Detecting Duplicate Objects in XML Documents

Melanie Weis
Humboldt-Universitat zu Berlin
Berlin, Germany

mweis@informatik.hu-berlin.de

ABSTRACT

The problem of detecting duplicate entities that describe
the same real-world object is an important data cleansing
task, necessary to improve data quality. For data stored in
a flat relation, numerous solutions to this problem exist. As
XML becomes increasingly popular for data representation,
algorithms to detect duplicates in nested XML documents
are required.

In this paper, we present a domain-independent algorithm
that effectively identifies duplicates in an XML document.
The solution adopts a top-down traversal of the XML tree
structure to identify duplicate elements on each level. Pairs
of duplicate elements are detected using a thresholded sim-
ilarity function, and are then clustered by computing the
transitive closure. To minimize the number of pairwise el-
ement comparisons, an appropriate filter function is used.
The similarity measure involves string similarity for pairs
of strings, which is measured using their edit distance. To
increase efficiency, we avoid the computation of edit dis-
tance for pairs of strings using three filtering methods sub-
sequently. First experiments show that our approach detects
XML duplicates accurately and efficiently.

Keywords
Duplicate Detection, XML, Similarity, Data Cleansing

1. INTRODUCTION

Several problems arise in the context of data integration,
where data from distributed and heterogeneous data sources
is combined. One of these problems is the possibly incon-
sistent representation of the same real-world object in the
different data sources. When combining data from hetero-
geneous sources, the ideal result is a unique, complete, and
correct representation for every object. Such data quality
can only be achieved through data cleansing, where the most
important task is to ensure that an object only has one rep-
resentation in the result. This requires the identification of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1QIS 2004 Maison de la Chimie, Paris, France

Copyright 2004 ACM and Universita di Roma “La Sapienza”.

Felix Naumann
Humboldt-Universitat zu Berlin
Berlin, Germany

naumann@informatik.hu-berlin.de

duplicate objects, and is referred to as object identification
or duplicate detection.

The problem has been addressed extensively for relational
data stored in tables. However, relational data only repre-
sents a small portion of today’s data. Indeed, XML is in-
creasingly popular as data representation, especially for data
published on the World Wide Web and data exchanged be-
tween organizations. Therefore, we need to develop methods
to detect duplicate objects in nested XML data. Due to the
hierarchical and semi-structured nature of XML data, we
have to face the following two issues, namely element scope
and structural diversity.

As XML elements, which we consider as objects, can be
nested under other XML elements, their scope is restricted
according to their ancestors, and has to be taken into ac-
count. For instance, consider the XML elements in Figure 1.

<country>
France
<city>Paris</city>
</country>
<country>
USA
<city>Paris</city>

</country>

Figure 1: Element Scope

Both cities are called Paris, both their content and struc-
ture match, however, they are not the same because one city
is in France, the other one in the USA, which are obviously
different.

Another problem is the a priori undefined structure of an
XML element within a document. In relations, tuples in a
single relation all have the same, clearly defined structure.
However, XML elements describing the same type of object
may have different structures. As a consequence, two dif-
ferent structures do not necessarily mean that the elements
represent different real-world objects: the same data may
just be organized differently or may be incomplete, which
the Example in Figure 2 illustrates.

The two country elements represent the same object, namely
the USA, but their structures differ significantly. To identify
them as duplicates, we have to loosen the condition of exact
structural match.

In this paper, we present a novel, domain-independent ap-
proach that overcomes these problems and efficiently detects
duplicates in an XML document. More specifically, our ap-

<country>
<name>United States of America</name>
<cities>New York, Los Angeles, Chicago</cities>
<lakes>
<name>Lake Michigan</name>
</lakes>
</country>
<country>
United States
<city>New York</city>
<city>Los Angels</city>
<lakes>
<lake>Lake Michigan</lake>
</lakes>
</country>

Figure 2: Structural Diversity

proach detects duplicate objects in a single XML document,
assuming the structure of elements with equal name may
differ. Without further domain-specific information, we are
able to detect duplicate objects with typographical errors
(data differs only slightly), equivalence errors (data differs
significantly but has same meaning), and missing data.

The outline of this paper is as follows. In Section 2, we
present related work. In Section 3, we discuss the main
concepts and definitions on which our approach is based.
Section 4 provides a detailed description of our approach.
In Section 5, we present experimental results.

2. RELATED WORK

Data cleansing is an important task in improving data
quality, and receives increasing attention in the database
community [22, 8, 21, 26]. For the specific problem of dedu-
plication, a lot of work is available for relational data. Re-
cent work focusing on performance aspects assuming user
input deduplication functions includes [10, 17].

In some domains, detecting duplicates received particular
attention, and domain-dependent solutions were developed.
Examples include Census datasets [25], medical data [12],
genealogical data [20], and bibliographic data [11]. Domain-
independent solutions include [27, 16, 14, 18]. Some ap-
proaches rely on learning algorithms to improve similarity
measuring [23, 6, 7).

To the best of our knowledge, the closest approach for
detecting duplicates in hierarchical data is DELPHI, from
which our work is inspired [3]. DELPHI identifies duplicates
in the hierarchically organized tables of a data warehouse,
for which the structure is clearly defined. This is a big dif-
ference to XML, where the structure is a priori not known.
They focus on a single hierarchy, not considering the cases
where a table may have several children tables. Our ap-
proach and DELPHI further differ in the similarity measure
used to identify duplicates. In DELPHI, they chose an un-
symmetrical measure (i.e. A is duplicate of B not necessarily
means that B is duplicate of A) that measures the contain-
ment of an element within another. As a consequence, the
difference of the two elements is not reflected in the result.
Our similarity measure, as defined in Section 3.2 is both
symmetrical and takes into account differences in the com-
pared elements.

