A Data Model and Query Language to Explore Enhanced
Links and Paths in Life Science Sources

George Mihaila
IBM T.J. Watson Research Center

mihaila@us.ibm.com

Louiga Raschid
University of Maryland

louiqa@umiacs.umd.edu

ABSTRACT

Links in life science sources capture important domain knowl-
edge. However, current simple physical link implementa-
tions are not rich in either representation or semantics. This
paper proposes the e-link framework and tools to assist sci-
entists in exploring and exploiting the knowledge that should
be captured in links.

1. INTRODUCTION

An abundance of Web-accessible bio-molecular data sources
contain data about scientific entities, such as genes, sequences,
proteins and citations. The sources have varying degrees of
overlap in their content and they are richly interconnected to
each other. Experiment protocols to retrieve relevant data
objects (data integration queries) explore multiple sources
and traverse the links and the paths (informally concatena-
tions of links) through these sources. While such naviga-
tional queries are critical to scientific exploration, they also
pose significant limitations and challenges.

The key limitation is that current physical link implemen-
tations are inherently poor with respect to both syntactic
representation and semantic knowledge. We illustrate us-
ing an example. OMIM is a source that has knowledge on
human genes and genetic disorders. Each entry in OMIm
may have links to entries in multiple other sources. While
there is significant knowledge and curation effort associated
with the creation of each of these links, this knowledge is
not explicitly captured in the link. All links appear to occur
at the level of the OMIM entry. In a later section, we discuss
many examples of specific sub-elements within the OMIM
entry that are actually associated with the link; this is ad-
ditional knowledge that is useful to the scientist. Similarly,
suppose we consider two or more links from OMIM entries
to say proteins in SWISSPROT. These links do not explicitly
specify the underlying relationship that led to the creation

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

Felix Naumann
Humboldt-Universitat zu Berlin

naumann@informatik.hu-berlin.de

Maria Esther Vidal
Universidad Simoén Bolivar

mvidal@ldc.usb.ve

of this link and one may assume that the links capture the
same relationship. However, a scientist who examines the
OMIM and SWISSPROT entries may conclude that the rela-
tionships that have been captured are quite different.

Links between entries in the sources are created for many
different reasons. Biologists capture new discoveries of an
experiment or study using links, whereas data curators add
links to augment, to complete or to make consistent the
knowledge captured among multiple sources. For example,
a result reported in a paper in PUBMED may lead a cura-
tor to insert a link from a data entry in say OMIM to this
citation in PUBMED. Algorithms insert links automatically
when discovering similarities among two data items, e.g.,
to represent sequence similarity following a BLAST search.
Thus, the simple unlabeled physical links that are in use
today are insufficient to represent subtle and diverse rela-
tionships.

In this research, we propose the e-link framework and
methodology and tools to assist scientists in exploring and
exploiting the knowledge that should be captured in links.
To do so we must accomplish the following three objectives.
In this paper, we address the first two objectives.

e Develop a data model that can represent sources, data
objects and the enhanced semantic links (e-links) be-
tween data objects.

e Develop a query language and query evaluation engine
for scientists to meaningfully explore these semanti-
cally enhanced e-links and paths.

e Develop (machine-assisted) techniques to extract, gen-
erate and label existing links to create e-links.

We briefly review related research. Clearly there is much
related work in knowledge representation. RDF and XML
Topic Maps provide a rich conceptual framework and ex-
pressive query languages that can be applied to represent
the e-link framework. Ontologies also provide a framework
to capture the semantics of links. Our objective in this paper
is to focus on the simple framework needed for e-links and
we expect to freely exploit ideas from the richer frameworks.

The three major repositories, NCBI, DDBJ and EBI have
recently made significant efforts to provide integrated access
to the many entries and links between entries that exist in
the sources that they manage. Examples include ELink [1],
RefSeq and LocusLink at NCBI; LinkDB [2], and Integr8 [3].

These projects focus on providing unified access to the links
but do not attempt to enhance the representation and the
semantics of links.

