Declarative Data Fusion —
Syntax, Semantics, and Implementation

Jens Bleiholder and Felix Naumann

Humboldt-Universitat zu Berlin
Unter den Linden 6, D-10099 Berlin, Germany
{bleiho | naumann}@informatik .hu-berlin.de

Abstract. In today’s integrating information systems data fusion, i.e.,
the merging of multiple tuples about the same real-world object into a
single tuple, is left to ETL tools and other specialized software. While
much attention has been paid to architecture, query languages, and query
execution, the final step of actually fusing data from multiple sources into
a consistent and homogeneous set is often ignored.

This paper states the formal problem of data fusion in relational databases
and discusses which parts of the problem can already be solved with
standard SQL. To bridge the final gap, we propose the SQL FUSE By
statement and define its syntax and semantics. A first implementation
of the statement in a prototypical database system shows the usefulness
and feasibility of the new operator.

1 Data Fusion

Integrated (relational) information systems provide users with only one uniform
view to different (relational) data sources. Querying the underlying different
data sources, combining the results, and presenting it to the user is done by the
integration system.

In this paper we want to present our work on how to do the Data Fusion step
in the data integration process. We rely on relational data where conflicts on the
schema level already have been solved, but conflicts on the data level remain.
Data Fusion is then the process of combining data about the same object from
different sources by resolving occurring data conflicts. We assume object identity,
that means, it is possible to distinguish between different real-world objects by
a globally unique and consistent identifier. In most domains, such an identifier
is already present or can easily be created, e.g., by duplicate detection methods.

Figure 1 shows three tables. The first two each represent data of a data
source. In the example we talk about real persons (students), identified by their
first name. We assume a domain in which these names are unique, consistent
and unambiguously identify the students.

The tables overlap intensionally, as well as extensionally. They partially
contain the same information about the same objects, but also complement
one another: Column CAR is contained in table EE_Students but not in table

|EE_Students | |CS_Students |

| NAME |[AGE[STUDENT| CAR | | NAME |[AGE[STUDENT| PHONE |
Peter | L no Ford Alice | L yes |555 1234
Alice | 22 yes 1 Bob | 27 1 555 4321
Bob | L yes VW Charly| 24 yes 1L
Charly| 25 yes |Pontiac Alice | 21 no 555 9876
Paul | 26 yes Chevy Mary | 24 yes L
Paul | L yes Chevy Mary | 24 yes L

|Data fusion result of EE_- and CS_Students|

| NAME [AGE[STUDENT| CAR | PHONE |
Peter | L no Ford 1
Alice | 22 yes €L 555 9876
Bob | 27 yes VW 555 4321
Charly| 25 yes |Pontiac 1
Paul | 26 yes Chevy 1
Mary | 24 yes 1 1

Fig. 1. Two data sources with conflicting data and the result of data fusion; L deter-
mines NULL values

CS_Students, column PHONE is solely contained in table CS_Students. When in-
tegrating data from both tables, inter-group conflicts (e.g., Bob and Charly) and
intra-group conflicts (e.g., Paul) on the data level can occur. We distinguish be-
tween two kinds of conflicts: a) ‘uncertainty’ about the value, caused by missing
information, aka. NULL values in the table, and b) ‘contradictions’. An example
for the former would be the age of Bob, one for the latter the age of Charly.

When fusing data from the two source tables into one single table, one has to
decide on how to handle these conflicts. This problem has been first mentioned
by Dayal [2]. Since then, a couple of approaches and techniques have emerged,
many of them trying to “avoid” the conflicts by resolving only the uncertainty
of missing values. Anyhow, there is no system so far and no relational technique
that is able to produce a result, such as the one given in Fig. 1 at the bottom.
Therefore we propose an extension of SQL, the FUSE BY statement, which not
only resolves uncertainties, but also fuses tables by resolving occurring data
conflicts.

Contributions. The main contributions of this paper are an extension of the
SQL syntax to support data fusion operations. We provide formal semantics of
data fusion in the relational model and demonstrate its feasibility in a prototyp-
ical implementation.

Structure of this paper. First, we review related work on data fusion, paying
attention both to data integration systems and to individual relational operators
enabling data fusion (Sec. 2). Combining the advantages of several approaches,
we next define syntax and semantics of our FUSE By statement (Sec. 3). We have
implemented the FUSE By statement in a prototypical RDBMS and provide

some initial insights in query processing for data fusion (Sec. 4). Finally, we
conclude and point out future directions (Sec. 5).

