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Abstract

Most data integration applications require a matching
between the schemas of the respective data sets. We show
how the existence of duplicates within these data sets can be
exploited to automatically identify matching attributes. We
describe an algorithm that first discovers duplicates among
data sets with unaligned schemas and then uses these du-
plicates to perform schema matching between schemas with
opaque column names.

Discovering duplicates among data sets with unaligned
schemas is more difficult than in the usual setting, because
it is not clear which fields in one object should be compared
with which fields in the other. We have developed a new
algorithm that efficiently finds the most likely duplicates in
such a setting. Now, our schema matching algorithm is able
to identify corresponding attributes by comparing data val-
ues within those duplicate records. An experimental study
on real-world data shows the effectiveness of this approach.

1 Introduction

Integrating data from heterogeneous sources yields many
difficult problems of technical, structural, and semantic na-
ture. Technical challenges, such as remote access to sources
using different transfer protocols, are usually considered to
be solved, for instance using wrapper technologies. Struc-
tural challenges include translation between different query
languages and data models, integrating schemas, and pro-
cessing queries, to name a few. Among the most daunt-
ing challenges, however, are those concerning semantics,
because implicit knowledge known only by human experts
must be made explicit. Herein, we tackle the well-known
problem of schema matching, i.e., the task of identify-
ing semantically same or similar elements in two differ-
ent schemas. Schema matching techniques are used to de-
termine correspondences between heterogeneous schemas.
Correspondences, in turn, are used to discover mappings
and queries that transform data from one database to data

conforming to the schema of the other database [26]. We
call schemas with a mapping between themaligned.

In general, schema matching can be performed by com-
paring the names of the attributes, by comparing proper-
ties of underlying data instances, by comparing the struc-
ture in which an attribute is embedded, or any combina-
tion of the three [28]. In the DUMAS (Duplicate-based
Matching of Schemas) project1 we approach the schema
matching problem by designing an instance-based match-
ing algorithm. Usual instance-based approaches analyze at-
tributes of each schema individually, extracting properties
about the attributes, such as distribution of characters, aver-
age string length, etc. Attributes having similar properties
are subsequently matched, i.e., they are assumed to have the
same meaning. We call such approachesvertical matching,
because properties of columns of tables are compared. The
DUMAS approach, on the other hand, performshorizontal
matching: We traverse tables in search for similar rows (or
tuples), in effect detecting duplicates. Once a few duplicates
have been discovered, deriving a schema matching is simple
in principle: Same or similar data values among the dupli-
cates imply corresponding attributes of the schemas. This
horizontal approach must solve two main problems: (i) De-
tecting duplicates among databases with opaque schemas
and (ii) deriving a schema matching from a set of fuzzy du-
plicates.

Duplicate detectionis the problem of identifying mul-
tiple representations of the same real-world object within
a set of objects. Such multiple representations are called
fuzzyor approximate duplicates, because they might not be
exact copies of one another. In the remainder we simply
use the termduplicates. Duplicates arise during data cre-
ation, where they are inadvertently generated, and during
data integration if multiple sources store data about same
real world objects.

Finding duplicates among two databases with unaligned
schemas is more difficult than the classical duplicate de-
tection problem (in the field of data cleansing also known
as object identification or record linkage [29]). There, du-

1“ ‘And you, count, have made this match?’ asked Beauchamp.”
(Alexandre Dumas “The Count of Monte Cristo”)



plicates are searched within a single table, so it is already
clear which data values among a pair of tuples to compare.
Typical approaches use domain-specific rules based on such
comparisons to determine whether a pair of tuples repre-
sents the same real-world object. In our case, the two tuples
are from different and heterogeneous tables, so they possi-
bly have only a subset of their attributes in common. Also,
those attributes that they do have in common do not nec-
essarily appear in the same order. Finally, same data val-
ues might appear in different contexts in different tuples,
thus misleading duplicate detection. For instance, “Umesh-
war Dayal” is aneditor of the ICDE 2003 proceedings but
alsoauthor of numerous articles in ICDE and elsewhere.
To compensate, we present a duplicate detection algorithm
that does not rely on schema information and detects dupli-
cates based only on the sets of data values that the tuples
comprise.

Research on the classical duplicate detection problem is
further concerned withefficientlyfinding all duplicates by
reducing the number of tuple comparisons while still main-
taining good detection levels. Reduction is usually achieved
by partitioning tuples based on application-specific criteria
and searching for duplicates only within the partitions. In
our case, such a partitioning is not possible, because we do
not know the semantics of the attributes. Instead, our dupli-
cate detection algorithm uses a similarity measure for which
techniques are known that efficiently produce the topK re-
sults.

Once such duplicates have been found, we use them to
driveschema matching. Although the basic idea is simple—
same attribute values in a duplicate imply same attributes in
the schemas—we must overcome several subtle problems:
Due to misspellings, different formats, and other discrep-
ancies (i.e., due to fuzziness), duplicates often do not have
same but merely similar attribute values. Thus, we must de-
cide how similar attribute values must be and how many du-
plicates with such similar values are needed to confidently
derive an attribute match. Also, in real-world examples dif-
ferent attributes within a tuple may have the same value.
For instance,shipping address andbilling address often
have the same value in a record but have different meaning.
Thus, even given some duplicates, finding corresponding
attributes is not always trivial. In this paper we present a
procedure to perform schema matching using a set of fuzzy
duplicates. The matching can be iteratively refined by on-
demand repetition of duplicate detection.