Efficient string matching [13, 19, 5] is crucial when con-
sidering large data sets. We also consider this issue in our
approach by employing three different edit distance filters.

3. CONCEPTS AND DEFINITIONS
3.1 Definition of Duplicates

Before we start searching for duplicate objects in an XML
document, it is essential to define the exact meaning of “du-
plicate XML object”. In the relational model, data is stored
in flat tables where an object is simply defined as a single
row of such a relational table. All objects in the table have
the same structure and thus only vary in content. In the
world of XML, there are not necessarily uniform and clearly
defined structures like tables. Two objects thus have to be
compared according to both structure and data. XML data
is organized hierarchically, and the structure, even when
constrained by an XML Schema, allows a certain degree
of freedom. How objects that apply for being duplicates
are defined under these circumstances is the subject of this
section.

The two main aspects we consider to detect duplicate
XML objects are structure and data.

e Structure: Elements, which are the containers for data,
are distinguished by name. In our approach, we as-
sume that when two elements have different names,
they also have different semantics, i.e., the data they
contain cannot represent the same real-world entity.

Two elements with equal element name may be nested
under other elements, their ancestors. If two elements
have different ancestors, we assume that they cannot
be duplicates. We thus solve the element scope prob-
lem.

The descendents of two elements that satisfy the previ-
ous conditions, may have different structures, although
they represent the same real-word entity. To account
for this possibility, we only require descendent struc-
tures to be similar, but not necessarily equal.

e Data: In XML, there are two choices storing data. It
can either be specified as value of an attribute, or as
text node of an element. When comparing two XML
objects, the both should be considered.

Data is organized hierarchically. To identify duplicates
even if the data significantly differs at one level due to
an equivalence error, a good indicator that they may
actually represent the same real-world entity is given
by the data of their children. Indeed, if the data of chil-
dren nested under an element is similar to the data of
children of the other element, this is strong evidence
that the elements are duplicates. We say that the chil-
dren elements common to two elements co-occur in
both elements. Common children elements have equal
element name and similar data.

The definition of an element’s data is application de-
pendent. E.g, it may be sufficient to consider the
text node and attribute values of an element, how-
ever, XML elements with complex content (i.e., only
sub-elements) will have no data. In this case, it is
preferable to consider the text nodes of children ele-
ments as the element’s data. To support all types of
content models (simple, complex, mixed), we defined
the data of an element to consist of (i) the data of its
text node, (ii) the values of its attributes, (iii) the data
of its children text nodes.

From these observations, we formally define duplicate ob-
jects in XML as follows.

DEFINITION 1. Two XML elements e and €' are candi-
date duplicates if the following conditions are satisfied:

e the parent elements of e and ' are equal or similar
e ¢ and e’ have the same name
e the data of e and €' is similar

e the children sets of e and €' have similar structure and
contain similar data

In each case, similarity is defined by some function that
is described in the next section.

3.2 Similarity Measure

Our technique for detecting similar objects uses a thresh-
olded similarity measure. That is, two objects are consid-
ered similar if the similarity measure yields a result above
a given threshold. Our similarity measure is guided by the
following intuition. Let O and O’ be two multisets of objects
in a universe U. The larger the intersection between O and
(', the more similar they are. On the other hand, the larger
their multiset difference compared to their intersection, the
more different they are.

We further adopt the notion that objects may have differ-
ent relevance in distinguishing O and O', which is quantified
by their inverse document frequency (IDF). The use of the
IDF to quantify the notion of importance has been success-
fully used in information retrieval literature [4]. The IDF
is defined as follows. Let fs(o) denote the frequency of an

object o € O. Then, IDFs(0) = log(flg(l))). As in [3], we

further define the IDF of a set S C O, to be

IDFs(S) := Y IDF(o).
0€ES

We introduce a similarity measure comparing two string
sets, denoted S and S'.
!
sim(S,S') i= IDF(SNS) (1)
IDF((SUS)\(SNS)).

According to Definition 1, the calculation of two XML el-
ements’ similarity requires the determination of (i) the sim-
ilarity between data contained in XML elements, called el-
ement data and (ii) the similarity of their children data in
order to measure co-occurrence. Of course, two children el-
ements can only co-occur if they have same name, that is,
we have to consider their structure as well.

Both element and child data are considered as strings.
Element data is further divided into a set of tokens. Two
tokens or strings s and s’ are considered similar if their edit
distance dcqi:(s, s') divided by the maximum length of s and
s’ is below a given threshold t.q4;:. The edit distance is a
common measure for string similarity and is defined as the
minimum number of insert, delete, and replace operations
necessary to transform s into s’. We divide deqit(s,s’) by
the maximum length of s and s’ because more errors should
be allowed in longer strings (intuitively, the longer a word,
the more errors such as typographical errors may occur).

Let E denote a set of elements that need to be compared.
For an element e € E, T'S(e) denotes the token set com-
prising the data in e, and C'S(e) denotes the set of strings

composing e’s children data. The similarity of two elements
e and e’ is then defined as

s(e,e') = sim(TS(e) UCS(e), TS()UCS()) (2)

We extend the classical definition of set intersection to
include not only equal strings, but also tokens and children
considered similar according to their edit distance. The effi-
cient determination of this similarity employs the concepts
described next.

3.3 Identifying Similar Data

The similarity of two elements is based on the similarity of
their data as well as their children data. In both cases, the
data is considered as strings, so we need to determine pair-
wise string similarity, measured using edit distance. Com-
puting the edit distance of two strings is an expensive oper-
ation. By applying the following general edit distance filters
for pairs of tokens and pairs of children data, the number
of edit distance computations can be substantially reduced.
Edit distance filtering is applied once the graph is initialized.