2 Complete and concise data integration

Data integration has two broad goals: Increasing completeness and increasing
conciseness of the data that is available to users and applications. An increase
in completeness is achieved by adding more information sources to the system.
An increase in conciseness is achieved by fusing duplicate entries and merging
common attributes into one. After defining both notions, we analyze conven-
tional and extended relational operators with respect to their ability to achieve
complete and concise answers. Thus, the second part of this section covers the
related work on data fusion.

2.1 Completeness

Completeness of a data set, such as a query result, measures the amount of data
in that set both in terms of the number of tuples (extension) and the number
of attributes (intension). Extensional completeness is the number of tuples in a
data set in relation to the overall number of available tuples in the integrated
system. Increase is achieved by adding more tuples using union-type operators.
Intensional completeness is the num-

ber of attributes in a data set in re-

lation to the overall number of at- Intensional completeness
tributes available in the integrated
system. Increase is achieved by in- o u 2,
tegrating sources that supply addi-
tional, yet unseen attributes to the re- Cfﬂ’;;;‘f;gi's Js fir J gl;’j'er‘c”:s“"
lation using join-type operators. This
distinction is along the lines of related 2, u, s,
work [7,9, 14].
To illustrate, Fig. 2 labels the dif- Eommonjatibules

ferent parts of a data set that is inte-

grated from two sources. The gener- Fig.2. Extensional and intensional
alization to more than two sources is completeness

trivial. The data of data source S; comprises areas si, u1, j1, and fi2. The data
of source Sy comprises the areas ss, ug, j2, and fia. Areas ()1 and () contain
only NULL values. We use the figure to describe what kind of data is produced
by different operators.

2.2 Conciseness

Without knowledge of common attributes and common objects, the best that an
integrating system can do is produce a result as seen in Fig. 3(a). While this result
has a high completeness it is not concise. Knowledge about common attributes,

i.e., knowledge about which attribute in one source semantically corresponds
to which attribute in the other source, allows results of the shape as seen in
Fig. 3(b). Incidentally, this shape is the result of an outer union operation on
the two source relations (assuming semantically corresponding attributes are
given the same name). We call such results intensionally concise: No real-world
property is represented by more than one attribute.

Knowledge about common ob-

jects, e.g., using a globally consistent s, 2, s uy 2,
ID, such as the ISBN for books, or

using duplicate detection methods, al- 2, s, o, | u s,
lows results as seen in Fig. 3(c). Here,

the only known common attribute is (@) (b)

the ID. This result can be formed us- s, 2, s u | o
ing the full outer join operation on the T

IDs of the two source relations. We hoel k I o | 2
call such results extensionally concise: o, [V s o, o "
No real-world object is represented by

more than one tuple. (c) (d)

Finally, Fig. 3(d) shows the result
after identifying common attributes
and common objects. The main feature of this result is that it contains only
one row per represented real-world object and each row has only one value per
represented attribute. This result is the ultimate goal of data fusion. No common
relational operator can express this result in the presence of conflicting data. The
motivation of this paper is to find a way to declaratively express this result using
the SQL language and some extension.

Fig. 3. Four degrees of integration

2.3 Relational operators

In the following paragraphs we analyze standard and advanced relational opera-
tors that somehow perform data integration. In particular we discuss their ability
to achieve complete and concise results. Tab. 1 summarizes the discussion.

The union join produces results of the shape of Fig. 3(a), the most inconcise
result conceivable and merely of theoretical interest. The result of the union (U)
operator is more concise, in that it combines tuples from two union-compatible
relations and removes exact duplicates. The outer union (W) operator alle-
viates the problem of union-compatibility by adding missing attributes to both
relations and padding them with NULL values [4]. Outer union increases both ex-
tensional and intensional completeness, as represented in Fig. 3(b). Conciseness
is as for the union operator. The minimum union operator (®) is defined by
Galindo-Legaria as an outer union followed by a removal of subsumed tuples [4].
Thus, minimum union takes one step towards increased extensional conciseness:
Uncertainties caused by subsumed tuples are resolved but tuples representing
the same real-world objects with contradictory data remain.

Join operators assume at least one common attribute, the join attribute.
The natural join (<) and key join (;4—;q4) are not well-suited to fuse tables,

because the result contains only objects present in both source tables (low ex-
tensional completeness). This disadvantage is removed by the use of the outer
join operations (1), which also retains all tuples of either one or both relations
(left, right and full outer join). Figure 3(c) shows this result. If the join attribute
is a globally consistent ID, the full outer join achieves full extensional concise-
ness: each real-world object is identified by that ID and appears only once in
the result. However, common attributes cannot be combined as long as there are
conflicts among the attribute values. Thus, intensional conciseness is low.