Contributions. Our main contribution is a new and effec-
tive instance-based method for schema matching. The key
feature of this method is that it does not rely on any kind
of attribute names in either of the schemas. Also, it is an
improvement over other instance-based schema matching
techniques, because it recognizes syntactically similar but
semantically different attributes. An additional contribution

is a newmethod for duplicate detectionthat does not make
the usual assumption of duplicates having the same schema,
or even of having any known schema.
Assumptions.Like all instance-based schema matching ap-
proaches, we assume that both schemas have some under-
lying data. Schema matching is usually performed either to
assist integration of sources into a newly integrated schema
(e.g., in a data warehouse) or to assist mapping between
two data sources (e.g., in a peer data management system).
While in the latter case both sources have underlying data,
the former case fulfills the assumption only after at least
one source has been used to populate the integrated schema.
Nevertheless, even there schema matching greatly reduces
the burden of assigning correspondences for many schemas
by hand.

What is more (and unlike other approaches), we assume
the existence of at least some duplicates among the sources.
While this assumption is certainly not always fulfilled, there
are many scenarios where this is the case: Some customer
having ordered at two different online stores; same books
sold at several stores; an apartment offered at several web
sites; the expression of a gene stored in many genomic data-
bases; etc. Experiments have shown that only very few du-
plicates are needed to successfully perform schema match-
ing, reducing the weight of this assumption.
Structure of this paper. Related work in the areas of du-
plicate detection and schema matching is discussed in Sec-
tion 2. Section 3 elaborates the main idea with a simple ex-
ample of two small databases, a few duplicates, and some
corresponding attributes. Section 4 introduces the new simi-
larity measure to detect duplicates in databases with opaque
schemas. These duplicates are input to the schema matching
method presented in Section 5. Section 6 describes experi-
mental results on artificial and on real-world data before we
conclude in Section 7.

2 Related work

Because our work combines techniques of two major re-
search topics in a single approach, related work draws from
two areas: duplicate detection and schema matching.

2.1 Duplicate detection

The problem of identifying different representations of
the same real world object comes in many guises: Dupli-
cate detection in data cleansing frameworks [17, 1], record
linkage [14, 31, 13], entity or object identification [18], etc.
Rahm and Do provide a comprehensive overview [29].

Almost all approaches assume aligned and possibly inte-
grated schemas, and thus conceptually reduce the problem
to finding duplicates in a single table. In themerge/purge



method of Herńandez and Stolfo duplicates within a sin-
gle table are detected using application-specific rules [17].
To reduce computation complexity, the table is sorted us-
ing a domain-specific key, and only records within a slid-
ing window are compared. In order to improve precision,
Ananthakrishna et al. also exploit the hierarchical structure
to detect duplicates within a single dimension of a data
warehouse [1].Record linkagefollows a probabilistic ap-
proach [31, 13]. For each record pair, a comparison vec-
tor is produced by comparing corresponding attribute val-
ues. The record pairs are classified asmatched, possibly
matched, andunmatchedusing a linkage rule that assigns
each observed comparison vector with a probability for each
class. To reduce the number of comparisons, application-
specific blocking criteria can be used. Only Doan et al. con-
sider the problem of duplicate detection with only partially
aligned schemas [12]. In fact, the authors make explicit use
of non-aligned attribute values to improve duplicate detec-
tion. Nevertheless, the approach assumes that the existing
alignment is known in advance.

Several recent approaches incorporate machine learning
into the duplicate detection process. Tejada et al. use a de-
cision tree forest to learn both duplicate detection rules and
weights for string transformations, which are used for com-
paring fields [30]. The string edit distance is a metric com-
monly used in duplicate detection procedures. Bilenko and
Mooney have shown that machine learning techniques in-
crease the accuracy of the field matching task when string
edit distance is used, and in some cases even when token-
based measures are used [4].

All methods described above require the schemas under
consideration to be aligned. This is necessary to reduce the
number of field-wise comparisons and to define meaning-
ful comparison rules. In this paper we drop this assumption
because our goal is to find the attribute correspondences. In-
stead, we consider the problem of duplicate detection with
unknown attribute semantics and thus with no alignment
among schemas.

2.2 Schema matching

As described above, known duplicate detection meth-
ods require the schemas under consideration to be aligned.
Schema matchingis the task of finding such an alignment,
i.e., finding attribute correspondences between two given
schemas. In a greater context, schema matching can be seen
as a complex operatorMatchin a model management appli-
cation [2]. Several semi-automatic solutions to the schema
matching problem have been proposed (see survey of Rahm
and Bernstein [28]). Schema-based methods primarily use
labels, types, and other schema information to find simi-
lar attributes [20, 21]. Instance-based methods also exploit
properties of the underlying data, possibly in combination

with attribute labels, to derive matches [11, 23]. As opposed
to most solutions of the latter category, which use summary
information for attribute classification, we derive a schema
matching from identified duplicates in the databases.

