040,315 143,599
PROTEIN 2,753,334

19C¢(S; k) 185,861 2,293,022 - | 2,121,156

lpar (Sik) 67,568 2,040,315 - | 1,560,946

Lim (Si k) 9,637 1,006,755 - 164,085
PuBMED 12,388,558

196(S; 1) 90,261 5,971,098 | 2,121,156 -

lpar (Sik) 73,807 143,599 | 164,085 -

Lim (Si k) 13,666 5,439,522 | 1,560,946 -

Table 3: Statistics for four sources

14




