
Benefit and Cost of Query Answering in PDMS

Armin Roth1 and Felix Naumann1

Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
aroth,naumann@informatik.hu-berlin.de

Abstract. Peer data management systems (PDMS) are a natural ex-
tension to integrated information systems. They consist of a dynamic set
of autonomous peers, each of which can mediate between heterogenous
schemas of other peers. A new data source joins a PDMS by defining a
semantic mapping to one or more other peers, thus forming a network
of peers. Queries submitted to a peer are answered with data residing at
that peer and by data that is reached along paths of mappings through
the network of peers. However, without optimization methods query re-
formulation in PDMS is very inefficient due to redundancy in mapping
paths.

We present a decentral strategy that guides peers in their decision along
which further mappings the query should be sent. The strategy uses
statistics of the peers own data and statistics of mappings to neighbor-
ing peers to predict whether it is worthwhile to send the query to that
neighbor—or whether the query plan should be pruned at this point.
These decisions are guided by a benefit and cost model, trading off the
amount of data a neighbor will pass back, and the execution cost of
that step. Thus, we allow a high scale-up of PDMS in the number of
participating peers.

1 PDMS and Data Quality

Integrating semantically relevant information is a pressing problem. In practice,
it can be observed that a decentralized P2P fashion of data sharing is preferred
over centralized data integration systems. Users desire to pose queries to their
own schema, and let the queries be transferred via schema mappings to sim-
ilar peers in the neighborhood. Such requirements are addressed by peer data
management systems (PDMS) [1–3]. Peers serve both as data sources and as
mediators and queries are translated and transferred using semantic relation-
ships between peers, so-called mappings, as shown in Fig. 1.

Example application areas include partnerships between companies for de-
veloping complex technical products, cooperations of scientific institutions, and
ad hoc crisis management [2]. PDMS can also serve as a decentralized infrastruc-
ture for mediation between ontologies in the semantic web. Like any information
system integrating data from autonomous sources, PDMS are vulnerable to poor
data quality in the sources, poor mappings to the sources, and thus poor data

P1

20%
P2 P3

P4

100%

20%

60%

70%

20%

20%

P1.Book (Title, ISBN, Author, Year, Publisher, Prize)

70%

60%

P3.Book (Title, ISBN, Author, Year)

P2.Book (Title, ISBN, Author, Year, Publisher, Prize)

P4.Book (Title, ISBN, Author, Year, Publisher, Prize)

Peer schema

Peer

Local data source

Peer mapping

P1

P3

P2

P4

Part(Name, ID, RespPersonSSN, Supplier)

Person(SSN, Name, Department)

Part(Name, ID, RespPersonName, Supplier)

Part(Name, ID, Supplier)

Fig. 1. Two example PDMS with annotated source coverages, mapping selectivities,
and schema.

quality of query results. Compared to conventional integrated information sys-
tems, this problem is particularly large in PDMS. The data is passed through
numerous mappings, each of which can decrease data quality by cumulative pro-
jections and selections.

In general, information quality (IQ) is an important discriminator of data
sets. Here, content-related IQ-criteria are of major interest, including accuracy,
relevancy, and completeness. Due to their autonomy, local sources at peers are
likely to show quite different information quality. For this reason, consideration
of information quality in query answering for PDMS consisting of a large number
of peers is an important problem. In this paper we concentrate on the IQ criteria
coverage and density, which together form an overall completeness measure for
data sources and query results [4]. Current query planning algorithms, such
as [2], find all certain answers to a query. This is not feasible in a web-scale
PDMS: The search space becomes enormous and query plans become very long,
increasing chance of information loss along the paths. In this paper we propose
methods to free PDMS from this restriction and relax the notion of completeness
turning it into an optimization goal instead.

Example 1. Consider the simple PDMS depicted on the left in Fig. 1. Its peers
share a single relation Book. However, peer P3 only exports four attributes,
whereas the others provide two additional attributes, which are projected out
by mappings. Furthermore, the mappings between the peers are annotated with
selectivity scores, representing selection operations at the mappings. They are a
measure for the fraction of data provided by the peer at the mapping head that
is expected to be transferred via the mapping, e.g., the mapping from P2 to P3

removes all but 60% of the tuples provided at P3.