We know of three approaches that perform schema
matching after duplicate detection. TheInternet Learn-
ing Agent(ILA) [25] establishes correspondences between
objects of its known internal world model and an exter-
nal information source by choosing an object in the inter-
nal model and trying to find a duplicate in the information
source. Duplicates are identified as a pair of objects that
have at least one common data value. Due to this untar-
geted approach, the ILA relies on high extensional over-
lap: The approach assumes “spanning sources” covering
the entire information domain. While such sources may
exist in a few select application domains, such as the men-
tionedwhois service, the assumption generally is unrealis-
tic. In our approach, we assume only a very small exten-
sional overlap. Furthermore, ILA considers two attributes
related when their values matchexactly, thus, ignoring dif-
ferent representations of the same information.

Chua et al. perform statistical analysis of the data
in duplicates to derive matches between the respective
records [5]. The focus of their work is to detect correlations
among differently scaled and encoded numerical attributes
using duplicates, whereas the work described in this paper is
mostly concerned with textual data. Duplicates are assumed
to be identified through a common ID attribute; thus, the au-
thors assume at least this one attribute to already be aligned.
Furthermore, entity identifiers that are consistently used in
all databases exist in only few cases.

The schema matching system iMAP [8] detects corre-
spondences using both schema and instance information.
Its use of data falls into the category of vertical matchers.
But in the case where duplicates exist, special “overlap”
modules replace the standard modules. However, the dupli-
cates used by these modules are not automatically detected
and must be provided by the user. Furthermore, only exact
matches on attribute values are considered by the overlap
text searcher when looking for attribute correspondences.

Our solution to schema matching drops several of the as-
sumptions made in other work, but also has certain restric-
tions. In particular, it is only applicable in the presence of
an extensional overlap, i.e., at least a small number of real
world objects must be represented in both databases. Our
solution is complementary to the solutions described above,
and we regard it as a fine candidate for inclusion in a com-
posite schema matching system such as COMA [10].

3 Motivating example

For simplicity, we discuss the problem and formulate our
solutions using the relational data model: LetR andS be



R A B C D E
r1 John Doe m (408) 7573339 (408) 7573338
r2 Joe Smith m (249) 3615616 (249) 2342366
r3 Suzy Klein f (358) 2436321 (358) 2436321
r4 Sam Adams m (541) 8127100 (541) 8121164
r5 Mark Spitz m (901) 8319311 (901) 8612382
r6 Jim Beam - (782) 1238957 (781) 1883744
r7 Kate Moss f (124) 9654565 -
r8 Sam Wong f (124) 4955670 (999) 9999999
r9 John Dean m (369) 3663624 (367) 3663625

S B’ F E’ G
s1 Doe jdoe 408-9182043 XP
s2 Deen jdean 369-3663625 XP
s3 Klein suzy 358-2436321 UNIX
s4 Adams adams 541-8121164 W2000
s5 Wong kate 923-6363443 Linux
s6 Kurz itsme - UNIX

Figure 1. Relations R and S with intensional and extensional overlap.

two relationsR(A, B, C, D, E) andS(B’, F, E’, G). There
is some, yet unknown intensional overlap (corresponding
attributes). We deliberately chose meaningless attribute
names to reflect real-world situations where attribute names
are missing, do not carry a meaning, or carry an unknown
meaning. In the example, corresponding attributes have
same letters as names; real-world names of corresponding
attributes can be widely different. Further, letR andS have
tuplesr1, . . . , r9 ands1, . . . , s6. R andS have some yet
unknown extensional overlap, i.e., some duplicates. This
simple scenario is shown in Figure 1 (next page).

The main goal addressed in this paper is to automatically
find a correct schema matching as shown in Figure 2. Note
that the intensional overlap ofR andS is only partial, so
not all attributes have a matching partner. Also note again
that similar attribute names are chosen only for presenta-
tional reasons; we solve the problem of schema matching
with meaningless or opaque names.

Attr. of R Attr. of S

A ←→ −
B ←→ B’
C ←→ −
D ←→ −
E ←→ E’
− ←→ F
− ←→ G

Figure 2. The correct schema matching from
R to S

Close examination ofR and S in Figure 1 reveals
an extensional overlap: Tuple-pairs(r3, s3), (r4, s4), and
(r9, s2) are duplicates, which we can use to perform schema
matching. Figure 3 shows tuplesr3 ands3 with indications
of attribute matches based on equal or similar data values.

From this single duplicate, we can already derive useful
clues for matching. In Section 5 we formally encode these
“clues” in a similarity matrix:

• B ←→ B’ is a perfect match with respect to this dupli-
cate, becauseB andB’ have the same value.

(358) 2436321r3

s3

GE’FB’

EDCBA

 ?
 ?

358−2436321 UNIXsuzyKlein

Suzy Klein f (358) 2436321

Figure 3. Using a duplicate to derive some
attribute matches

• A ←→ F is also a perfect match, because the values in
A andF are equal (we ignore upper/lower cases).

• BothC andG are not likely to participate in any match,
because their values have no same or similar equivalent
in the other tuple. Remember that not all attributes
must participate in a match.

• Both D ←→ E’ andE ←→ E’ are possible matches,
because the value inE’ is similar to the values both in
D andE. In the final result, we allow only 1:1 matches,
so we will have to decide which of the two matches is
correct.

By finding more duplicates and repeating the discovery
of same and similar values, we are able to refine the overall
matching. For instance, by examining the duplicate(r4, s4)
we

• confirm the matchB ←→ B’, because’Adams’ =
‘Adams’,

• foster a doubt for matchA ←→ F, because the values
‘Sam’ and‘adams’ differ,

• confirm thatC andG have no match, because again
they have no similar values, and

• shift our decision towardsE ←→ E’ and away from
D ←→ E’, because‘(541) 8121164’ and ‘541-
8121164’ are quite similar, but‘(541) 8127100’ and



‘541-8121164’ are much less so, using some suitable
similarity measure.