There are other projects that target and enhance specific
links. For example, the PDBSProtEC project [4, 12] is a
resource to link PDB chains with SwissProt codes and EC
numbers. We expect that there will be many such efforts to
enhance specific links. Our elink framework is generic and
can in principle be applied to any enhanced link; we would
of course need to develop the machinery to interpret such
enhanced links and translate to our e-link framework.

Recent work in [7, 11] present sophisticated query lan-
guages to explore knowledge in interconnected data sources,
beyond simple navigational queries. For example, the IBM
DB2 Graph Extender supports complex queries on large
object graphs and can discover associations important to
systems biology, e.g., across genome comparisons. These
projects can be extended to accommodate the enhanced se-
mantics of the e-link framework.

The paper is organized as follows: Section 2, describes a
simple model for life science sources and presents examples
of enhanced links. In Sec. 3, we present the data model for
the e-link framework and in Sec. 4, we (informally) present
the query language. Sec. 5 considers the semantics of queries
and Sec. 6 describes the steps of query evaluation.

2. MODELINGLIFE SCIENCESSOURCES

We first describe a simple model for life science sources.
The model was first presented in [8, 9] where we investigated
interesting metrics to characterize life science sources.

2.1 A SimpleModel for Life Science Sources

Life science sources may be modeled at three levels: the
physical level, the object level and the ontology level. The
physical level corresponds to the actual data sources and the
links that exist between them. An example of data sources
and links is shown in Fig. 1.

o _OMIM (Gene)

Protein Nucleotide

(Protein).\ / (Sequence)

®PubMed (Publication)

Figure 1: A Source Graph for NCBI Data Sources
(and Corresponding Scientific Entities)

The sources are a subset of sources at the National Cen-
ter for Biotechnology Information (NCBI) and can be ac-
cessed at http://www.ncbi.nlm.nih.gov. The sources are
PUBMED, PROTEIN, NUCLEOTIDE, and OMIM (not an NCBI
source). The physical level is modeled by a directed Source
Graph, where nodes represent data sources and edges repre-
sent a physical link between two data sources. A data object
in one data source may have a link to one or more data ob-
jects in another data source, e.g., a gene associated with
a disease in OMIM links to multiple citations in PUBMED.
An Object Graph as shown in Fig. 2 represents the data ob-
jects of the sources and the object links between the objects.
Thus, each link in the Source Graph corresponds to a col-
lection of object links of the Object Graph, each going from

a data object in one source to another object, in the same
or a different source. Note that links in Source Graph can
be bi-directional (though not always symmetric) and Source
Graph may be cyclic.

Figure 2: An Object Graph for NCBI Data Sources
with Data Entries (Objects) and Links

The ontology level consists of classes (entity classes, con-
cepts or ontology classes) that are implemented by one or
more physical data sources or possibly parts of data sources
of Source Graph. For example, the class Citation may be im-
plemented by the data source PUBMED. A source of Source
Graph typically provides a unique identifier for each of the
entities or objects in Object Graph and includes attribute
values that characterize them. Table 1 provides a mapping
from the logical classes to some physical data sources of some
Source Graph.

CLASS
Sequence (s)

DATA SOURCE
NCBI Nucleotide database
EMBL Nucleotide Sequence database
DDBJ
NCBI PRrROTEIN database
UniProt
SwissPROT
NCBI PuBMED
NCBI Book

Protein (p)

Citation (c)

Table 1: A Possible Mapping from Ontology Classes
to Physical Data Sources of Source Graph

2.2 Enhancing Links Among Data Entries

We present examples to illustrate that the the simple un-
labeled physical links that are in use today are insufficient
to represent diverse relationships.

Consider a SWISSPROT entry with a link to an OMIM en-
try; it is illustrated in Fig. 3. In the flat structure of the
SwisSPROT entry, this link is represented by embedding an
OmMiM ID as a top-level attribute of the entry, and the entry
may include an HTML hyperlink to the OMIM entry. Such
a link neither represents the sub-element of the SWISSPROT
entry to which the link refers, nor the sub-element of the
OMIM entry to which the link points, nor does it represent
the reason to insert this link. Biologists examining the Swis-
SPROT entry rely on their experience and can infer these link
properties after a time-consuming examination. Machines
and algorithms cannot perform such analysis at the neces-
sary level of detail and precision. In this particular case, the
e-link should not originate from the SwiSSPROT entry; in-
stead the ”real” origin is the CC-DISEASE attribute within
that entry. The e-link should also not represent a generic
relationship; it should be labeled as a causal relationship,
telling humans and machines that the protein in question is
known to cause the disease pointed to by the e-link.