3.3.1 Length Distance Filter

When comparing two strings s and s’ of length I(s) and
I(s"), it is true that the following inequality holds:

li(s) = 1(s")] < deait (s, s"). ®3)

This property was already used in [9]. In our approach,
we first group strings by length, and we then prune out
complete groups of string pairs that do not qualify to be
similar: let L be the group of all strings of length I, and
L’ the group of all strings of length I’. As a reminder, two
strings s and s’ are duplicates if deqit(s,s’) < teqit- Now, if
[l—1"| > teaqit, there exists no string s € L that is a duplicate
for a string s’ € L', because Equation 3 holds for every s
and s’. Therefore, we can prune out pairs of string groups,
each time saving saving |L|*|L'| edit distance operations by
computing a single difference.

3.3.2 Filtering using Triangle Inequation

A second method for saving expensive edit distance cal-
culations makes use of the triangle property that holds for
edit distance. Let x, y , and z be three strings. It can be
shown that following inequality holds:

|dedit (%, y)—deast (¥, 2)| < deait(2, 2) < deqit(®, y)+deait (y, z)

(4)
We can use this inequality to calculate a range [min, maz]
for deqit(x, z) by computing a simple substraction and ad-
dition. This is cheaper than calculating the edit distance.
Then, there exist two filter methods:

1. maz < teq;t = x and z are similar

2. min > teqit = © and z are not similar

3.3.3 Bag Distance Filter

For the remaining strings, we use the bag distance between
two strings, which was introduced in [5] as a lower bound for
the edit distance of those strings. Given a string x over an
alphabet A, let X = ms(z) denote the multiset of symbols
in z. For instance, ms("peer”) = e,e,p,r. Let the bag
distance be defined as follows:

dvag (2, y) = maz(|X = Y[,|Y — X|) (5)

where the difference has bag semantics (e.g., {{a,a,a,b}} —
{{a,a,b,c,c}} = {{a}}), and |.| counts the number of ele-
ments in a multiset (e.g., |{a, a}| = 2). In practice, dag(z,y)
first drops common elements, then takes the maximum con-
sidering the number of residual elements. It can be easily
shown that dpag(z,y) < deait(z,y), so it is a potential filter
function for edit distance. Its use is justified as its com-
putation in O(|X| + |Y]) is substantially cheaper than the
calculation of the edit distance performed in O(|X| *|Y).

Once similar tokens and children have been identified, we
can apply the similarity measure (2) to identify pairs of du-
plicate XML objects.

3.4 Detecting Pairs of Duplicate Objects

As mentioned earlier, we use a thresholded approach to
detect pairs of duplicate objects. Formally, let tg4,, be a
threshold value, and isDup(e,e’) be a function returning a
boolean value such that

) n _ | TRUE if s(e,e') > taup
isDup(e,e') = { FALSE otherwise ©)

If isDup(e,e’) yields a positive result, e and e’ are con-
sidered duplicate elements.

Consider again the two elements of Figure 2. Set teqir =
0.15 and t4yup = 1.0. The intersection of both elements is

{"United", "States", "New", "York", "Los", "Angeles",

"Lake Michigan"}. "Angeles" is part of the intersection
because deq;t ("Angeles", "Angels") < teq;t- The difference
between the two elements consists of {"of", "America",
"Chicago"}. Assuming all tokens and children data have
equal IDF | we obtain a similarity s = 7/3 > tqup, so both
elements are considered duplicates.

As s(e,e’) is applied to pairs of elements, the number of
comparisons explodes for a large number of elements. Simi-
lar to our approach for reducing the number of edit distance
computations, we developed a filter function for s, described
next.

3.5 Object filter

We apply the following filter function to reduce the num-
ber of expensive pairwise object comparisons. The filter
function represents an upper bound to our similarity mea-
sure s. With e being an XML element, S(e) = T'S(e)UCS(e)
being the set of strings composing e’s data, and G being the
set of data strings of all elements, the filter function f is
defined as:

IDE(S(e) \ (S(e) N (G —{S(e)})))
Informally, f(e) considers all data that e shares with any
other element, relative to data unique to e. Thus, if e shares
very few data with any other element in G, f(e) yields a
small result. As a consequence, it is likely that e is no
duplicate of any other element, because it is too isolated.
Formally, it can be easily shown that

s(e.e’) < f(e) (8)

for any €' € G. As a reminder, two elements are considered
duplicates if s(e,e’) > taup. If f(€) < taup, it follows from
(8) that s(e,e’) < f(e) < taup for any € € G, so we can
conclude that e has no duplicates without calculating any
similarity for e. The cost of computing f(e) is compara-
ble to the cost of calculating s. However, f only needs to

be calculated once for every element, whereas s has to be
computed for every pair of elements. Therefore, f(e) is a
suitable filter for reducing the number of pairwise element
comparisons.

So far, we have seen which measures are required in order
to determine pairs of duplicate objects. We use these mea-
sures to reach our broader goal of efficiently identifying all
duplicate elements at different levels in an XML document.

4. GENERAL APPROACH

The general approach for detecting duplicate XML ob-
jects compares elements with the same name in a top-down
traversal of the XML structure. A top-down traversal is
necessary to ensure that duplicates of parent elements are
detected prior to comparing their children. In our approach,
the detection of duplicate elements of same name is divided
in six major steps, which are listed below. In the remainder
of this section, we will describe these steps in more detail.

1. Object Extraction: creates an XML document that
only contains the relevant information for comparisons.

2. Graph Generation: creates an internal graph represen-
tation of the considered XML objects.

3. Similar Data Detection: detects similar tokens and
similar children data efficiently. To this end, the edit
distance filters described in Section 3.3 are applied.