Of course, real-life scenarios are not always as straight-
forward. First, duplicates are usually only fuzzy, so we must
rely on a similarity function to deduce duplicates. Second,
low intensional overlap can mislead duplicate detection into
believing that no duplicates exist. Third, low extensional
overlap may result in an insufficient number of duplicates
to deduce attribute matches with enough certainty. Fourth,
same or similar values do not always imply matching at-
tributes; for instance, an author in one publication record
could be an editor in another, or first and last names are
chosen as user accounts as in the example of Figure 3. In
the following sections we address these difficulties and de-
scribe how to overcome them.

4 Duplicate detection with unaligned
schemas

As we show in Section 5, knowledge about duplicates
can be exploited for schema matching. However, finding
these duplicates is difficult precisely because the schemas
are not yet aligned. In this section we present an algorithm
that uses a domain-independent measure for comparing two
tuples of unknown and possibly heterogeneous structure.
Recall that our goal is to find as many expressive duplicates
as necessary for schema matching, in contrast to the usual
problem of findingall duplicates in a data set. Our dupli-
cate detection algorithm achieves this goal by detecting the
K most similar tuple pairs. The comparison measure must
overcome four problems:

1. Unknown schema alignment: It is unclear which field
in one tuple to compare with which field in the other.

2. Unknown attribute semantics: We cannot make use
of domain knowledge to formulate an effective com-
parison measure. Common duplicate detection meth-
ods use manually or statistically created rules that are
based on the similarity of certain corresponding at-
tributes. Without such matches, meaningful rules can-
not be created. Instead, a comparison measure that is
independent of the fields’ semantics must be applied.

3. Misleading value similarities: Attribute values of non-
corresponding attributes could coincidentally be simi-
lar, although their respective tuples are not duplicates.
Consider tuplesr7 ands5 in Figure 1: Both tuples have
an attribute value ‘kate’, but are not duplicates. With-
out knowledge of the correct attribute matches, such a
value match can mislead duplicate detection.

4. Partial schema overlap: Not all fields in one tuple nec-
essarily have a matching partner in the other. With

only few corresponding attributes, the similarity of two
tuples is typically low. In our example, only two at-
tributes among the relations actually match (B ←→ B’
andE ←→ E’ in Figure 2).

Our algorithm considers each tuple as a single string and
employs a string comparison metric to compare two tuples
(strings). After comparing two tuples, one has to determine
if the two tuples are duplicates. Because other approaches
assume same schema of the tuples, they can predefine a
reasonable similarity threshold to identify duplicate tuples.
Lacking this assumption, a fixed threshold is unreasonable:
Similarity values vary with the degree of schema overlap.
Instead, the algorithm ranks tuple pairs by their similarity
and identifies theK most similar tuple pairs. We consider
these to be duplicates—no threshold is needed.

Although not explicitly used in our experiments, data
cleaning can improve the accuracy of duplicate detection
and improve the performance. Some operations can be per-
formed without knowledge of the attributes’ semantics, e.g.,
the removal of stopwords and stemming [27]. Other pro-
cedures depend on the meaning of certain attributes, but
can still be undertaken without knowing any attribute cor-
respondences. In particular, representational issues can be
resolved, e.g., by using standard encodings for date, gender,
country, etc.

4.1 String comparison methods

According to the classification of Cohen et al., string
comparison metrics fall into three categories: edit-distance
like functions, token-based similarity measures, and hybrid
similarity measures [7].

Edit-distancemodels determine the distance between
two strings based on the minimal number of edit opera-
tions (insert, delete, replace) needed to transform one string
into the other. Variants that allow specific costs for different
character substitutions and for starting or continuing a gap
have been reported [7]. Using a simple edit-distance func-
tion in our situation is impractical, because it assumes all
attributes to have a matching partner (ignoring Problem 4)
and it assumes attributes to appear in the same order (ignor-
ing Problem 1). Deviations from these assumptions would
unduly increase the distance and make duplicates indistin-
guishable. A block-edit-distance model allows for arbitrary
movements of entire substrings, thus accounting for Prob-
lem 1. However, such models are in general very expen-
sive [19]. We do not use edit-distance for duplicate detec-
tion, but we use it later to perform schema matching.

Token-basedsimilarity measures interpret a string as a
bag of words. Thevector space modelis widely used in
the information retrieval community. In this model, each
string is represented as a vector containing weights for each
term of a (global) vocabulary. The similarity of two strings



is then determined with thecosine measure, which is the
product of two vectors normalized to unit length, and thus,
equal to the cosine of the angle between the two vectors. An
advantage of the vector space model over an edit-distance
model is its independence of term ordering. Therefore, it
is used as the model for comparing tuples in the duplicate
detection step.

Hybrid similarity measures are functions that use an-
other metric as a secondary measure. An example for
this group is the SoftTFIDF measure, which we use in the
schema matching step for comparing attribute values (see
Section 5 for details). Another hybrid measure is the recur-
sive field matching algorithm [22]. Using this algorithm,
each source attribute would be compared to each target at-
tribute using the secondary similarity measure (e.g., edit
distance). We have decided against this hybrid measure for
various reasons, including efficiency of computation.