Swiss-Prot entry

OS homo sapiens
El

CC DISEASE ...

Figure 3: The Enhanced e-link from Swiss-Prot to
OMIM

L Original link (weak semantics)

OMIM entry

We note that determining the semantics and labels of e-
links for some physical link between two sources may not
be straightforward, and scientists may not always reach a
consensus as to the desired semantics. Nevertheless, we be-
lieve that the significant activity related to ontologies for
the life sciences, and the resulting advances in establishing
controlled vocabularies to describe functionality and rela-
tionships among concepts, e.g., the GO Ontology [5] and
GOA [6] will contribute towards the success of our research.

Consider the physical link from the origin source UNIPROT
to the target source OMIM illustrated in Fig. 4. The physi-
cal link instances between UNIPROT and OMIM entries corre-
sponds to two distinct e-links with different semantics. Both
e-links originate in the same sub-element of UNIPROT. One
e-link has the meaning is causal for disease and the target
sub-element in OmiM is CLINICALFEATURES. The sec-
ond e-link has the meaning describes genetic defects and the
target sub-element in OMIM is MAPPING. In this example,
the original physical link of the Source Graph is classified as
two e-links, whose target sub-element in OMIM is different,
and where the two e-links have different meaning.

UniProt entry

OS homo sapiens

OMIM entry

CLINICAL FEATURES

et 'Eﬁ'ﬁ'anced WS (explicit semantics)
DR = MAPPING
=B / \
L|:77 [is causal Mdescribes }

for di genetic defect

Figure 4: Enhancing a Link from UniProt to Omim
to Produce Two e-links with Different Target Sub-
Elements in Omim

Next, consider the link from the origin source UNIPROT to
the target source GO in Fig. 5. This physical link captures
three e-links, where the origin sub-element and the meaning
of the three e-links is different. The target is the GO entry.
The first e-link has meaning has (sub)cellular location and
the origin sub-element in UNIPROT is SUBCELLULAR. The
second e-link has the meaning has molecular function and
the origin sub-element in UNIPROT is MOLFUNC and the
third e-link has meaning participates in biological process
and the origin sub-element in UNIPROT is BIOLPROC.

Finally, we consider the case where different physical links
between different data sources appear to have the same
meaning. There are six physical links in the Source Graph,
each originating in the same sub-element of UNIPROT. The
target of each link is a data entry in one of six different
protein data sources, InterPro, Pfam, SMART, PROSITE,
PRINTS, and TIGRFAMS; the links are illustrated in Fig. 6.

ular location || function

UniProtentry [1, Original link (weak semantics) (e
.
: it semantics),
; Enhanced links (exphctt St
SUBCELLULAR
MOLFUNC
BIOLPROC : A
[has (Sub)cell—} [has molecular} [participates in }

77 biological process
Figure 5: Enhancing a Link from UniProt to GO

to Produce Three e-links with Different Origin Sub-
Elements in UniProt

While the physical links are between different sources, they
each have the meaning contains a sequence signature. This
example of six physical links producing potentially six e-
links, all of which are equivalent with respect to meaning
is a frequent occurrence in life science sources, because the
contents of sources overlap and the sources are richly inter-
connected. This motivates our research on a data model
that can specify the equivalence of e-links that are of the
same link type.

— 7 T TIGRFAMS entry
contains a Combined enhanced link
sequence signature

(explicit semantics)

Figure 6: Enhancing a Link from UniProt to Six
Protein Data Sources

3. THE DATA MODEL

In this section we formalize the life sciences graphs intro-
duced in the previous section. The data model we consider
is comprised of three graphs, which capture the various ab-
straction levels: the Ontology Graph at the logical level and
the Source Graph and Object Graph at the physical level.
This is an extension of our previous work on modeling life
science sources [8, 9].