Yang and Ozsu describe the match join operator used in the AURORA
system [18]. It can be rewritten as an outer join of all attribute value combi-
nations. The corresponding value of the key attribute is used to perform the
join resulting in one large table. Tuples are chosen from this table according to
different parameters. Extensional conciseness depends on these parameters and
can reach the same level as the full outer join. The operator is able to resolve
uncertainties but not conflicts. Based on the match join, Greco et al. define the
merge (X) and prioritized merge (<1) operators [6]. They are rewritten as
the union of two outer joins and thus increase intensional completeness. The use
of the SQL function COALESCE with the join increases intensional conciseness
by resolving uncertainties. Contradictions remain and the use of union increases
extensional completeness but does not increase extensional conciseness.

The notions of increasing extensional and intensional conciseness are nat-
urally reflected by the concepts of grouping and aggregation. Even though
they are standard features of most DBMS, they cannot be readily used for data
fusion: There is seldom a globally consistent ID, so grouping must be based on
some form of duplicate detecting similarity function instead of equality. More
importantly though, most DBMS restrict aggregation functions to the few nu-
meric functions specified in the SQL standard, i.e., COUNT, MIN, MAX, SuUM,
Ava, and sometimes STDDEV and VARIANCE which are not sufficient to resolve
most arising conflicts.

Several projects have sought to overcome this restriction. For instance, Wang
and Zaniolo introduce the AXL system to define aggregate functions in DBMS [17].
While their rewriting is already a step forward, aggregate functions allow only
one input parameter, namely the column name. However, there are many cases
where conflicts should be resolved by taking other data into account as well. The
FraQL language and system, developed by Sattler et al., allows user-defined
aggregates with more than one parameter [13]. They define four 2-parameter
aggregation functions, each of which aggregates one column depending on the
values of another column. These functions may be used to implement different
conflict resolution strategies, for instance choosing values from a specific source
(conflict avoidance), choosing the most recent value, or choosing all possible
values (and let the user decide).

We summarize in Tab. 1 how the different data fusion operations behave
concerning completeness and conciseness. A “4” marks satisfactory behavior,
whereas a “—” indicates weaknesses.

Completeness|Conciseness
Operation int. ext. int. | ext. [Notes
Union-Join| + + - —
Union| + + + — assuming union-compatibility
Outer Union| + + + -
Minimum union| + + + +/—
Natural join| + - + +
Key join| + — — +
Outer natural-join| + + + + no intra-source duplicates
Outer key-join| + + — + no intra-source duplicates
Match join| + +/— — | +/— |depending on parametrization
Prioritized Merge| + + + -
User-defined group- only on single table,
ing and aggregation| n/a + n/a + |thus no effect on intension
Data Fusi0n| + + + + all duplicates

Table 1. Summary of operations, compared to the ideal result of data fusion (4 marks
satisfactory behaviour, — indicates weaknesses)

2.4 Data Fusion Systems

There are several integrating information systems that achieve data fusion to cer-
tain degrees: TSIMMIS integrates semi-structured data from multiple sources [5].
Using a rule-based language, developers of mediators can define how data is
fused [10]. Special constructs specify favored data sources in case of conflicts.
Values for that attribute are taken only from the favored source. Thus, without
looking at other data sources, the system may not even become aware of a data
conflict and so avoids conflicts. The Hermes system also integrates data in the
mediator by pre-defined rules [16]. The authors explicitly name five different
strategies to resolve conflicts during integration: choosing the newest data, two
different strategies to choose a value depending on its source, choosing the value
of numerical data, e.g., always the minimum, and choosing the value of the more
reliable source.

Fusionplex performs data fusion by allowing advanced conflict resolution
techniques [8]. Metadata, such as timestamp, cost, accuracy, availability, and
clearance, is used to choose the most recent, most accurate, or cheapest data
among all available data from different sources. Using this kind of source meta-
data reduces conflict resolution to favoring a source given some data quality
criteria and therefore to conflict avoidance as in TSIMMIS. Using the additional
metadata is possible only after extending all relational operators. As in group-
ing and aggregation, the value chosen for an attribute is independent of other
attribute values.