4.2 Similarity of unaligned tuples

In our implementation we use the cosine measure, i.e.,
we tokenize the tuples and compare the resulting vector rep-
resentations. The assignment of weights for the tokens in
each tuple is crucial for the effectiveness of the cosine mea-
sure: A weight should represent the relative importance of
a token within the tuple. The well-knownTFIDF weighting
schemecalculates the weight as a function of theterm fre-
quency (TF), i.e., the number of times the term occurs in the
string, and theinverse document frequency (IDF), which is
the overall number of strings (tuples) divided by the num-
ber of strings in which the given term occurs. We define the
weightw′(s, t) of a termt in a strings as

w′(s, t) = log(tf s,t + 1) · log(
N

dft

+ 1) (1)

wheretf s,t is the term frequency oft in s, N is the over-
all number of tuples, anddft is the number of tuples in
which t appears. These weights are normalized such that
their respective vector has unit length. Thetuple similarity
of two tuplesr ands is then calculated as

tupsim(r, s) =
∑

t∈r∩s

w(r, t) · w(s, t) (2)

where w is the normalized weight. Using a TFIDF-
based measure has several advantages. First, it is order-
independent, which is important with respect to Problem 1.
Second, by using the inverse document frequency, terms
that occur in only few tuples receive a higher weight. In-
tuitively, the reason is that infrequent terms have a higher
identifying power, and thus, should have a higher influence
on the similarity score. This behavior can be of help in
Problem 3.

4.3 Efficiently finding similar tuples

One major issue that has to be addressed is the complex-
ity of this approach, i.e., the number of tuple pairs that must
be compared. Comparing each record from the first data-
base with each record in the second database is clearly in-
feasible. A näıve improvement is to compare only tuples
that have at least one term in common: In Equation (2)
only terms that have non-zero weight inbothdatabases af-
fect the similarity score. An inverted index on one of the
databases can be used for that purpose. This approach does
not work well with attributes that draw values from a very
small domain (e.g., gender, grade, etc.), which would re-
sult in many tuples having at least one term in common, if
the two schemas share such an attribute. However, terms
that occur in many tuples have a low inverse document fre-
quency, and thus, little effect on the similarity score.

To overcome this problem of comparing tuples because
of common tokens with low weight, we use the Whirl al-
gorithm [6]. It performs a focused search based on those
common values that have high TFIDF weight and thus are
more likely to be contained in the final result set: Within an
A* search scheme Whirl calculates upper bounds for each
tuple of one database and refines these bounds by combin-
ing those tuples with promising tuples of the other database.
Tuples are promising if they have a common term with a
high TFIDF weight.

The advantage of Whirl, apart from being very efficient,
is that it is incremental: The current search state can be
saved, and search can be resumed at a later point in time.
We exploit this feature later, if the first set of duplicates is
not sufficient to derive a schema matching with some cer-
tainty (see section 5.2).

Note that the algorithm consumes only a fraction of the
database size in main memory. In cases where the size of
the databases is too large, a sampling-based method such as
the one described by Gravano et al. [16] can be used.

5 Schema matching with duplicates

Schema matching is the problem of identifying schema
elements (here: attributes) that have same or similar seman-
tics in two different schemas. Not all attributes necessarily
have a corresponding partner. Also, there might not be only
simple (1:1) matches, but complex matches relating one or
several attributes in one schema with multiple attributes in
the other schema. In this paper, we only consider the former
case in the schema matching step. The goal of this step is to
deduce attribute matches fromK high-confidence duplicate
pairs, which have been discovered in the duplicate detection
step.

Each duplicate pair potentially provides some informa-
tion for the construction of attribute matches: If two field



values are equal or highly similar, it is likely that their re-
spective attributes correspond. In a first step we perform
field-wise similarity comparisons for each of theK dupli-
cates to generate a similarity matrix. Then we describe how
use that matrix to arrive at an overall schema matching.

5.1 Similarity matrix

Given a duplicate pairr = (a1, . . . , am) and s =
(b1, . . . , bn), this step produces am × n matrix that stores
the similarityfieldsimof each pair of field valuesai andbj

in the tuples. For comparing tuple fields we use theSoft-
TFIDF measure[7], a variation of the previously described
TFIDF measure that also considers similar terms (as op-
posed to equal terms). We defineCLOSE(θ, ai, bj) as the
set of all terms in one fieldai that have a similar enough
(> θ) term in the other field:

CLOSE(θ, ai, bj) :=
{ta ∈ ai|∃tb ∈ bj , termsim(ta, tb) > θ}. (3)

Here, termsim(ta, tb) is a secondary similarity function
based on the normalized edit distance (ed):

termsim(ta, tb) := 1− ed(ta, tb)
max{|ta|, |tb|} . (4)

wheremax{|ta|, |tb|} is the length of the longer term. Put
together, the we can define SofTFIDF, calledfieldsimin this
paper:

fieldsim(ai, bj) :=∑
ta∈CLOSE(θ,ai,bj)

w(ai, ta) · w(bj , tb) · termsim(ta, tb)(5)

wheretb is the term inbj that is most similar tota.
Again, using SoftTFIDF has the advantage of order-

independence. If one field contains the value ”Joe Smith”,
and the other contains the value ”Smith, Joe”, they will be
considered very similar. Computing SoftTFIDF is more ex-
pensive than computing TFIDF or edit distance. But be-
cause we expect to use only very few duplicates, the added
complexity is negligible.