4. Object Filter: applies the object filter described in Sec-
tion 3.5, to minimize number of pairwise object com-
parisons.

5. Pairwise Object Comparison: performs pairwise ob-
ject comparisons to detect duplicate objects. An edge
is added between element vertices that represent du-
plicate elements. The set of edges containing all these
edges is denoted as Eg .

6. Duplicate Clustering: computes the transitive closure
over the graph G(V, E4) in order to obtain clusters of
duplicate elements.

The input for the first iteration of this processing pipeline
is the XML document in which duplicates should be de-
tected. In subsequent iterations, i.e. during the top-down
traversal, these processing steps are repeated with a cluster
as additional input to the Object Extraction phase. This
way, we ensure that only children elements of the duplicate
elements in one cluster are considered and all the others are
out of scope.

Let us now look at the different steps in more detail.

4.1 XML Object Extraction

The XML document in which we want to detect duplicate
objects contains elements of various names that are nested
at different levels. According to our definition of duplicates,
it is sufficient to search for duplicates in a smaller domain,
where elements have the same name and ancestors. Using
XQuery, we extract all objects of the desired domain and
write them to a new XML document, which we refer to as
object document. The object document has a predefined
schema that correlates elements to their token and children
sets. The benefit of this preprocessing is that the docu-
ment we have to parse in order to generate the graph has a

clearly defined structure, thus making the graph generation
a straightforward task. We use XQuery instead of writing
our own parser, because XQuery simplifies the task of keep-
ing track of current elements’ XPaths and groups of parent
elements.

The general XQuery used to extract objects from the ini-
tial XML document is shown in Figure 3. Adapting this
query to differently structured documents is straightforward,
as it only requires changing line 3, containing the name of
the input document and the XPath of elements to be com-
pared.

(1) <result>

(2) |

(3) for $element in doc (inputDoc)/elementXPath

(4) return

(5) <element>

(6) {

(7) (

(8) Selement/text (),

(9) for $att in $element/@* return data($att),
(10) for $child in S$element/element ()

(11) let Schildatts := $child/@*

(12) return

(13) (

(14) $child/text (),

(15) for $childatt in $childatts return data($childatt),
(16) <children>

(17) {

(18) for $child2 in $child/element ()

(19) let $childatts2 := $child2/@*

(20) return

(21) element {local-name ($child2)}

(22) {

(23) $child2/text (),

(24) for $att2 in $child2/@* return data($att2),
(25) for $child3 in $child2/element ()
(26) let $childatts3 := Schild3/@*
(27) return ($child3/text(),

(28) for $childatt4 in $childatts3
(29) return data($childattd))

(30) }

(31) }

(32) </children>

(33))

(34))

(35) }

(36) </element>

(37) }

(38) </result>

Figure 3: XQuery Generating Object Document

We briefly explain the general-purpose XQuery of Fig-
ure 3. The set of objects we want to compare is a set of
XML elements from the input XML document inputdoc,
whose XPath is elementXPath (1.3). For every element e,
an element named element is created, the text node con-
sisting of the concatenation of e’s attribute values (1.9), text
node (1.8), and attribute and text nodes of e’s direct chil-
dren (1.10-15), thus comlying to the definition of element
data provided in Section 3.1. A children element is cre-
ated under every element. It encompasses the structure
one level below e by creating elements of same name (1.21),
and the data of these children (1.23-29). In short, we flat-
ten the structure of considered XML objects from the input
XML document from four levels to two. The data of levels
1 and 2 and levels 3 and 4 in the original XML document
is condensed on level 1 and 2, respectively. By losing some
structure and keeping the data, we loosen the constraint in
structural similarity. It follows that we can detect duplicates
based on similar data, although they may have significantly

different structure (as in Figure 2). The object document
for this sample XML document, when considering country
elements, is shown in Figure 4.

<element>
United States of America
New York, Los Angeles, Chicago
<children>
<lakes>Lake Michigan</lakes>
</children>
</element>
<element>
United States
New York
Los Angels
<children>
<lakes>Lake Michigan</lakes>
</children>
</element>

Figure 4: Sample Object Document

By parsing this document, which is potentially smaller
than the original XML document, we create an in-memory
representation of the XML objects. Future work will address
the memory problem arising for large XML documents.

4.2 Graph Model

The internal representation used in our approach is a
graph structure. Let G(V, E) be a graph with V being the
set of vertices and E the set of edges. In V', we distinguish
vertices describing an element e, vertices representing to-
kens of e and vertices that represent children of e. These
are referred to as element vertices, token vertices and chil-
dren wvertices, respectively. The correspondence of a token
or a child to an element is represented by an edge between
the corresponding token or child vertex and element vertex.

The graph is set up by parsing the object XML document
obtained in the previous step, using a SAX parser. For every
encountered element tag, an element vertex v, is created.
We keep track of data following the element tag until the
children tag is encountered. This data is then divided into
tokens (separators are whitespaces). For each token, a token
vertex is initialized and an edge between v. and the token
vertex is added. While no closing children tag is encoun-
tered, a child vertex is initialized for every XML element,
and an edge between v. and the child vertex is added.

Considering the object document in Figure 4, we obtain
the graph depicted in Figure 5.

O United
XML Element
[Token/Child

——— Exact containment

Figure 5: Graph Representation of Figure 4

4.3 Similar Token and Children Detection

In order to determine the similarity of two objects, it is
necessary to determine the similarity of their data and their
children data. To achieve this goal, we detect pairs of tokens
and children data that are similar according to their edit dis-
tance. Clearly, it is impractical to compute the edit distance
for all pairs of tokens and children. To minimize the num-
ber of comparisons using edit distance, we employ the filters
for edit distance introduced in Section 3.3 as follows. Note
that the discussion focuses on token comparisons, but the
approach is applicable to the comparison of children data,
as well.