An Ontology Graph is a graph (C, LT), where C'is a set of
logical classes (e.g., protein, gene, citation) and LT is a set
of link types between logical classes. A link type is a triple
(C1,1,C2) where C4 is the origin class, Cs is the target class
and [is a label from a set of link labels L. For example
(citation, describesBehaviorOf, gene) is a link type between
citations and genes. We note that at this stage we only
consider a simple label to capture the semantics of a link; in
future work we expect to consider the use of ontologies with
their richer semantics.

A Source Graph is a graph (S, Lgs), where S is a set of
sources which store instances of logical classes and Ls is a
set of source links which implement link types. Each source
s stores instances of a single logical class, denoted ms(s). A
source link in LS is a triple (s1,1, s2) such that there exists
a link type (ms(s1),l,ms(s2)) in LT. Given a typed link

(e.g., describesBehaviorOf) between class C; (e.g., citation)
and class C> (e.g., gene), a pair of sources (S1,S2) where
S1 (PubMed) contains objects of the logical class C1 and S»
(UniGene) contains objects of target logical class Ca, can
implement this typed link. Note that the set of implemented
link types, e.g., (PubMed describesBehaviorOf, UniGene) is
made public by the sources. Thus, PubMed will typically
advertise that it has links of this type. If the reverse links are
stored by UniGene, it too will advertise the link. We note
that the links between the objects may not be symmetric.

An Object Graph is a graph (O, Lo), where O is a set of
objects and Lo is a set of links between objects. There is
also a mapping mo : O — S defining for each object o, the
source mo (o) where o is physically stored. A given object
of class C; in source S; can have a link with a label [(e.g.,
describesBehaviorOf) to another object of class C» in source
S only if there is a source link (S1,1,S2) in Lg.

In addition we have a link concatenation matrix LL which

specifies the meaningful concatenations of link types: if (It1,lt2)

is a pair in LL, then the target class of lt; is the same as
the origin class of It and the concatenation of It; with lt;
is meaningful. We note that for now we only consider pairs
of links.

We are now ready to integrate the ontology, source and
object graphs into a single, unified data model.

DEFINITION 1. The e-link data model is a 9-tuple
=(C,L,LT,S,Ls,0,Lo,ms,mo,LL) where:
o C is a set of classes
o L is a set of link labels;
o LT is a set of link types;
e S is a set of sources
o Lg is a set of links between sources;
o O is a set of objects;
o Lo is a set of links between objects;
® mg is a mapping from S to C;
e mo is a mapping from O to S;
o LL is a set of pairs of link types.

4. THE QUERY LANGUAGE

We define the e-link query language as a regular expression
over the alphabet C U L where each class occurrence can
optionally be annotated with a predicate expression. The
BNF specification of the language syntax is given in Fig. 7.

The result to all queries are paths in the Source Graph or
the Object Graph, where a node in the graph is also a path.
Some of the uses of the query language are as follows:

e Identify sources in the Source Graph that implement
a given class: For example, to find sources that imple-
ment class “publication ”, one can submit the query
()1 = publication.

o Identify sources in the Source Graph that implement
a given link type: An example is a source that con-
tains proteins that are linked to an entry in the RefSeq
database. Assuming a link type (protein, linked ToEn-
tryInRefSeq, refseqentry) in LT. The query Q2 =
protein linkedToEntryInRefSeq retrieves all sources
that contain protein entries that are linked to an entry
in the RefSeq database.

e Identify paths in the Source Graph using wildcards:
The symbols ec and ez are wildcards matching any

“(” Query “)77

Query “” Query

Query Query

€

€L

Term

ClassName Annotation
LinkLabel

empty

“[” Condition “]”

“(” Condition “)”
Condition “and” Condition
Condition “or” Condition
“not” Condition

Field

Field Op Value

“:” | “#” | “>77 | “<”
“>7’ | “<71 | “CODtainS”

Query

Term
Annotation

Condition

Op

Figure 7: The Syntax of the Query Language

class and any link type respectively. For example, to
retrieve all the sources linked to the PubMed source
by any link type, one can write a query such as the
following:

Q3 =publication[source = “PubMed”] €1 €c;

Identify paths in the Source Graph that satisfy a path

regular expression: For example the query Q4 = publication

(describes | describes describes) retrieves all sources
that contain classes connected by one or two describes
links starting from sources containing publications.

