
Links and Paths
through Life Sciences Data Sources
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Abstract. An abundance of biological data sources contain data on
classes of scientific entities, such as genes and sequences. Logical rela-
tionships between scientific objects are implemented as URLs and for-
eign IDs. Query processing typically involves traversing links and paths
(concatenation of links) through these sources. We model the data ob-
jects in these sources and the links between objects as an object graph.
Analogous to database cost models, we use samples and statistics from
the object graph to develop a framework to estimate the result size for
a query on the object graph.

1 Querying Interlinked Sources

An abundance of biological data sources contain data about scientific entities,
such as genes and sequences. Logical relationships between scientific objects are
implemented as links between data sources. Scientists are interested in exploring
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Fig. 1. Source graph for
NCBI data sources (and
corresponding scientific en-
tities)

these relationships between scientific objects, e.g.,
genes and bibliographic citations. Consider the
query “Return all citations of PubMed that are
linked to an Omim entry that is related to some
disease or condition.” To answer such queries, bi-
ologists and query engines alike must fully tra-
verse links and paths (informally concatenations
of links) through these sources given some start
object in Omim. Figure 1 illustrates the source
graph for four data sources at the National Cen-
ter for Biotechnology Information (NCBI). A sci-
entist may choose the Omim source, which contains information related to human
genetic diseases, as a starting point for her exploration and wish to eventually
retrieve citations from the PubMed source. Starting with a keyword search on a
certain disease, she can explore direct links between genes in Omim and citations
in PubMed. She can also traverse paths that are implemented using additional
intermediate sources to learn about this relationship. In all, there are five paths



(without loops) starting from Omim and terminating in PubMed. These paths
are shown in Fig. 2.

(P1) Omim → PubMed
(P2) Omim → Nucleotide → PubMed
(P3) Omim → Protein → PubMed
(P4) Omim → Nucleotide → Protein → PubMed
(P5) Omim → Protein → Nucleotide → PubMed

Fig. 2. All five paths from Omim to PubMed through the source graph of Fig. 1

The choice of paths has an impact on the result. For example, traversing a
path via the Protein source might yield less and different citations compared to
a path via the Nucleotide source. This depends on the intermediate sources
and corresponding entity classes that are traversed in a path, the contents of
each source, the contents of each source link, etc.

These properties of paths and their effects are of interest from a number of
perspectives: From a query evaluation viewpoint, one can estimate the cost and
benefit of evaluating a query given some specific sources and paths. A second
perspective that can profit from this work is that of data curation: Adminis-
trators of cross-linked data sources are interested in providing not only correct
data, but also complete and consistent links to related data items in other data
sources. Finally, the properties presented in this paper uncover semantics of the
data sources and links between sources. Consider the five alternative paths in
Fig. 2. Each of these paths yields a different number of distinct objects. Ordering
these paths based on the cardinality of objects in PubMed or comparing the
overlap of objects among these alternate paths correspond to useful semantics
that the researcher can exploit.

In this paper, we develop a model for the source graph while paying attention
to properties of links and paths and properties of alternative links and paths.
These properties of the source graph allow us to estimate properties of the result
graph, i.e., the graph generated as a response to a query against the object
graph. The approach is analogous to database cost models, where statistics of
the database instance are used to predict the result cardinality for a query.

We consider four data sources from NCBI and the statistics of the corre-
sponding object graph. We sample data from these sources to construct some
results graphs, and we validate the accuracy of our framework to estimate the
properties of the result graph. Together with related work in [10], our research
provides a foundation for querying and exploring data sources.

There has been prior research on providing access to life science sources [2, 3,
7, 14]. Example systems include DiscoveryLink [6], Kleisli and its successors [1],
SRS [4], and Tambis [12]. Recent research in [11] has considered multiple alter-
nate paths through sources but they have not addressed the properties of paths.
In [8] Kleinberg et al. are interested in distinguishing characteristic shapes and
connectivity in graphs but not in estimating the number of objects reached, as
is our interest.