The first filter applied to the data is the length filter. This
is reasonable as it is very easy to compute and prunes out
pairs of sets of tokens instead of just pairs of tokens. Fur-
thermore, the selectivity of this filter is high, as will become
clear from Experiments in Section 5. For every pair of to-
ken sets T and T’ not pruned out by the length filter, we
reduce the number of necessary edit distance computations
by combining the triangle property filter and the bag dis-
tance filter. How they are combined is best illustrated using
an example.

Let us consider the following pair of token sets not pruned
out by length distance filter :

T = {0akland, Houston, Gillroy, Oaklamd}
T’ ={Gilroy, Austin, Tuscon}

We create a matrix |T'| x (|T|+|T'|) and calculate all edit
distances in the first row (see Figure 6). For the remaining
cells, we first apply the triangle inequality filter using two
exact edit distances from row 1. If the triangle inequality fil-
ter fails, the bag distance filter is applied next. If it also fails,
the edit distance is finally calculated. In Figure 6, we see

that the token pairs { ("0aklamd", "Houston"), ("Oaklamd",

"Austin"), ("Oaklamd", "Houston"),

("Daklamd", "Gillroy"), ("Oaklamd", "Gilroy"),
("Daklamd", "Tuscon")} are filtered using the triangle in-
equality filter. The bag distance filter prunes out all but one
of the remaining token pairs. For the non-filtered ("Gilroy",
"Gillroy") pair, the edit distance is calculated. Through
filtering we saved 11 out of 18 edit distance calculations in
the current example. It is guaranteed that these computa-
tions are applied only once for every existing pair of tokens
in the complete token set, but the details are not further
discussed.

Oakland Houston Gillroy Oaklamd Gilroy Austin Tuscon

Oakland - Qute = 7 duysy = 6 dupy = 1 deaie = 6 deate = 6 doare =
Houston -- min = 1 min = 6 1 min = 1
doag = 6 6 |deeg = 3
-min:5min:0min20min:0
doay = 1 doag = 6 | dpag = 6

3 5 3

min

Gillroy

l:’ Token pairs pruned out I:l Token pairs pruned out :I Token pairs pruned out

using bag distance filter

using triangle inequality using bag distance filter

Figure 6: Edit Distance Filtering
If two tokens represented by token vertices v¢ and v; are

duplicates and are part of the data of two elements repre-
sented by element vertices v. and v., we add two directed

edges (v¢,v.) and (v, ve) to G. The direction is included so
that only one of two similar tokens is included in the inter-
section of both elements when calculating s(ve, v,). Figure 7
illustrates the graph representation of the XML elements of
Figure 2. The similarity of tokens ” Angeles” and ” Angels”
is translated by the two directed edges (” Angeles”, e2) and
(” Angels”, el).

United

[Angels |

Angels

lakes

O XML Element
[Token/ Child
——— Exact containment

P Similar containment

Figure 7: Graph Representation of Figure 2 after
Similar Data Detection

Principally, we could now calculate the similarity of ev-
ery element pair, however, this is impracticable for a large
number of elements. Therefore, we first apply our object
filter (7) to prune out elements that have no duplicates.

4.4 Object Filtering

The filter function f is applied to every element vertex.
Let ve be the current element vertex representing the XML
element e. The intersection and set difference are computed
efficiently by simply looking up which of ve’s neighbors have
a degree larger than 1, and those that have a degree equal
to 1, respectively. When v, is filtered, it is removed from G
together with its edges.

Removing an element vertex ve from G reduces f(n) for
any element n that intersected with e prior to v.’s removal.
Therefore, it is possible that f(n) < t4up after ve’s removal,
although f(n) > tqup before. Through removing element
vertices from G, the number of potentially filtered element
vertices increases.

For example, consider the graph shown in Figure 8, where
v and v’ respectively represent elements e and n. Assuming
all tokens have equal IDF, we initially obtain f(e) =1 and
f(n) = 3/2. For tqyp =1, v is filtered and removed from G,
which results in the bottom graph in Figure 8. By removing
v, f(n) drops to 1/4, which is below tqu;,. So we see that v’
can be filtered after the removal of v, which was not possible
before v was filtered.

As the goal is to maximize the number of filtered elements,
we recompute f for every element vertex that intersected
with ve prior to its removal. The implementation involves a
filter queue, to which we initially add all element vertices.
When an element is filtered, those neighbors not already
present in the queue but still in G, i.e., those that were
processed and not filtered, are added to the queue so that f
is recomputed.

All elements not filtered during this phase possibly have
duplicates. The detection of duplicates is the goal of the
next phase.

4.5 Duplicate Detection

Gatos |

Figure 8: Graph before filtering of v. (top) and after
removing v. (bottom)

Let ve,v, € V be the element vertices in graph G(V, E)
representing XML elements e and e’, respectively. We as-
sume they have not been pruned out during the object fil-
tering phase. Their token and children sets are simply their
neighboring token and children vertices. The similarity of
e and €' is measured by calculating s(e,e’). The naive ap-
proach to do this would require |Ve| * (|Ve| — 1)/2 compar-
isons, where V. is the set of element vertices in G that have
not been filtered. However, the determination of the set Ne,
of element vertices sharing at least one neighbor with an el-
ement vertex v, significantly improves performance. Then,
s only has to be computed |Ne,| times for v. This is by far
cheaper than the naive approach, because |Ngy| is usually
small, compared to |Ve|.