Identify paths in the Object Graph that satisfy a path
regular expression that can include source/object pred-
icates: For example the query Qs = publication[author
= “John Smith” and title contains “cancer”] describes
protein[source = ”"RefSeq”] would retrieve publica-
tions written by Smith whose title contains the term
“cancer” and which describe RefSeq proteins.

5. QUERY LANGUAGE EVALUATION

Intuitively, a query can be evaluated in five steps.
Step 1. Enumerate simple path expressions matching the
regular path expression @ (the predicate expressions are car-
ried over). For example, the query (Q = publication (de-
scribes | describes describes) is expanded as follows:

publication describes
publication describes describes

Step 2. For each such simple path expression e, insert €r,
in between each pair of consecutive class labels and ec in
between each pair of consecutive link labels to obtain e’. If
the simple path expression ends with a link label, append
the ec symbol at the end. This yields the following:

publication describes ec
publication describes ec describes ec

Step 3. Typecheck each e': verify if each triple of consecu-
tive symbols of the form ¢1l1¢2 corresponds to an actual link

type (c1,11,¢2) € LT and if each triple of consecutive sym-
bols of the form licil> corresponds to a pair (l1,l2) € LL.
Also, if there are wildcards, replace ec by all possible class
and er by all possible link types that result in valid path
expressions (according to the typechecking rules above).

Suppose that LT specifies that publication can only de-
scribe publication, protein or gene, and LL includes (de-
scribes, describes). This step yields the following:

publication describes publication

publication describes protein

publication describes gene

publication describes publication describes publication
publication describes publication describes protein
publication describes publication describes gene

Step 4. For each valid €' find all the actual source path
instances matching e’ in the Source Graph that also satisfy
all the source predicates. A source path instance in the
Source Graph is said to match a simple path expression if
there exists a mapping from the set of all the sources in this
path instance to the class labels in the path expression. For
a particular Source Graph, this step could yield:

PUBMED describes PUBMED

PUBMED describes SWISSPROT

PUBMED describes UNIGENE

PUBMED describes PUBMED describes PUBMED
PUBMED describes PUBMED describes SWISSPROT
PUBMED describes PUBMED describes UNIGENE

Step 5. For each source path, evaluate a query evaluation
plan (for this path) against the Object Graph.

6. QUERY EVALUATION

We provide a sketch of the steps for query evaluation. We
then provide a brief description of SGSearch, an algorithm
to find source paths in the Source Graph. We then discuss
a naive evaluation of the source paths against the Object
Graph (O,Lo) by a mediator accessing utilities ESearch,
EFetch and ELink currently supported by the NCBI.

6.1 Query Evaluation Stages

1. Validate the query against LT and LL. This corre-
sponds to Steps 1, 2, and 3 of Sec. 5.

2. Find all source paths in the Source Graph, (S, Ls) that
satisfy the query; this is Step 4. We describe an ex-
haustive search algorithm SGSearch next.

3. Eliminate meaningless source paths using LL. Scien-
tists may further eliminate source paths that are not
of interest to them, e.g., they do not use data from a
specific source in the path. They may also rank the
source paths based on domain specific criteria. Note
that this step improves efficiency and usefulness but
does not impact the semantics; it is not included in
Sec. 5.

4. Evaluate each source path on the Object Graph (O, Lo),
starting with the highest ranked source path. We de-
scribe a naive evaluation strategy that assumes the me-
diator has a decision rule to determine the link type
of links in the Object Graph.

5. Return results to the user. This may include the ob-
jects and links of a path in the Object Graph or only
the target objects reached along paths of the Object
Graph.

6.2 SGSearch

SGSearch is an extension of a search algorithm presented
in [9]. The extension is to consider labeled links in the
Source Graph; the original algorithm only considered un-
labeled links. SGSearch is based on a deterministic finite
state automaton (DFA) that recognizes a regular expression
(query Q). The algorithm performs an exhaustive breadth-
first search of all paths that satisfy the query. SGSearch
assumes that @, is semantically correct, i.e., the original
query has been rewritten as described in Sec. 5 to include
all needed wild card class labels, ec, and link labels, €r.