Data cleansing systems are less focused on fusing data but on cleansing
an existing single table. They provide simple data scrubbing methods, duplicate
detection algorithms, and let users specify how duplicates are to be merged.
However, typical data cleansing procedures as Potter’s Wheel [11] or Ajax [3]

are implemented as separate systems and do not provide declarative data fusion
operators.

3 The FUSE BY Statement

The FUSE By statement represents a simple way of expressing queries that
fuse multiple tuples describing the same object into one tuple while resolving
uncertainties and contradictions. It is based on the standard SQL syntax and
resembles in syntax and semantics the GROUP By statement.

3.1 Syntax

The syntax diagram of the FUSE BY statement is shown in Fig. 4. Tuples go-
ing into the fusion process are from the tables given in the FROM clause. Join
conditions may apply and are possible, as are subselects. FUSE FROM indicates
combining the given tables by outer union instead of cross product, saving com-
plex subselects in most cases as can be seen further on. Please note that when
using FUSE FROM tuples are ordered in the order of the tables specified. (In FUSE
FROM t1, t2 all tuples from t1 are considered before the tuples from t2.)

v

W»>— SELECT — colref 3 ‘ 7'
RESOLVE (colref)
RESOLVE (colref, function)—

*
4.
P—@ FROM tablerj‘—V

>—'fwhere—clause T4>

p— FUSE BY —(‘ l7colref ‘ T)TON ORDER—rcolref

‘f’
P—’fhaving—clause ‘T—V
order-by-clause o |
P—'* ‘?—V

Fig. 4. Syntax diagram of the FUSE By statement

Similar to the GROUP BY clause, the FUSE BY clause defines which objects are
considered as the same real world objects, and are therefore fused into one single
tuple. The attributes given here serve as identifier. ON ORDER influences the order
in which tuples are considered when resolving conflicts. All attributes that do not
appear in the FUSE BY clause may contain data conflicts. The keyword RESOLVE
in the SELECT clause marks these columns and also serves to specify a conflict
resolution function (function) to resolve conflicts in this column. The wildcard

x’ or not specifying a conflict resolution function results in a default conflict
resolution behavior.

Keep in mind that both the HAVING-clause and ORDER BY clause can be used
additionally and keep its original meaning. A small example for a FUSE By
statement is:

SELECT Name, RESOLVE(Age, max)
FUSE FROM EE_Student, CS_Students
FUSE BY (Name)

This fuses the data on EE- and CS-Students, leaving just one tuple per student.
Students are identified by their name and conflicting age values are resolved by
taking the higher age (assuming people only get older...).

3.2 Semantics

The overall idea behind FUSE BY is the idea of fusion by grouping and aggre-
gation. Ideally, FUSE FROM and the outer union operator is used. Possible data
conflicts are resolved in each group separately.

FUSE By statements possess an intuitive and beneficiary default behavior: If
there is no information of how to group objects, only exact duplicates and sub-
sumed tuples are removed. If there is no information on how to resolve conflicts,
known NON-NULL values in the tuples are preferred to NULL values.

Fusion process. The fusion process consists of two phases. First, all the tuples
from all the sources involved are combined to form just one single table (Step 1).
This increases completeness. In a second phase conciseness is being increased by
grouping together tuples representing the same real world object and resolving
conflicts (Step 2 through 4).

Step 1: Increasing completeness. To execute a FUSE BY statement, the tu-
ples going into the fusion process are determined first by evaluating the FROM
clause as given in the statement and eventually applying an existing WHERE con-
dition to it. If FUSE FROM is used instead of FROM, the given tables are combined
by an outer union instead of cross product. Because there is no separate outer
union operator in SQL this operation needs to be rewritten (see Sec. 3.2).

Step 2: Identifying tuples to be fused. Second, all the tuples that describe
one and the same real world object are grouped together. This is done by doing a
grouping on the column(s) given in the FUSE BY clause. We hereby assume that
we are able to rely on a globally unique and consistent identifier that we can use
to do the grouping. This identifier may be produced by detecting duplicates and
assigning equal keys to the same real world objects or using multiple columns
as key. For this reason duplicate detection needs to be done in advance to the
fusion process. Using the WHERE clause, tuples may be filtered out before the
grouping.