Properties of links and paths have been studied in the context of XML
document processing in the XSketch project [13]. Given an XML document
and the corresponding graph, the authors consider label-split graphs and back-
wards/forwards bi-similar graphs to obtain a synopsis of the original graph. The
objective is a compact but accurate synopsis. Assuming statistical independence
and uniform distribution, they determine the selectivity for complex path ex-
pressions using such synopses. Like us, they use these synopses in an estimation
framework. Their approach differs from our approach in that we use statistics
such as cardinality and average outdegree from the object graph, rather than
detailed synopses.

2 Definitions

This section describes our model of the world and the data within. For formal
definitions see [9]. In short, a logical graph LG with scientific entities as nodes is
an abstraction (or schema) of the source graph SG with data sources as nodes.
In turn, the object graph OG is an instance of SG. Finally, the result graph
RG is a subset of OG and contains the data objects and links specific to a
particular query. LG, OG, and RG are (somewhat) analogous to the schema,
database instance, and result of a query. For simplicity of notation, we assume
that a source provides data for a single scientific entity class. Thus, in analogy
to databases, a source acts as a table. If a real world source provides data for
more than one class, we model it as an individual source for each of its classes.

The object graph OG represents our model of all the objects and links that we
consider. Each object is an instance of a particular class and each link is between
two objects of different classes. A data object can have multiple outgoing and
incoming links, not all objects have incoming or outgoing object links, and thus
the object graph OG is not necessarily connected. Please note that there may
be many real links in the sources that are not represented in our model, e.g., a
data object could have a link to another data object in the same source.

In related work [10], we have defined a regular expression based query lan-
guage over the entity classes of LG. A regular expression is satisfied by a set of
result paths. Each path is a subset of data objects and object links from OG.
The actual construction of the result graph with a set of real world databases is
described in more detail in Sec. 4. These graphs were used to test our model.

3 Characterizing the Source Graph

To further our goal of supporting queries on life sciences data sources, we intro-
duce our framework of properties of the source graph such as outdegree, result
cardinality, etc. The framework uses statistics from the object graph OG such
as source cardinality, link cardinality, etc.



Node and Link cardinality. The number of objects stored at a source and their
link structure to other sources are among the most basic metadata to obtain,
either from the administrators of the sources themselves, or by analyzing source
samples. We define node and link cardinality for any graph G (for formal def-
initions, we refer to [9]). Then we apply these definitions to object graphs and
result graphs as defined in the previous section.

We denote the cardinality of source S as cOG(S), and the estimated car-
dinality as cOG

est (S). We denote the number of links (link cardinality) between
sources Si and Sj as lOG(Si,j). A useful derived property is the average number
of outgoing links from data objects, calculated along a path4 p as lout(S

p
i,i+1) =

lOG(Sp
i,i+1)/cOG(Si). The link image of a source is the set of data objects that

are reachable in its implementation. Its cardinality is denoted as lim(Si,j). We
are interested in the size of the link image, because this metadata improves the
accuracy of our estimations. For brevity, we omit the path index p where the
belonging of a source to a path is obvious.

Estimating result cardinality. Let m1 be the number of starting objects found
in source S1. Following a given path p through sources S1, . . . , Sn, we construct
the result path RP and estimate the number of distinct objects reached at the
last source of the path, i.e., the result cardinality. To consider overlap of object
links, we must determine the likely number of distinct objects found in Si, if
randomly choosing m objects from all cOG(Si) objects in Si. The probability
to find exactly x distinct objects when picking m times from a set of cOG(Si)
objects in a source is (see [5])

(
cOG(Si)

x

) · (m−1
m−x

)
(
m+cOG(Si)−1

m

) . (1)

For notational simplicity, we define mi to be the expected number of links
from source Si−1 to Si, i.e., mi := cRP

est (Si−1)·lRP
out (Si−1,i) for i > 1. The expected

number of distinct objects found in a source is the sum of all possible outcomes
x multiplied with their probability from (1):

cRP
est (Si) =





m1, if i = 1;
∑mi

x=1 x · (lim(Si−1,Si)
x )·(mi−1

mi−x)
(mi+lim(Si−1,Si)−1

mi
) if i > 1.