Suppose DFA is the automaton that recognizes the regular
expression query @,. The DFA is represented by a set of
transitions, where a transition is a 4-tuple t=(4,f,e,Pred),
and where, i represents the initial state of ¢, f represents the
final state of ¢, and e corresponds to the label of t. Note that
e € C UL, ie., e belongs to the set of class labels or link
labels. Pred represents a predicate expression to be satisfied
by a source that implements a class or by objects in a source.
For simplicity we do not discuss Pred in this section. The
state 1 (respectively f) may be a start state (respectively end
state) of the DFA.

The exhaustive algorithm SGSearch comprises two phases:
(a) build path and (b) print path. In phase build path, for
each visited transition tP=(4,f,e,Pred), SGSearch annotates
each transaction with a set t?.currentImp corresponding to
the label e. If e is a class label or the wild card class label
ec, tP.currentImp includes all s; in S such that e € ms(s;).
If e is a link label, t*.currentImp includes this label. Fi-
nally, if e is the wild card link label €z, then t*.currentImp
includes all the labels in L.

For each transition tP=(4,f,e,Pred), if i is not a start state
of the DFA, then SGSearch annotates each element n of
tP.currentImp, with a set n.previousImp; this is either
s;.previousImp or l.previousImp, depending on whether n
is a source or link. If n is a link label I, SGSearch con-
siders the transaction t*~! previous to ¢¥, and creates a set
l.previousImp that includes all sources s; in t? L currentImp
that are adjacent to ! in the Source Graph(S,Ls) and that
satisfy Pred. These adjacent sources s; must participate in
a link, such as (sj, I, s;) in Ls. Note that if [does not
have an adjacent source in t*~!.currentImp, it is no longer
considered as an element of t*.currentImp.

If n is a source, then, SGSearch considers two transitions
t?~! and t?72, where t? ! is previous to t? and t*~ 2 is pre-
vious to tP71. Tt finds sources s; in tP~2.currentImp that
satisfy Pred and, that are adjacent to s; in Lg through a
link label ! that is included in t*~!.currentImp. Similarly,
if s; does not have an adjacent source in t*~2.currentImp,
it is no longer considered as an element of t*.currentImp.

In phase print path, the algorithm starts from the set
t¥" currentImp corresponding to the final transition ¢/
whose final state is an end state of the DFA. For each s; in
this set, SGSearch uses the set s;.previousImp to construct
a path. The path terminates in one of the sources corre-
sponding to the start transition t'.currentImp; recall that
the initial state of this transition is a start state of the DFA.

6.3 Naive Evaluation by a Mediator

We now describe a naive evaluation of the source paths
produced by SGSearch against the Object Graph. For illus-
tration, we consider the NCBI Object Graph. NCBI is the
gatekeeper for NIH data sources. The Entrez utilities for
search and retrieval from NCBI sources include ESearch,
ELink and EFetch. Given a source and some search pred-
icate, ESearch finds objects in the source that satisfy the
predicate and EFetch retrieves those objects. Together, they
act like the o relational operator. Given an object identi-
fier (0.UID) and a target source, ELink retrieves all links
(0.UID pairs) starting from the given object o; and reaching
objects in the target source. We describe a naive evaluation
strategy based on these utilities.

Repeat for each subpath (s;, I, s;) in a source path
until the path terminates:

1. Invoke ESearch on the current source s; with the search
predicate Pred. Retrieve a set of object identifiers
(UIDs) for some objects in O;.

2. Invoke EFetch to obtain XML documents for each ob-
ject 0; € O;. Determine those links with link label
l.

3. Invoke ELink on all object links from o;, with label [,
and reaching an object o; in source s;. Create a set of
objects O;.

We assume that for each source link registered in Lg, the
mediator has a decision rule to determine the link type of
all outgoing object links from object 0;. We illustrate the
decision rules using an example. Consider the portion of a
UNIPROT entry in Fig. 8.

ID MEFV_HUMAN STANDARD; PRT; 781 AA.