To achieve our goal of efficient and effective query answering in large PDMS, this
paper contributes a comprehensive completeness model for peers and mappings
within a PDMS. We show how to calculate completeness scores for PDMS query
plans. This can be used to improve the search for query plans providing high
completeness by pruning mappings which show considerable loss of information.
Furthermore, our completeness-aware query planning algorithm needs no central
catalog, thus leaves maximum autonomy to the peers.

The remainder of the paper is organized as follows. The completeness model
for PDMS is introduced in Sec. 2. Then, we provide a brief overview on query
planning in PDMS in Sec. 3. Our approach to prune subplans is explained in
Sec. 4 and experimentally studied in Sec. 5. Related work is discussed in Sec. 6
and we conclude in Sec. 7.

2 PDMS and Completeness

2.1 Data sources and mappings in PDMS

We formalize a PDMS as a set P = {P1, P2, . . . , Pn} of peers, each of which
comprises local data sources and mappings both to the local sources and to
other peers.
Peers. In general, a single peer can be perceived as a data integration system
consisting of a peer schema S and local data sources. The peer schema describes
data that the peer provides to users, applications, and to other peers. Local data
sources are specified by a set L of local schemas. They are connected to the peer
schema by a set ML of local mappings. Other peers are related to a peer schema
by peer mappings, which form the set MP . In all, each peer is represented by
the four-tuple P = (S,L,ML,MP). We use Datalog notation to express the
relational data model used for schemata, queries, and mappings.
Mappings. Our approach is based on Global-Local-as-View mappings, or GLaV
mappings. Local mappings are of the form QL(L) ⊆ QS(S), where QL and QS

are conjunctive queries. Similarly, a peer mapping Q1(P1) ⊆ Q2(P2) establishes
a relationship between the relations of peer schemas of the two sets of peers P1

and P2. Intuitively, the peer mapping means that Q1 always returns a subset of
the resulting set of tuples of Q2. GLaV mappings in their general form can be
transformed to a combination of a GaV and a LaV mapping with a fresh relation
symbol [2].

Selections play an important role when regarding the completeness of query
results. Selection predicates in mappings express implicit knowledge about peer
schemas. For instance, in writing a mapping to a peer of a company Ford and its
relation Product, one can express that the peer models products of this company
only. A way to express this selection in a GLaV mapping from a peer of a
company AllParts, which offers knowledge about producers of parts, is to insert
a selection predicate: Ford.Product(Name, ID, Supplier) ⊆ AllParts.Part(Name,
ID, Supplier), Supplier = ”Ford”. Also, there may be projections in local and
peer mappings that can affect the completeness of query results. Consider a
mapping from the Part relation of a company Bosch, which includes contact
information, to the peer Ford. Because the Product relation of Ford does not offer
this information, we must use a projection in the mapping: Ford.Product(Name,
ID, Supplier) ⊆ Bosch.Part(Name, ID, -, Supplier).

2.2 Completeness of data sets

In many scenarios, users of large integrated information systems are not inter-
ested in all certain answers, because they are not able to examine them all in

detail. Another constraint to large PDMS is the limitation of resources for query
evaluation and transmission of query results. Facing these restrictions, a user
may be satisfied with a small number of answers of highest quality
Coverage. Extensional completeness, also coverage, describes the proportion of
the size of a tuple set to the number of all tuples stored within a PDMS. The
measure applies both to the data set a peer actually stores and to a query result.

To calculate coverage we make the closed world assumption for the whole
system. Users perceive a PDMS as a single database described by the schema of
the peer. Thus, the size of the world |wQ| referred to by a query Q against this
schema is the number of tuples matching the query that can be reached using
the network of mappings. In practice, however, knowing this number precisely
is not necessary, because it plays only the role of a normalizing factor.

Definition 1 (Coverage). Let DQ be a set of tuples answering a query Q. The
coverage of DQ with respect to a world wQ is c(DQ) := |DQ|/|wQ|.
Density. The intension queried by the user is the set of attributes AQ asked
for in the query. Intensional completeness of data sets, also density, first suffers
from null values in data sources. Secondly, attributes that are mentioned in
the query may not be available at certain data sources in the PDMS. The user
may be nevertheless interested in having tuples in the query result despite their
missing attributes. Values of missing attributes are filled with null values, thus
creating incomplete tuples. Attribute density is used as a measure for this kind
of completeness. The query-dependent density is the arithmetic mean over all
attributes occurring in a query.