(2)

In this formula, we must recursively replace the input value mi with the number
of distinct objects found in the previous source along the path. This calculation
makes the simplifying assumption of link independence along a path. Informally,
we assume that the probability of a link from some object in source Si−1 to an
object o in source Si is independent of the probability of a link from object o in
Si to an object in source Si+1. Future work will examine different dependency
cases among links, such as containment, disjointness, etc.
4 We use path in the usual graph theory sense, i.e., a set of successive directed links

through the object graph.



4 Validating the Framework

We report on an experiment on data sources of the National Center for Biotech-
nology Information (NCBI) to illustrate that querying well-curated sources man-
aged by a single organization may result in different semantics, depending on
the specific link, path, and intermediate sources that are chosen. Our experiment
was limited to the source graph described in Fig. 1. Data was sampled from each
of the sources to construct several results graphs RG. Validation involved com-
paring measured values of the RGs with our estimates.

Creating Samples and Measurements. The methodology to create sample result
graphs corresponds to retrieving bibliographical references from PubMed that
are linked to genes relevant to a given disease or medical condition. We fully
explore all links and paths that exist between objects in the four sources, given
the start set of objects in Omim. The study focused on three medical conditions:
cancer, aging, and diabetes. A list of relevant keywords for each condition was
used to retrieve relevant genes from Omim. These genes constitute the starting
set of objects. We created 12 result graphs, 4 for each of the conditions. Each
result graph contains a collection of 140 to 150 Omim records and usually many
more objects from the other sources.

Figure 3 (left) shows the results of one such experiment for the condition ag-
ing, starting with 141 Omim records along with the measured values for different
paths through the result graph. Each edge label shows the link cardinality and
each node label shows the number of distinct objects found by following those
links (node cardinality).
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Fig. 3. The result graph from experiments on aging (left) and calculation (right)

Estimations. As an input to our formulas, we obtained statistics on the object
graph OG for February 2003 from NCBI. These statistics include node cardi-
nality for each of the sources and link cardinality for any pair of sources. The
statistics were input to Formula (2) to estimate the number of distinct objects
found at each node. Figure 3 (right) shows the results of these calculations. The
number of Omim entries (141) in the start node was chosen to exactly correspond
to the result graph RG of Fig. 3 (left). The node labels on the right give the
estimated number of distinct objects encountered along a path and edge labels
give the estimated number of links.



Comparison. We now compare the measurements and estimations of the in
Fig. 3. To understand the discrepancies, consider Tab. 1. For each link in the
five paths, we report the number of measured links (LinkMeas), the number of
estimated links (LinkEst), and the error in estimation as the ratio of estimation
and measurement (LinkEst/LinkMeas).

ERROR = ERROR =
Link LinkMeas LinkEst LinkEst/LinkMeas ObjMeas ObjEst ObjEst/ObjMeas

Om-Pu 6,216 862 0.139 6,099 852 0.140
Om-Nu 2,160 2,514 1.164 2,119 2,464 1.163
Om-Pr 1,651 1,776 1.076 1,590 1,730 1.088

(Om-)Nu-Pu 4,495 612 0.136 1,665 609 0.366
(Om-)Pr-Pu 6,215 1,333 0.214 2,916 1,322 0.453
(Om-)Nu-Pr 1,652 235 0.142 1,342 235 0.175
(Om-)Pr-Nu 1,779 1,441 0.810 1,394 1,439 1.032

(Om-Nu-)Pr-Pu 3517 181 0.051 1,538 180 0.117
(Om-Pr-)Nu-Pu 3,675 357 0.097 1,570 356 0.227

Table 1. Fractional error in estimation for “aging”

For those links where the error fraction for both links and objects is close
to 1.0 (low error), what appears common is that the number of distinct objects
is in the same range as the number of links. The independence assumption for
links (objects) of our model appears to be upheld here. However, for the rest of
the links (objects) where the error fraction is close to 0.0 (high error) indicates
that the assumption of an uniform distribution with independence among links
(objects) is not supported.

5 Training and Testing

Having twelve result graphs RG, one for each set of OMIM starting objects, we
enhanced our estimations using a training and testing technique. That is, we used
all but one of the result graphs to gain insight into expected path cardinalities
given certain input parameters (training). The single remaining result graph
served as the test data set. Through this training, we are able to overcome the
independence assumption made in Sec. 3 for result cardinality estimation.