AC 015553; Q96PN4; Q96PN5;

DT 16-0CT-2001 (Rel. 40, Created)

DT 16-0CT-2001 (Rel. 40, Last sequence update)
DE Pyrin (Marenostrin).

-1 0s Homo sapiens (Human).
—1 0X NCBI_TaxID=9606;
RN [1]
CC -!- DISEASE: DEFECTS IN MEFV ARE THE
CAUSE OF FAMILIAL MEDITERRANEAN
cC FEVER (FMF) [MIM:249100]...

—2 DR MIM; 608107;
—3 DR MIM; 249100;

—4 FT VARIANT 694 694 M -> I (in FMF).

Figure 8: Portions of the UniProt entry 015553

The four lines marked with ‘=’ correspond to four e-links.
We describe decision rules to classify two e-links. For —1,
the following rule (represented by a triple) will be used to
determine the link type: (./0S & ./0X, is causal for dis-
ease, lt;). The first item of the triple specifies that when
the two sub-elements (attributes) 0S and 0X occur in the
UNIPROT entry, then this is a link of type lt; with link
label is causal for disease. The attribute values (0S Homo
sapiens (Human) and 0X NCBI_TaxID=9606) correspond to
the actual object link. For —*, the following rule is used:
(./FT, genetic background, lt;). The attribute FT determines
the rule to be of type It; with label genetic background.

7. DISCUSSION

We present the e-link framework of a data model and
query language that allows scientists to express knowledge of
links and to exploit this knowledge in answering queries. We
discuss the naive evaluation of these queries by a mediator.

There are clearly many challenges that must be addressed.

The first task is developing machine assisted techniques to
extract semantics and to provide labels for existing links.
We note that there are several ongoing efforts to enhance
links [2, 3, 4, 10, 12]. This task is difficult, because a link in
the Source Graph may often have multiple semantics. The
second task is exploiting existing work in ontologies in the
task of associating semantics to links. We note that in our
current prototype, the semantics is limited to a simple label,
whereas ontologies can support richer relationships. Finally,
we have to develop robust and efficient techniques for query
evaluation that scale to the large distributed Object Graph
of the life science domain.
Acknowledgements: We thank Barbara Eckman, Stephan
Heymann, Zoe Lacroix, Alex Lash, Woei-Jyh Lee and Peter
Rieger for their feedback. This research was supported by
NSF grants 1150222847 and 1IS0430915 and by the German
Research Society (DFG grant no. NA 432).

8. REFERENCES

[1] www. nedi. nlm. nih. gov/ entrez/ query/ static/
elink_help. html.

[2] www. genome. ad. jp/dbget-bin/wwu_ linkdd .

wuww. ebi. ac. uk/ integr8/.

www. bioinf. org. uk/pdbsprotec/.

www. ebi. ac. uk/ GOA/ .

Barbara A. Eckman, Paul Brown, A. Kershenbaum,

R. Mushlin, and S. Mitchell. The IBM DB2 systems

biology graph extender research prototype. White

Paper, IBM Life Sciences, 2005.

[8] Z. Lacroix, H. Murthy, F. Naumann, and L. Raschid.
Characterizing properties of paths in biological data
sources. Proceedings of the DILS Conference and
Springer-Verlag Lecture Notes in Computer Science
(LNCS), (2994):187-202, 2004

[9] Z. Lacroix, L. Raschid, and M.E. Vidal. Efficient
techniques to explore paths in life science data
sources. Proceedings of the DILS Conference and
Springer-Verlag Lecture Notes in Computer Science
(LNCS), (2994):203-211, 2004

[10] Alex Lash, Woie-Jyu Lee, and Louiqga Raschid. A
protocol to extract and generate links capturing
marker semantics from pubmed to the human genome.
Under review, 2005.

[11] Ulf Leser. A query language for biological networks.
Technical Report 187, Institut fuer Informatik der
Humboldt Universitaet zu Berlin, 2005.

[12] A. Martin. PDBSprotEC: A web-accessible database

linking PDB chains to EC numbers via swissprot.

Bioinformatics, 20(6):986-988, 2004.

]
]
[6] www. geneontology. org.
]
]