Step 3: Increasing conciseness. Then, exact duplicates and subsumed tuples
are removed per group. A tuple ¢; subsumes another tuple ¢5 if they are defined

on the same attributes, t5 has more L values than t; and t; coincides with to
in all NON-NULL attributes [4]. The removal of subsumed tuples is neither a
standard operation of the relational algebra, nor does there exist a specific SQL
statement. Rao et al. nevertheless show how subsumed tuples can be removed
from a single table [12]. However, removing subsumed tuples per group as needed
in our case does not yield the same result as removing subsumed tuples from the
entire table. Therefore the technique applied by [12] is not feasible in our case.
All the remaining tuples of one group are then fused together to just one tuple,
at the same time resolving inconsistencies and data conflicts. This is done by
applying conflict resolution functions to the columns as indicated in the RESOLVE
parts of the SELECT clause. More details on conflict resolution follow in Sec. 3.4.
Step 4: Shaping the result. Finally, only the desired columns as indicated in
the SELECT clause are projected to form the final result. Additional HAVING and
ORDER BY clauses are applied afterwards on this result.

Figure 5 shows the query that is used to produce the table in Fig. 1 from
the introduction. Please note that the order of the tables and the order by Age
influences the values chosen, e.g. the phone number of Alice.

SELECT Name, RESOLVE(Age, max), RESOLVE(Car),
RESOLVE(Student, vote), RESOLVE(Phone)

FUSE FROM EE_Students, CS_Students

FUSE BY (Name) ON ORDER Age

Fig. 5. Example query that produces the Data Fusion result from Fig. 1

Rewriting fusion queries. Parts of FUSE BY can be rewritten by standard
SQL and therefore directly executed by any standard DBMS. This rewriting does
not include the conflict resolution functions (c.f. Sec. 3.4) and the grouping, as
we show in the following paragraphs. Please reconsider the example query from
Fig. 5. The rewriting of the query is shown in Fig. 6, the non-standard parts are
marked by italic font.

The outer union operation as needed by FUSE FROM, together with the neces-
sary order of the tuples by source table, can be rewritten as shown in lines 4 to 9.
For each input table there is a SELECT statement with all the attributes from all
tables. Attributes not present in a table are padded with NULL values. The data
from the two tables is combined by UNION ALL. Exact intra-source duplicates as
well as exact inter-source duplicates are removed by a DISTINCT in the enclosing
SELECT. The extension to more than two tables is straightforward, but increases
complexity of the rewritten statement.

As Union is not order preserving, the order of the tuples by table (using an
additional column src) as required by FUSE BY is guaranteed by the ORDER BY
in line 9, as well as the order implied by the ON ORDER clause of FUSE BY.

1: SELECT Name, max(Age), cr_coalesce(Car), cr_vote(Student),

2: cr_coalesce(Phone)

3: FROM (SELECT DISTINCT Name, Age, Car, Student, Phone

4 FROM (SELECT Name, Age, Car, Student, NULL as Phone, 1 as src
5: FROM EE_Students

6 UNION ALL

7 SELECT Name, Age, NULL as Car, Student, Phone, 2 as src
8 FROM CS_Students

9: ORDER BY src, Age

10:)

11:)

12: group by Name

Fig. 6. Example query producing the result from Fig. 1, rewritten by means of SQL
and using non standard aggregation functions

To do the grouping and prepare for conflict resolution the result is grouped
by the attributes given in the FUSE BY clause of the statement (line 12). The
attributes with the needed conflict resolution are placed in the SELECT clause
(line 1 and 2).

Using GROUP BY in the rewriting requires the use of aggregation functions
with all the attributes not present in the GROUP BY clause. As our approach
allows the conflict resolution functions to be more general than aggregation
functions, this part cannot be further rewritten, simply because such conflict
resolution functions are not part of SQL.

As GROUP BY is not order preserving and we cannot influence the order in the
resulting groups, only conflict resolution functions that are not order dependant
can be used. As soon as order dependant conflict resolution functions are used,
an order preserving version of GROUP BY is needed (marked by an italic group
by). Also, GROUP BY does not allow for removing subsumed tuples in the groups.

Default behavior and wildcards. Wildcards, e.g., *, are replaced by all at-
tributes present as given by the FROM or FUSE FROM clause, if necessary accom-
panied by RESOLVE. If no explicit conflict resolution function is given, COALESCE
is used as default function. COALESCE is an n-ary function and returns its first
NON-NULL parameter value. Using COALESCE as default, the order of the tuples
is important and directly influences the chosen value. If no attribute is given in
the FUSE BY clause, all tuples form one large group, performing removal of exact
duplicates and subsumed tuples on all tuples in this large group.