Consider tuplesr3 ands3 of Figure 1. In the previous
section we have discovered them to be duplicates. Table 1
shows their similarity matrix with valuesfieldsim(ai, bj) in
each field.

We generate such a matrixMk for each of theK dupli-
cates and combine all matrices to produce the overall aver-
age similarity matrixM as input to the next step:

M =
1
K

K∑

k=1

Mk (6)

In summary,M stores average similarity scores that are ac-
cumulated over the field-similarities of theK most similar
duplicates.
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Klein 0 1.0 0 0 0
suzy 1.0 0 0 0 0

358-2436321 0 0 0 0.67 0.67
UNIX 0 0.2 0 0 0

Table 1. Field-similarity matrix for a duplicate
pair

5.2 Matching attributes

Given the matrixM with similarity scores, the goal of
this step is to derive an overall schema matching. First, we
apply a user-defined threshold toM , setting all similarity
values below the threshold to zero. Applying the threshold
before finding the matching accommodates the attributes in
either schema that do not have a matching partner. We then
use the matrix as input to the bipartite weighted matching
problem, also known as theassignment problem[24]. The
optimal solution to this problem is a matching with the max-
imal sum of similarities and can be computed in polynomial
time [15].

We classify the individual matches of this maximum
matching into three classes: certain matches, possible
matches, and non-matches. Non-matches are those that
have a similarity below a user-specified threshold. To de-
termine whether a match iscertain, we calculate its contri-
bution to the overall solution: We set its similarity score to
zero, solve the assignment problem again, and compare this
solution with the original one. If the difference is large, i.e.,
there is no alternate matching with a similar score, we call
it certain. All other matches are classified aspossible.

Table 2 shows matrixM for the duplicate pairs(r3, s3),
(r4, s4), and(r9, s2). The maximal matching is shown in
bold. Of this matchingD ←→ G is a non-match and will be
automatically removed because its value is below a thresh-
old. MatchB ←→ B’ is certain, and matchesA ←→ F and
E ←→ E’ are possible matches.

A B C D E
B’ 0.22 0.92 0.07 0 0
F 0.60 0.60 0.07 0 0
E’ 0 0 0 0.58 0.64
G 0 0.07 0 0.07 0.02

Table 2. Accumulated similarity matrix M

Possible matches indicate that not enough duplicates



have been used. For instance, other duplicates whoseS-
tuple has differing values forB’ andF would makeB ←→
B’ certain. Thus, when encountering possible matches, our
algorithm iterates back to the duplicate detection step to find
more duplicates. Note that the Whirl algorithm perfectly fits
this requirement: After returning the firstK duplicates, the
current state of the search can be saved. When additional
duplicates are required, the search can resume without hav-
ing to recalculate the firstK duplicates. If the set of cer-
tain and possible matches does not change in the second (or
subsequent) run of the schema matching step, the algorithm
terminates and both certain and possible matches are pre-
sented to the user.

When using this schema matching algorithm one has to
determine a meaningful number forK. As we show in Sec-
tion 6, the precision is equal or close to 100% at the early
recall levels. Thus, we propose to use a smallK to avoid
false positives. The algorithm will automatically determine
if the number was sufficient by computing the certainty of
the resulting correspondences, and more duplicates will we
detected by iterating back to the duplicate detection step.

6 Experiments

To show the feasibility and effectiveness of our ap-
proach, we performed experiments on real-world data. We
also performed experiments in a controlled environment us-
ing synthetic data to answer two questions:

1. How effective is the duplicate detection algorithm in
finding the topK duplicates?

2. How effective is the schema matching algorithm in
finding a complete matching of two schemas, givenK
duplicates?

In answering the first question, we do not expect a bet-
ter performance in findingall duplicates than other known
domain-independent algorithms, because we do not assume
aligned schemas. However, we do expect very good per-
formance towards our goal of finding only the topK dupli-
cates. In answering the second question, we expect to per-
form substantially better than known algorithms, because
the schema matching algorithm has helpful input to work
with, namely the duplicates.

All experiments were performed on a PC with an Athlon
XP 1700+ CPU and 512 MB RAM running Windows 2000.
The implementation is written in Java. We employ two
well-known measures from the information retrieval field,
which have also been used in schema matching evalua-
tions [9]: precision and recall. These measures are defined
as follows:

Precision =
|D∩R|
|R| Recall =

|D∩R|
|D|

whereD is the set of existing duplicates, andR is the set
of retrieved tuple pairs. In our duplicate detection exper-
iments we only report the precision. The overall recall is
not relevant because we are only interested in the top-K tu-
ple pairs. However, both measures are important for the
schema matching step: Low precision implies that false cor-
respondences have to be manually deleted by the user, while
low recall indicates that missing correspondences have to be
manually added.

6.1 Experiments with apartment advertisements

The assumptions that our algorithm is based on are de-
scribed in Section 1: We require data for both databases,
and at least a few real-world objects must be represented in
both databases. Examples of scenarios where duplicates ac-
tually occur were given there. In our experiments we used
apartment advertisements extracted from web sites of two
major newspapers in Berlin, Germany. Data had been ex-
tracted from each source on two consecutive weeks, i.e., al-
together we could test our algorithm on four databases. We
performed experiments with all six possible pairs of data-
bases. Each database consisted of eleven attributes, each of
which corresponded to another attribute in the other data-
bases. The number of tuples ranged between 1509 and
3772.