Definition 2 (Attribute density). Let aR be an attribute of a relation R. A
projection of a tuple t of this relation to aR is denoted by t[aR]. With ⊥ denoting
null, the attribute density of a tuple set D for R is defined as d(aR) := |{t ∈
D | t[aR] �=⊥}|/|D|.
Completeness. Intuitively, overall completeness can be regarded as an aggre-
gated measure for the ratio of the amount of data in a certain data set to the
amount of data in the world wQ. It is a combination of coverage and density,
which we aim to maximize. In [4] it is shown that the completeness score of a
data set D can be calculated as C(D) = c(D) · d(D) and 0 ≤ C ≤ 1.

3 Query Planning and Completeness

In this section we review a query planning procedure for PDMS and show how
to value peer mappings according to their completeness. The following Section 4
uses this measure to prune poor plans or subplans.

3.1 PDMS query planning

To translate a query, the subgoals are reformulated and passed on along the map-
pings to other peers, which in turn recursively send the query to their neighboring

peers, etc. Reformulation terminates when all branches of recursion have reached
local sources, where the queries can be evaluated on actual data. Clearly, this
process can be performed fully decentrally. To show how the query reformulation
actually uses the mappings between the peers and between the local sources and
the peers, we briefly review the reformulation algorithm of [2].

Creation of the reformulation tree. Consider a query Q posed to some peer.
We aim at a set of query plans, which only contain subgoals representing relations
from local schemas. The answer to Q is the “union” of the results of all these
query plans. The reformulation algorithm published in [2] constructs a so-called
rule-goal tree (Fig. 2 on the left). The goal nodes are formed by (reformulated)

P1.q

Q

P1.Book

P2.Book P3.Book

P4.Book P3.Book

P4.Book

P4.Book

P1.q(Title, ISBN, Author, Year, Publisher, Prize)

P1.Book

P3.BookP4.BookP2.Book

P3.BookP4.Book

P4.Book

s(P1 P2)

s(P2 P4) s(P2 P3)

s(P3 P4)

s(P1 P3)

s(P3 P4)

P3

P3

Goal node

Local source

Rule node

P2

P1

Fig. 2. Rule-goal tree (left) and query plan (right) of our example from Sec. 1. Selec-
tions are represented by the annotated mapping selectivities s.

subgoals to be answered, whereas the rule nodes represent the mappings. The
algorithm continues by expanding leaf nodes using either peer or local mappings.
Depending on the form of the mapping at hand, either a GaV- or a LaV-style
reformulation is performed. In the former case new goal leaves are obtained by
unfolding the view forming the mapping. If the mapping represents a view from
any peer or local source on the schema to which the leaf goal node belongs,
the MiniCon algorithm for answering queries using views is employed [5]. Please
note that this algorithm may be performed fully decentrally by the peers.

Determining query plans. Two approaches are possible to create a query plan.
To achieve first query answers quickly, several query plans may be determined
sequentially in the way shown in [2]. In contrast, if we want to calculate the
overall completeness of the query result, it is more useful to derive a single
overall query plan from the rule-goal tree (Fig. 2). To obtain this single query
plan, we recursively traverse the rule-goal tree. Several outgoing mappings at
a certain goal node lead to a branch in the rule-goal tree. In our query plan
all those subtrees are combined by a union operator. Branching rule nodes are
created by a GaV expansion containing a join. Such a situation is reflected by
a join operation in the query plan. Due to space limitations, we refer to [2] for
transforming LaV expansion into the query plan.

3.2 Completeness of query plans

Intuitively, query reformulation for PDMS is a search problem. During explo-
ration of the search space, we lack information about the completeness contri-
bution of local data sources not reached yet. As a consequence, to intelligently
explore the search space collecting high quality query results, we must decide
which mappings promise to be useful. This leads to the question how mappings
(and the data sources “behind” them) contribute to the overall completeness of
the query result.