When e and e’ are detected to be duplicates according
to s(e,e’), an edge (ve,v.) is added to the graph G. Once
all duplicate pairs have been identified, the transitive clo-
sure over these edges is computed, and we obtain clusters
of duplicate elements. Note that these edges cannot be con-
fused with other edges in the graph because they are the
only edges between two element vertices. All elements in a
cluster represent the same real-world entity.

4.6 Top-Down Traversal

Once we have detected all duplicate clusters of elements
on the same level, we can descend one level in the XML
hierarchy to search for duplicates. For each of the deter-
mined clusters, the processing pipeline described above is
repeated, the selection of relevant XML objects being based
on the duplicate clusters of the previous iterations. The rele-
vant XML objects per iteration are those of same name and
whose parents are members of the same duplicate cluster.
Formally, for every cluster C detected at level i, repeat the
pipeline for those elements at level ¢ + 1 whose parent is in
C.

To evaluate the effectiveness of our approach, we carried

out some experiments, described next.

S. EXPERIMENTS

We perform experiments to answer two questions.

1. How effective are the filters described in Section 77 in
minimizing the number of pairwise string and object
comparisons?

2. How effective is the proposed approach in identifying
duplicate XML elements?

In answering the first question, we expect the combination
of edit distance filters to substantially reduce the number of
necessary pairwise string comparisons. Further, the object
filter should prune out the majority of objects not having
any duplicate in the considered set of objects. Concerning
the second question, we do not expect substantially differ-
ent results in terms of precision and recall than domain-
independent algorithms applied on relational data. How-
ever, the problem of identifying duplicates in XML bears
additional issues that are well solved according to our pre-
cision and recall measurements.

5.1 Data Sets and Setup

We consider clean geographic information extracted from
mondialDB.xml [2]. Clean means that there are no dupli-
cate elements in the XML document. We introduce errors
in the clean Country data as described next. Since we know
the duplicate tuples and their correct counterparts in the
erroneous dataset, we can evaluate our duplicate elemina-
tion algorithm. In our experiments, we detect duplicates on
level 1, where we have 260 Countries in the clean document.
Their children sets sum up to 2340 elements on level 2. Be-
cause we start from real data, all characteristics of real data
— variations in the lengths of strings, numbers of tokens
and frequencies of attribute values, co-occurrence patterns,
etc. — are preserved.

5.2 Error Introduction

We introduce three types of errors in the data, namely
typographical errors, equivalence errors, and missing data.
Four parameters are specified for the dirty XML generation.
First, we can specify the percentage of duplicates (dup) of
an object. The three remaining parameters specify (i) the
percentage of typographical errors (typ) consisting of single
character insertions, deletions, and swaps, (ii) the percent-
age of deletion errors (dep) creating missing data, and (iii)
the percentage of equivalence errors (eqp) within the set of
generated duplicates.

The parameter values are set as follows for our experi-
ments.

o dup = 100%
o typ = 20%
e dep = 10%
e eqp = 8%

The dirty XML document thus contains 520 Country el-
ements (260 originals and 260 duplicates). From these 260
duplicates, 20% contain typographical errors, 10% miss data
present in the original, and in 8% we introduced equivalence
errors. It was was generated using the DirtyXMLGenerator
made available by Sven Puhlmann.

5.3 Filter Selectivity

As described earlier, our approach uses two filtering tech-
niques. The first is used to reduce the number of edit dis-
tance calculations between pairs of tokens. The second filter
is applied on element vertices, and aims at minimizing the
number of pairwise element comparisons. In the following,
we present the selectivity of both filters on our current doc-
ument. The numbers are based on filtering at level 1, only.

5.3.1 Edit Distance Filter

We consider the token set of all Country elements in the
dirty document. It consists of 711 tokens, which would re-
quire 252405 edit distance calculations in the naive nested
loop approach. Using all three filters presented in Sec-
tion 3.3, namely the length filter, the bag distance filter,
and the triangle filter, the number of edit distance calcula-
tions is reduced to 1027. The serialization of the three filters
thus yields a selectivity of over 99%. The contributions of
the individual filters are described next, and are summarized
in Figure 10.

We first apply the length filter, which reaches a selectiv-
ity of 83%, as it prunes out 207796 token pairs. The se-
lectivity of the length distance filter highly depends on the
variability of token length. To characterize the behavior of
the length distance filter, we measure its selectivity by vary-
ing the average token length and the length variability (i.e.,
the number of groups of strings of same length). Figure 9
summarizes the selectivity obtained when varying the aver-
age token length (x-axis) for a given number of groups of
tokens of same length. We assume that tokens are equally
distributed over all groups, with the total number of tokens
to compare being 1000.

90,00%
80,00%
70,00%
60,00%

11 cluster
50,00%

9 cluster

selectivity

40,00%

30,00% \
_3 cluster 5 cluster 7 cluster

20,00%

10,00%
1 cluster

0,00%

123 456 7 8 9 1011121314 15 16 17 18 19 20 21 22 23 24 25
average token length

Figure 9: Length Filter Selectivity

We observe that an increase in average token length yields
a decrease in the length distance filter’s selectivity. This is
due to the fact that the threshold is relative to the max-
imum token length for a pair of tokens (see Section 3.2).
We further notice that as the number of groups increases
(i.e., when the token lengths are spread more widely), the
selectivity increases for constant average string length. The
reason for this is that the number of tokens per group, de-
noted as |c|, decreases as the number of groups increases.
The number of pairwise token comparisons necessary after
length filtering, denoted as n,, is given by

np = a/2 (|c* = |e]) +b(le]*)

where a is the number of groups and b the number of pair-
wise groups not pruned out. By increasing a, b potentially

increases as well, but the most significant term remains |c|.
As ¢ decreases with increasing a, n, decreases.