SettingK to 10, we achieved 100% precision in all du-
plicate detection experiments. With that many very expres-
sive duplicates, the schema matching process was also suc-
cessful in detecting all existing correspondences. The rea-
son for these excellent results are obvious: People tend to
place their advertisements in more than one newspaper. Fur-
thermore, the same or similar expressions are used in those
duplicates. Thus, we are able to detect some very expressive
duplicates, which makes schema matching straightforward.

In order to determine how our algorithm behaves in cases
where only few duplicates exist or the intensional overlap
is small, we conducted several experiments in a controlled
environment using generated data. In particular, we address
the problems described in Section 3.

6.2 Experimental setup

For a data source we used the data generator tool G22

used in [3], which improves the database generator used
in [17] to create more realistic data. The tool allowed us
to inject fuzzy duplicates, where fuzziness is controlled
for each attribute through error probability parameters for
different types of errors, such as “replacement error” and
“deletion error”. For each experiment we generated two
databasesDB1 andDB2, each with 5,000 tuples. Figure 4

2Kindly provided to us by Luca De Santis of the DaQuinCIS team at
Universit́a di Roma “La Sapienza”.



shows the schemas and the correct matching. Unbeknownst
to our schema matching algorithm, the two databases have
up to six attributes in common and each has two or more ad-
ditional attributes. Attribute values were randomly chosen
from long, predefined lists of values. Note that the attribute
pairsBirth-place andCity as well asBirth-district andDis-
trict draw values from the same domains, making duplicate
detection challenging. Finally, the columns were randomly
shuffled. All reported results are averages of five indepen-
dent runs with newly created databases for each experiment.

Attr. of DB1 Attr. of DB2
SSN ←→ −

Profession ←→ −
Surname ←→ Surname

Name ←→ Name
Birth-date ←→ Birth-date

Birth-place ←→ Birth-place
Birth-district ←→ Birth-district

Sex ←→ Sex
− ←→ City
− ←→ District

Figure 4. The correct matching from DB1 to
DB2

6.3 Duplicate Detection

To gauge how effective thetupsim(r, s) measure is in
detecting duplicates without schema information, we per-
formed recall/precision analyses, using standard interpola-
tion.

Figure 5 shows the recall/precision diagram of our first
experiment. For each curve we injected a different number
of duplicates (10, 50, and 100) into the database. We ob-
serve that all results are favorable, i.e., the measure does
a very good job of ranking duplicates higher than non-
duplicates. Recall that we are interested only in the top
K tuple pairs. The recall/precision diagram shows that the
measure is extremely precise in particular for the top-ranked
results. Consider the curve for 50 duplicates and regard
the perfect precision of 100 percent at 50 percent recall.
This means that in this experiment the first 25 tuple pairs
returned by the duplicate detection algorithm were indeed
duplicates.

Our next experiment was designed to assess the influ-
ence of intensional overlap, i.e., the number of common at-
tributes in both databases. The schema ofDB1 remained
the same. From the schema ofDB2 we successively re-
moved the overlapping attributesSex, Birth-district, and
Birth-place, replacing them successively by new attributes
Street number, Address, andPostal code. We used a
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fixed number of 50 duplicates. As expected, the results in
Figure 6 show higher precision with increasing intensional
overlap.
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Figure 6. Influence of degree of intensional
overlap

Most notable is the decrease in precision when only three
attributes correspond, which calls for some explanation.
In this experiment, both attributesBirth-place andBirth-
district are not part ofDB2. However, attributesCity and
District are still inDB2. Because these attributes draw val-
ues from the same domain, as described above, the precision
is heavily decreased. Also note that a similar case is pro-
duced in the step from five to four common attributes, when
Birth-district is removed from the schema ofDB2. The de-
crease is not as drastic as in the previously mentioned case,
because there is only a small number of districts. Hence,
the values forDistrict andBirth-District have a low inverse
document frequency, and thus, only a small effect on the
similarity tupsim.

To summarize, we have evaluated the effectiveness of
our duplicate detection method, and thus, also addressed



the first three problems described in Section 3: Using a
similarity measure we are able to detect fuzzy duplicates
(first problem). Both extensional overlap (number of du-
plicates) and intensional overlap (number of corresponding
attributes) affect the precision of duplicate detection, but it
is still possible to detect a few duplicates even in low over-
lap situations (problems two and three). Apart from being
effective, the algorithm has also shown good performance.
Recall that we require only a few duplicates for schema
matching, and these can be quickly detected with our adap-
tation of the Whirl algorithm: finding the top ten tuple pairs
took less than one second on average. However, as the last
experiment has shown, in some special cases it might be
necessary to improve precision using prior knowledge, such
as known attribute correspondences.