3.3 Examples - Describing fusion queries

Query 1 of Fig. 7(a) groups the tuples of one table S1 by the values in column
A. All other columns (replacing wildcard *) of table S1 may contain conflicting
data that is resolved by the default conflict resolution function COALESCE. This

way, the statement behaves like a GROUP BY with a COALESCE aggregation, addi-
tionally removing subsumed tuples per group. Fusion by more than one column
is possible, replacing A by all desired columns.

SELECT =* SELECT =* SELECT x*
FROM S1 FROM S1 FUSE FROM S1, S2
FUSE BY (&) FUSE BY () FUSE BY ()
(a) Removing (b) Removing (¢) Fusing two
data conflicts exact duplicates tables by mini-
and subsumed mum union
tuples

Fig. 7. Three simple FUSE BY statements

In Query 2 in Fig. 7(b) there is no column present in the FUSE BY clause.
All tuples are treated equally as being in one large group. Exact duplicates and
subsumed tuples are removed. Conflicts are not resolved and this corresponds to
the result of a DISTINCT operator and the removal of subsumed tuples (indicated
as S1] by [4]).

Query 3 of Fig. 7(c) combines the two tables S1 and S2 by outer union. It com-
pletes missing values in columns by NULL values and removes exact duplicates
and subsumed tuples. Together with COALESCE as default conflict resolution
function this corresponds to the result of a DISTINCT operator and a minimum
union operator [4]. Examples with three or more tables look and behave simi-
larly.

3.4 Conflict Resolution

Different conflict resolution functions and strategies are required by different
domains, thus encapsulating expert knowledge to fuse data in a domain. Never-
theless, there are some conflict resolution functions that are applicable in a wide
variety of domains.
Conflict resolution functions. The concept of conflict resolution is more gen-
eral than the concept of aggregation, because the functions can be arbitrarily
complex and can take more data into account to compute a value. In the most
general case, they can use the information given by the query context. This
query context consists not only of the conflicting values themselves, but may
also consist of the corresponding tuples, all remaining column values or other
metadata (e.g. column or table name). This extension of aggregation functions
enables the author of a FUSE By statement to use many different and powerful
ways to resolve conflicts.

Table 2 shows a list of useful conflict resolution functions starting with the
standard aggregation functions followed by more complex functions. The column

containing all conflicting values is passed as a first parameter to all functions.
Depending on the function, additional parameters may be used, e.g., the source
in function CHOOSE. A FUSE BY query using some of these functions to fuse
three movie database tables is presented later in Sec. 4.

Conflict Resolution Strategies. There are several simple strategies to resolve
conflicts that are repeatedly mentioned in the literature ([10, 16, 15]). With FUSE
By all these strategies can be applied in an easy and consistent way.

Preferring one source over others. The FUSE By statement explicitly or-
ders the tuples by sources as given in the FUSE FROM clause. Therefore, this
strategy can be applied by writing the preferred source first and using FIRST
as conflict resolution function. COALESCE is used to fall back on values of
other sources in case the desired source does not provide a value for the
attribute. CHOOSE may also be used.

Choosing the most common value. The intuition behind this strategy is
that correct values prevail over incorrect ones, given enough evidence. It
is implemented by applying the VOTE function on a column.

Choosing the most recent value. This requires time information about the
recentness present in the tables as a separate attribute or by other means.
This strategy can then be applied by either ordering on this attribute and
using FIRST/COALESCE or using a special function additionally using the
time information.

Take all, let the user decide. Using GROUP applies this strategy.

4 Implementation

We are implementing the FUSE BY operator as part of an integrated information
system. We base our implementation on the XXL framework — a Java library
for building database systems [1]. The library builds on the cursor concept to
implement relational database operators. We used the library to implement ad-
ditional cursors for the outer union operator, the removal of subsumed tuples,
and the FUSE BY operator, and to implement a selection of conflict resolution
functions. They are used in our experiments, which are currently all performed
in main memory.

Computing Fusion Queries. The implementation of the FUSE By cursor fol-
lows the definition of its semantics as described in Sec. 3.2. The implementation
of outer union simply concatenates all the input tuples adding NULL values if
necessary. Our first naive implementation of the removal of subsumed tuples
simply compares every tuple to all other tuples in the same group and tests for
subsumption.

Experiments. We conducted several experiments with three data sources of
the movie domain, kindly provided to us by the respective organizations: the
Internet Movie Database® (I), a non-public movie collection (C) and a movie

! http://www.imdb.com

|Function

|Description

COUNT Counts the number of distinct NON-NULL values, i.e., the num-
ber of conflicting values. Only indicates conflicts, the actual data
values are lost.