After applying the length distance filter, 44609 token pairs
remain. From these, the triangle filter prunes out 10109
pairs in total (selectivity = 23%). This leaves us with 34500
pairs, from which 33473 are filtered using the bag distance
(selectivity = 97%). Future work will include analysis of
the effectiveness of the triangle filter despite its relatively
low selectivity. Our current belief is that its calculation is
so cheap compared to the calculation of bag distance that it
is worth calculating it to save bag distance calculations.

Figure 10 summarizes the contributions of the three dif-
ferent filters.

275000
250000
200000
175000

150000
125000

#token pairs

100000
75000
50000
25000

0

#filtered pairs #total pairs

Length distance filter [lil Triangle filter [l Bag distance filter

Figure 10: Edit Distance Filter Contributions

We confirmed the results for the edit distance filtering in
much larger experiments. As in [14], we used 54,000 movie
star names collected from The Internet Movie Database [1].
‘We obtained results in 1000 seconds, a result comparable to
the one in [14]. The advantage of our approach is that we
guarantee that all duplicates according to edit distance are
found. The mapping of strings to Euclidean space used in
[14] only maintains edit distances as well as possible, so that
some duplicates are potentially missed.

5.3.2 Object Filter

The selectivity of the object filter highly depends on the
fraction of duplicate objects in the XML document. Indeed,
if every element has a duplicate in the document, the se-
lectivity should be zero, whereas for a clean document, it
ideally is 100%.

Using the clean Country document described previously,
we again generate dirty XML documents. The parameters
are the same as in Section 5.2, except for dup, which is varied
from 0% to 100% in increments of 10%. The grey line in
Figure 11 describes the number of objects without duplicates
in the corresponding document. For high selectivity, the
number of objects pruned out by the object filter, described
by the black curve, should be close to these values. We see
that this is generally the case.

Note that at duplicate percentages 70%, 90% and 100%,
the observed number of filtered object exceeds the number
of unique objects in the document. That is, the selectivity is
higher than 100%. This is due to the fact that f can return
a result smaller than ¢4y, when s < t4yp. In this case, f
found a false negative where s would have found one, too.

275
250
225
200
175
150
125
100

75

50

25

0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%

number of filtered objects

duplicate percentage (dup)

= Maximum e Observed

Figure 11: Object Filter Selectivity

5.4 Effectiveness of Similarity Measure

To quantify the effectiveness of our similarity measure s in
detecting duplicates, we perform recall / precision analysis
[4]. The results are based on duplicate Countries only, that is
we do not see error propagation through hierarchies, which
is part of future work. We ranked the pairs of duplicates
by descending value of s. Figure 12 represents two recall
/ precision curves. The grey curve shows how recall and
precision vary when considering both element and children
data. The black curve was obtained by only considering
element data, thus leaving out co-occurrence as a measure
for similarity. From Figure 12, we can draw two conclusions
for the considered scenario.

e the similarity measure is suitable for detecting dupli-
cate XML elements as the precision stays above 80%
for recall values up to 80% (with or without the use of
cooccurence)

o the use of co-occurrence improves the overall recall /
precision result, although the precision is worse than
without cooccurence for a recall between between 30%
and 70%. This can be explained by the fact that the
similarity measure is mislead by the similarity and sig-
nificance of children data, even when the element data
does not match. However, this behavior is a bene-
fit when element data is erroneous due to equivalence
errors or missing data. Then, elements can only be
similar according to their children data, and are not
identified as duplicates without u.

In Figure 12, we summarize the percentages of false posi-
tives and false negatives detected with or without consider-
ing children data. Again, we see that the use of co-occurrence
significantly improves the result, as the number of false pos-
itives does not explode. Furthermore, the overall number
of false positives and false negatives when considering chil-
dren data is low, which indicates that s is indeed a suitable
measure for detecting duplicate XML elements.

We plan to confirm these promising results by further ex-
periments.

6. CONCLUSION AND OUTLOOK

100% -
90% .
80% | \
70%

60%
50%
40%
30%

Duplicate Precision (%)

20%
10%

0% T T T T T T T 7
10% 20% 30% 40% 50% 60% 70% 80% 90% 100°
Duplicate Recall (%)

@ With cooccurence v Without cooccurence

Figure 12: Recall and Precision Diagram

100%
90%
80%
70%
60%
50%
40%

percentage

30%
20%
10%

0%

False positives False negatives

with cooccurence [l without cooccurence

Figure 13: False Positives and False Negatives

In this paper, we presented an approach to detect dupli-
cate objects in an XML document, which is a very impor-
tant data cleansing task necessary to improve data qual-
ity. Our approach overcomes the problems of element scope
and structural diversity within an XML document, and effi-
ciently identifies duplicate elements by adopting a top-down
traversal of its hierarchical structure. The results show that
our measure for object similarity achieves high precision
and high recall in detecting duplicates. The efficiency is
improved by applying filtering techniques where we would
otherwise have to perform pairwise comparisons. Both the
edit distance filters and the object filter are very selective
and thus considerably reduce the number of pairwise token
and element comparisons.

The approach presented in this paper focuses on a fast
and effective duplicate detection using several filtering tech-
niques. In addition to further characterizing filters and the
similarity measure, future work will consider issues of mem-
ory consumption. We also intend to extend our method to
make use of schema information, if available, which may im-
prove the processing and results. Other interesting research
could deal with the incorporation of tree similarity [15] and
approximate queries [24] in both the object extraction and
the object comparison phase.