6.4 Duplicate detection using known correspon-
dences

In some situations a few attributes are known to corre-
spond, e.g., by using a simple name-based attribute matcher
or by human input. We adapted our tuple similarity measure
to incorporate such previous knowledge: Letm1, . . . ,mk

be the pairs of already matched attributes and letr[mi] and
s[mi] denote the values of tuplesr and s in the matched
attribute ofmi, respectively. Finally, letru andsu be the
remaining, unmatched parts of tuplesr ands. Ourextended
tuple similarity measure(etupsim) of two partially aligned
tuplesr and s is the average of the similarity of the un-
matched part and the similarity scores of each matched at-
tribute:

etupsim(r, s) :=
1

k+1

(
tupsim(ru, su) +

∑k
i=1 fieldsim(r[mi], s[mi])

)
(7)

By treating the set of matched attributes individually and
the set of unmatched attributes as a whole,etupsim(r, s)
weighs matched attributes higher than unmatched ones.
This preference reflects the intuition that duplicates should
be similar in known corresponding attributes but must not
necessarily be similar in the remaining, possibly not cor-
responding attributes. Note thatetupsim(r, s) is a general-
ization of tupsim(r, s) of Section 4.2; if no attributes are
matched thenetupsim(r, s) = tupsim(r, s).

We show that this measure results in improved preci-
sion in the duplicate detection procedure. For this experi-
ment with 50 duplicates we reduced the intensional over-
lap shown in Figure 4 as follows: InDB2 we replaced
Birth-district andSex with two new attributesAddress and
Street-number. Thus, only four attributes remain in com-
mon and each database had four other attributes. Figure 7
shows the results for different numbers of partial matches
as input. As expected, knowledge of partial matches indeed
improves duplicate detection.
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6.5 Schema Matching

In this section we show how helpful duplicates are for
performing schema matching. It is important to note that
the main factor for good schema matching results is the
ability to avoid using non-duplicates in the schema match-
ing step, i.e., having no or only few false positives among
the top-ranked results. This ability was demonstrated in the
previous section. In the next paragraphs we show that usu-
ally few duplicates suffice to find at least some if not all
correct matchings. We also report on our experience that a
few false positives can usually be compensated and do not
degrade the matching.

In Figure 8 we report on six experiments with the two
databasesDB1 andDB2 having four attributes in common.
In the first experiment, we injected three duplicates and
searched for the best two (K = 2) for schema matching. On
average, we found 95 percent of the correct matching (re-
call), and of all matches that our algorithm suggested only
10 percent were incorrect (precision). The scores are not
perfect because once in a while even among the best two
duplicates there was a false positive.

Note that to test the limits of our approach we report on
extreme cases with very few duplicates in the databases and
very low intensional overlap. In general, we observe that
choosing a lowK is recommended and asK approaches
the true number of duplicates, more and more false positives
pollute the matching. Choosing a smallK is not necessarily
disadvantageous, because our schema matching procedure
can detect if more duplicates are required, as described in
Section 5. The next experiment highlights this effect but
shows a certain robustness of our approach towards an in-
creasing number of false positives.

From a database with 50 duplicates we handpicked the
top ten duplicates and performed schema matching based
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on this perfect choice. Next, we incrementally added the
top 20 false positives, i.e., very similar tuple pairs that are
known not to be duplicates. The results are presented in
Figure 9, which shows that recall and precision of schema
matching degrade only after as many false positives as true
positives are used. The reason for this robustness is that
all duplicates support a similar matching, while each false
positive might support a different matching. Both curves
level after a certain amount of noise (false positives) is in-
troduced.
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By examining the robustness of our schema matching al-
gorithm we also addressed the fourth problem of Section 3.
Equal or highly similar values of attributes that do not cor-
respond can mislead duplicate detection, and thus, induce a
few false duplicates. However, as described in Section 6.3,
the percentage of such false duplicates among the top-K tu-

ple pairs is relatively low. Consequently, by using several
tuple pairs (instead of using only the most similar one) we
are still able to derive a correct schema matching.

So far we have assumed that schema matching imme-
diately follows duplicate detection, and no human interac-
tion is required. Consequently, in some situations too many
false duplicates might be detected, resulting in poor schema
matching performance. However, as shown in the previous
experiments, the number of duplicates required for schema
matching is not very large. Thus, the user can be included in
the process by manually checking a few tuple pairs. Deter-
mining when to require human intervention is part of future
research.

7 Conclusion and outlook

With this paper we have presented a novel approach to
instance-based schema matching developed in the DUMAS
project. Starting with the simple idea of using duplicates to
detect corresponding attributes in tables, we identified the
major and the subtle obstacles in achieving high-precision
and high-recall schema matching. One major impediment
is to find duplicates among tables with unmatched and only
partially overlapping schemas. We have presented a simi-
larity function that successfully identifies duplicates in such
adverse settings, thereby making a contribution to the field
of duplicate detection. In particular, using our duplication
algorithm it is possible to find some duplicates even when
the extensional overlap is small.

Next, we presented a procedure to generate a matching
based on a small set of fuzzy duplicates, using alignment al-
gorithms on similarity matrices. The effectiveness, robust-
ness, and efficiency of our approach was shown in several
experiments on artificial and real-world data. In particular,
we were able to distinguish structurally similar but semanti-
cally different attributes, such asBirth-place andCity. We
also presented results on the helpfulness of partial matches
to find duplicates using a combined similarity measure for
matched and unmatched parts of the data.

We are currently working on techniques to improve ef-
ficiency also for this combined measure. Furthermore, we
will develop methods for matching schemas consisting of
multiple tables. Future work also includes investigation of
two potential improvements: First, as in most related ap-
proaches (with the notable exception of [8]), we have not
considered 1:n matches. Second, we also investigate the
use of domain knowledge in the duplicate detection step.
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