MIN / MAX Returns the minimal /maximal input value with its obvious mean-

ing for numerical data. Lexicographical (or other) order is needed
for non numerical data.

SuM / AvG / MEDIAN

Computes sum, average and median of all present NON-NULL data
values. Only applicable to numerical data.

VARIANCE / STDDEV

Returns variance and standard deviation of data values. Only
applicable to numerical data.

RANDOM Randomly chooses one data value among all NON-NULL data val-
ues.

CHOOSE Returns the value supplied by a specific source.

COALESCE Takes the first NON-NULL value appearing.

FIRST / LAST Takes the first/last value of all values, even if it is a NULL value

VOTE Returns the value that appears most often among the present
values. Ties can be broken by a variety of strategies, e.g., choosing
randomly.

GROUP Returns a set of all conflicting values. Leaves resolution to the
user.

SHORTEST /|Chooses the value of minimum/maximum length according to a

LONGEST length measure.

(ANNOTATED) CON-|Returns the concatenated values. May include annotations, such

CAT as source of value.

HIGHEST QUALITY

Evaluates to the value of highest information quality, requiring
an underlying quality model.

MoST RECENT

Takes the most recent value. Most recentness is evaluated with
the help of another attribute or other data about recentness of
tuples/values.

MosT ACTIVE

Returns the most often accessed or used value. Usage statistics
of the DBMS can be used in evaluating this function.

CHOOSE CORRE-

SPONDING

Chooses the value that belongs to the value chosen for another
column.

MOST COMPLETE

Returns the value from the source that contains the fewest NULL
values in the attribute in question.

MOST DISTINGUISH-
ING

Returns the value that is the most distinguishing among all
present values in that column.

HIGHEST INFORMA-
TION VALUE

According to an information measure this function returns the
value with the highest information value.

MOST GENERAL
SPECIFIC CONCEPT

/

Using a taxonomy or ontology this function returns the most
general or specific value.

Table 2. Conflict resolution functions

collection frequently used in the collaborative filtering community, Movielens?
(M). We extracted nine different attributes out of all the movie data present
in these sources and built an artificial ID. The three sources have significant
intensional and small extensional overlap.

Figure 8 shows an example query from this movie domain. It illustrates the
application of conflict resolution functions from Table 2. In this query, movie data
is fused from the three sources (I, M, and C). Equal movies are identified by the
attribute ID and conflicts in all other attributes are resolved as follows: The value
for the attribute DIRECTOR is chosen from source I, assuming source I to contain
the correct answer. Information about the production company (PROD_COMP)
is taken from the source that contains the most information on production com-
panies. Taking the value for the production country (PROD_COUNTRY) from the
same source assumes that if a source knows a lot about production companies it
also knows a lot about production countries, as these are two related aspects of
making a movie. The same applies to RELEASE and DISTRIBUTOR. Worth men-
tioning is also the conflict resolution for the attribute GENRE. Given a taxonomy
of different genre descriptions and given conflicting values, MOSTSPECIFIC re-
turns the most specific of them in the taxonomy.

Conflict resolution for the remaining attributes is straight-forward.

SELECT 1ID,

RESOLVE (TITLE, Longest),

RESOLVE (YEAR, Vote),

RESOLVE (DIRECTOR, Choose(I)),

RESOLVE (PROD_COMP, MostComplete),

RESOLVE (PROD_COUNTYR, ChooseCorresponding(PROD_COMP)),

RESOLVE (GENRE, MostSpecific),

RESOLVE (RELEASE, Earliest),

RESOLVE (COLOR, Vote),

RESOLVE (DISTRIBUTOR, ChooseCorresponding(RELEASE))
FUSE FROM I,M,C FUSE BY (ID)

Fig. 8. Complex FUSE By example query, fusing data from three different movie data
sources (I, M and C). Data conflicts are resolved, showing the use of some of the
functions from Tab. 2.

Findings/Insights. The FUSE By operator scales well. In the movie domain
it is able to handle simple queries over at least 330,000 tuples using XXL and
our implementation. Dominating the runtime is the sort operation. As the ex-
tensional overlap in our test tables is not very high (1-3% of the total number
of tuples from the sources), the groups consist only of a few (approximately 1-
10) tuples (also accounting for fuzzy duplicates in single sources). Therefore the
nearly quadratic runtime of the removal of subsumed tuples hardly affects the
total runtime.