7.
[1]
[2]

[3]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Internet movie database: http://www.imdb.com/.
Mondial database: http://www.dbis.informatik.uni-
goettingen.de/mondial.

ANANTHAKRISHNA, R., CHAUDHURI, S., AND GANTI,
V. Eliminating fuzzy duplicates in data warehouses.
In Proceedings of the 28th International Conference on
Very Large Databases (VLDB-2002) (Hong Kong,
China, 2002).

BAEZA-YATES, R. A., AND RIBEIRO-NETO, B. A.
Modern information retrieval. ACM Press /
Addison- Wesley (1999).

BarroLIN, I., CiAcciA, P., AND PATELLA, M. String
matching with metric trees using an approximate
distance. In Proceedings of the 9th International
Symposium on String Precessing and Information
Retrieval (SPIRE-2002) (Belo Horizonte, Brazil,
2002), pp. 271-283.

BILENKO, M., AND MOONEY, R. J. Adaptive
duplicate detection using learnable string similarity
measures. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD-2008) (Washington, DC, 2003).
BILENKO, M., AND MOONEY, R. J. Employing
trainable string similarity metrics for information
integration. In Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web
(Acapulco, Mexico, Aug. 2003), pp. 67-72.
GALHARDAS, H., FLOREscU, D., SHASHA, D., SIMON,
E., AND SarTaA, C. Declarative data cleaning:
Language, model, and algorithms. In Proceedings of
the 27th International Conference on Very Large
Databases (VLDB-2001) (Rome, Italy, 2001),

pp. 371-380.

GRAVANO, L., IPEIROTIS, P., JAGADISH, H., KOUDAS,
N., MUTHUKRISHNAN, S., AND SRIVASTAVA, D.
Approximate string joins in a database (almost) for
free. In Proceedings of the 27th International
Conference on Very Large Databases (VLDB-2001)
(Roma, Italy, 2001), pp. 491-500.

HERNANDEZ, M. A., AND STOLFO, S. J. The
merge/purge problem for large databases. In
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data (SIGMOD-95)
(San Jose, CA, May 1995), pp. 127-138.

Hyvrron, J. A. Identifying and merging related
bibliographic records. Master’s thesis, Department of
Electrical Engineering and Computer Science, MIT,
1996.

JArRO, M. A. Probabilistic linkage of large public
health data files. Statistics in Medicine 14, 57,
491-498.

JiN, L., L1, C., AND MEHROTRA, S. Efficient
similarity string joins in large data sets. Tech. Rep.
TR-DB-02-04, UCI ICS, 2002.

JiN, L., L1, C., AND MEHROTRA, S. Efficient record
linkage in large data sets. In Procceedings of the 8th
International Conference on Database Systems for
Advanced Applications (DASFAA-038) (Kyoto, Japan,
2003), pp. 137 —.

Kaming, K., KrRIEGEL, H.-P., SCHNAUER, S., AND
SEIDEL, T. Efficient similarity search for hierarchical

[16]

[17]

18]

[19]

[20]

[21]

[22]

(23]

[24]

25]

[26]

[27]

data in large databases. In Proceedings of the 9th
International Conference on Extending Database
Technology (EDBT-2004) (Heraclion, Crete, 2004),
pp. 676-693.

Lim, E.-P., SRIVASTAVA, J., PRABHAKAR, S., AND
RICHARDSON, J. Entity identification in database
integration. In Proceedings of the 9th International
Conference on Data Engineering (ICDE-93) (April
1993), pp. 294-301.

MONGE, A. E., AND ELkAN, C. P. The field
matching problem: Algorithms and applications. In
Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining (KDD-96)
(Portland, OR, August 1996), pp. 267-270.

MONGE, A. E., AND ELkAN, C. P. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. In
Proceedings of the SIGMOD 1997 Workshop on
Research Issues on Data Mining and Knowledge
Discovery (Tuscon, AZ, May 1997), pp. 23-29.
NAVARRO, G. A guided tour to approximate string
matching. ACM Computing Surveys, Volume 33,
pages 31-88 (2003).

Quass, D., AND STARKEY, P. Record linkage for
genealogical databases. In Proceedings of the
KDD-2003 Workshop on Data Cleaning, Record
Linkage, and Object Consolidation (Washington, DC,
2003), pp. 40-42.

RanwMm, E.; AND Do, H. H. Data cleaning: Problems
and current approaches. IEEE Data Engineering
Bulletin, Volume 238, pages 3-13 (2000).

RamAN, V., AND HELLERSTEIN, J. M. Potter’s wheel:
An interactive data cleaning system. In Proceedings of
27th International Conference on Very Large
Databases (VLDB-2001) (Rome, Italy, 2001),

pp. 381-390.

SARAWAGI, S., AND BHAMIDIPATY, A. Interactive
deduplication using active learning. In Proceedings of
the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2002)
(Edmonton, Alberta, 2002).

SCHLIEDER, T. Schema-driven evaluation of
approximate tree-pattern queries. In Proceedings of
the 8th International Conference on Extending
Database Technology (EDBT-2002) (Prague, Czech
Republic, 2002), pp. 514-532.

WINKLER, W. E. Advanced methods for record
linkage. Tech. rep., Statistical Research Division, U.S.
Census Bureau, Washington, DC, 1994.

WINKLER, W. E. Data cleaning methods. In
Proceedings of the KDD-2008 Workshop on Data
Cleaning, Record Linkage, and Object Consolidation
(Washington, DC, 2003), pp. 1-6.

YAN, T. W.; AND GARCIA-MOLINA, H. Duplicate
removal in information dissemination. In Proceedings
of 21th International Conference on Very Large Data
Bases (VLDB-95) (Zurich, Switzerland, 1995),

pp- 66-77.