Model for Training. For result graphs RG we present some additional nota-
tion and an expression for our estimation. For formal definitions, please see [9].
Link participation lRG

par(Si,j) is the number of objects in Si in RG having at
least one outgoing link to an object in Sj . Link outdegree in RG using par-
ticipation (instead of the entire set of object in Si) is denoted lRG′

out (Si,j) and
describes the average number of links of each data object in Si in RG point-
ing to an object of source Sj in RG. Along a path p in RG, average outdegree
based on participation is calculated as lRG′

out (Si,i+1) = lRG
out (Si,i+1)/lRG

par(Si,i+1).
To overcome the independence assumption made earlier, we define the path de-
pendence factor pdf capturing the statistics from the RGs of an object in Si

having both an inlink from Si−1 and an outlink to an object in Si+1: pdf(Si) :=
lRG
par(Si,i+1)/lRG

im (Si−1,i). We further define the duplication factor df to capture
the statistics from the RG of two links from Si pointing to the same object in
Si+1: df(Si,i+1) := lRG

im (Si,i+1)/lRG
out (Si,i+1).



Estimating result cardinality. Following a given path p through sources S1, . . . , Sn,
we construct the result path RP . Let m1 be the number of participating objects
found in source S1. Using pdf(Si) and average outdegree based on participation
lRG2
out (Si,i+1), we can estimate the object cardinality as follows:

cRP
est (Sk) = m1 · lRG′

out (S1,2) · df(S1,2)

·Πi=2,...,k−1

[
pdf(Si) · lRG′

out (Si,i+1) · df(Si,i+1)
]
, k > 2 (3)

Validating the Model. For each of the 12 sampled object graphs (see Sec. 4),
statistics, such as path dependence factor, duplication factor, average outdegree,
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Fig. 4. The result graph from pre-
dictions on aging1

etc., were calculated. We then chose one
object graph, namely aging1, to make
predictions on by using the average value
taken over the remaining 11 objects
graphs. For aging1, the average was cal-
culated over aging2 through diabetes4.
The result graph for aging1 is shown in
Fig. 4.

The predictions are compared with the
values from experiments and the results
are shown in Tab. 2. The table is simi-
lar to Tab. 1, where we tabulate errors
in estimation assuming independence of
links. Three of the links (Om-Nu-Pu, Om-Nu-
Pr, and Om-Nu-Pr-Pu) have good predictions, five of them have a moderate pre-
diction, and the only poor prediction is for the link Om-Pu.

“aging1” ERROR = ERROR =
Link LinkMeas LinkEst LinkEst/LinkMeas ObjMeas ObjEst ObjEst/ObjMeas

Om-Pu 6,216 1,968 0.317 6,099 1,897 0.311
Om-Nu 2,160 1,783 0.825 2,119 1,634 0.771
Om-Pr 1,651 1,466 0.888 1,590 1,333 0.838

(Om-)Nu-Pu 4,495 4073 0.906 1,665 1730 1.039
(Om-)Pr-Pu 6,215 5,130 0.825 2,916 2,128 0.730
(Om-)Nu-Pr 1,652 1509 0.913 1,342 1241 0.925
(Om-)Pr-Nu 1,779 1,488 0.836 1,394 1,183 0.849

(Om-Nu-)Pr-Pu 3517 4268 1.214 1,538 1770 1.151
(Om-Pr-)Nu-Pu 3,675 2,935 0.799 1,570 1,246 0.794

Table 2. Fractional errors in prediction for aging1

6 Conclusions

The presented research is only a starting point of understanding Web-based life
sciences sources and their relationships with one another. Future work concen-
trates both on the extension and generalization of the set of properties and on
the usage of the presented properties for different scenarios. Additionally, we
plan to extend our model by allowing other distributions of links (stored as his-
tograms), by including multiple sources for individual scientific entities, and by



considering more complex link structures, including cycles and loops. Together
with results presented in [10], this application area promises biologists the abil-
ity to efficiently and effectively query interlinked data sources, such as those at
NCBI.
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