2 http://www.movielens.org

5 Conclusions

Simple, declarative, and almost automatic data integration is a pressing problem
of today’s large-scale information systems. This paper deals with the data fusion
step in the data integration process. In this step, several representations of same
real world objects, that may be scattered among several data sources, are fused to
a single representation. During this process completeness and conciseness of the
integration result are increased, while possible uncertainties and contradictions
in the data are resolved.

As no relational technique so far produces such a complete yet concise result,
we next propose the FUSE BY extension of SQL, which allows to declaratively
specify how to fuse relational tables and thereby resolve data conflicts. Formal
syntax and semantics of this new SQL clause are given. A main feature of the
operator is the use of conflict resolution functions in the SELECT clause. We give
examples and describe how they relate to aggregation functions known from
conventional DBMS. Also, FUSE By has convenient default behavior, such as
the elimination of subsumed tuples, allowing sophisticated data fusion already
with very simple statements.

The new operator is successfully implemented as part of our research inte-
gration system. We are currently enhancing our data fusion DBMS in terms of
(i) scalability and optimization techniques, (ii) addition of conflict resolution
functions, and (iii) integration with a domain-independent duplicate detection
technique. Together with the optimizer already present in the XXL framework,
we will be able to support the full life cycle of a query: writing the query, optimiz-
ing the query and finally executing it. As more and more efficient functionality
is present, interesting optimization issues abound, particularly concerning the
execution of conflict resolution functions.

In summary, writing SQL queries using the FUSE By statement is as simple
as writing conventional grouping and aggregation queries, but has the added
value of a complete and concise result without contradictory data.
Acknowledgment. This research was supported by the German Research So-
ciety (DFG grant no. NA 432).

References

1. J. v. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Kramer, T. Schéafer, M. Schneider,
and B. Seeger. XXL - a library approach to supporting efficient implementations
of advanced database queries. In Proc. of VLDB, pages 39-48, 2001.

2. U. Dayal. Processing queries over generalization hierarchies in a multidatabase
system. In Proc. of VLDB, pages 342-353, 1983.

3. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: An extensible data
cleaning tool. In Proc. of SIGMOD, page 590, 2000.

4. C. Galindo-Legaria. Outerjoins as disjunctions. In Proc. of SIGMOD, pages 348—
358, 1994.

5. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-
man, V. Vassalos, and J. Widom. The TSIMMIS approach to mediation: Data
models and languages. J. Intell. Inf. Syst., 8(2):117-132, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Greco, L. Pontieri, and E. Zumpano. Integrating and managing conflicting data.
In Revised Papers from the jth Int. Andrei Ershov Memorial Conf. on Perspectives
of System Informatics, pages 349-362, 2001.

A. Motro. Completeness information and its application to query processing. In
Proc. of VLDB, pages 170-178, Kyoto, Aug. 1986.

A. Motro and P. Anokhin. Fusionplex: resolution of data inconsistencies in the
integration of heterogeneous information sources. Information Fusion, 2004. In
Press.

F. Naumann, J.-C. Freytag, and U. Leser. Completeness of integrated information
sources. Information Systems, 29(7):583-615, 2004.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in me-
diator systems. In Proc. of VLDB, pages 413-424, 1996.

V. Raman and J. Hellerstein. Potter’s Wheel: An interactive data cleaning system.
In Proc. of VLDB, pages 381-390, 2001.

J. Rao, H. Pirahesh, and C. Zuzarte. Canonical abstraction for outerjoin optimiza-
tion. In Proc. of SIGMOD, pages 671-682. ACM Press, 2004.

K. Sattler, S. Conrad, and G. Saake. Adding Conflict Resolution Features to a
Query Language for Database Federations. In Proc. 3rd Int. Workshop on Engi-
neering Federated Information Systems, EFIS, pages 41-52, 2000.

M. Scannapieco and C. Batini. Completeness in the relational model: a compre-
hensive framework. In Proceedings of the International Conference on Information
Quality (IQ), pages 333-345, Cambridge, MA, 2004.

E. Schallehn, K.-U. Sattler, and G. Saake. Efficient similarity-based operations for
data integration. Data Knowl. Eng., 48(3):361-387, 2004.

V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. L. Lu, A. Rajput, T. J.
Rogers, R. Ross, and C. Ward. Hermes: A heterogeneous reasoning and mediator
system. Technical report, University of Maryland, 1995.

H. Wang and C. Zaniolo. Using SQL to build new aggregates and extenders for
object- relational systems. In Proc of VLDB, pages 166-175, 2000.

L. L. Yan and M. Ozsu. Conflict tolerant queries in AURORA. In Proc. of CooplS,
page 279, 1999.