In this work, we assume the mappings to include only select-project-join
(SPJ) queries. In the following, we show how to calculate the influence of S, P,
and J operations used in the mappings on the coverage and density of query
results. Additionally, query plans contain union-type operators, which collect
results returned by alternative mapping paths starting from a certain peer.
Influence of selections and projections. Applying a selection σ to a tuple
set of a relation R reduces the set of tuples by a selectivity factor s. Hence, we
can calculate coverage of the selection result as c(σ(R)) = s · c(R). Assuming
that null-values are distributed equally over all tuples, density is not affected by
a selection d(σ(R)) = d(R). If no statistics about s are available, sampling tech-
niques may be employed to assess it (Sec. 7). Note that this selectivity is applied
to the data of the target of a mapping but also on all other sources reachable
through that mapping. This observation is the foundation of our heuristic for
reducing the reformulation effort (Sec. 4).

Without concessions to the completeness of query answers, projection of
query attributes would not be allowed in mappings. Attributes projected out
have to be padded with null-values. Since a projection R[AP], which reduces
the attribute set AR of R to the attribute set AP , leaves the number of tu-
ples of R unchanged, the extensional completeness of the result is not affected:
c(R[AP]) = c(R). In contrast, the query-dependent density value is recalculated
subtracting the density of the set of attributes projected out: dQ(R[AP]) =
dQ(R)−dQ(R[AR \AP]). For simplicity, we assume here that projections do not
reduce coverage, i.e., duplicates generated by projection are not eliminated. We
use this observation in our heuristic to decide which mappings suffer from loss
of information (Sec. 4).

Example 2. Suppose we are given the following mapping between two relations at
different peers with the attribute densities listed thereafter: P4.Book(Title, ISBN,
Author, Year, Publisher, Price) ⊆ P3.Book(Title, ISBN, Author, Year) (Fig. 1).

Title ISBN Author Year Publisher Price
P4 90% 100% 80% 60% 40% 70%
P3 90% 100% 80% 60% 0 0

The attribute densities and the query-dependent density of P4.Book as it is
exported by peer P4 amounts to dQ(P4) = 73%. Due to the two projections in
the mapping (attributes Publisher and Price) the density of the same data set
is perceived at P3 with a value of dQ(P3) = 55%, assuming the query asks for
all attributes. As can be seen, projecting out a third of the attributes reduces

the query-dependent density by about a third in this example. It is important
to note that we do not need any statistics to compare mappings wrt. loss of
completeness due to projections.

Influence of joins. Suppose we are given the tuple sets of the two relations
R1 and R2 together with their respective coverage and density values. We aim
to calculate completeness for the result of the join R1 �� R2. If we assume
independence of the representation of objects, which means that there is no
knowledge about extensional overlap, we can draw the following formulas for
the expected coverage and density from [4], where A denotes the union of the
attribute sets of R1 and R2:

c(R1 �� R2) = c(R1) · c(R2) (1)

d(R1 �� R2) =
1
|A|

∑

a∈A
(dR1(a) + dR2(a) − dR1(a) · dR2(a)) (2)

Influence of unions. In general, the contributions to a goal node’s answer
are not union-compatible. We use the full outerjoin-merge operator � from [4],
which is similar to the “outer union” but allows all common attributes but the
key attribute to have conflicting data values. The following equations provide
the expected coverage and density of a full outerjoin-merge for the case of inde-
pendent data sets:

c(R1 � R2) = c(R1) + c(R2) − c(R1) · c(R2) (3)

dR1�R2(a) =
dR1(a) · c(R1)
c(R1 � R2)

+
dR2(a) · c(R2)
c(R1 � R2)

− dR1(a) · dR2(a) · c(R1 �� R2)
c(R1 � R2)

(4)

Using this, the density of R1 � R2, which comprises the attribute set A is the
arithmetic mean of the attribute densities: d(R1�R2) = 1/|A|∑a∈A dR1�R2(a).
In [4], associativity is shown for the coverage criterion for �� and �; density is
proven to be associative only for independent data sets.
Calculating query plan completeness. Using the means presented in the
previous section, we now can calculate the expected completeness of query plans.
In this way we may compare different strategies for completeness-driven PDMS
query reformulation. Please note that such calculations cannot be performed by
a single peer in a real PDMS, because it is based on global information. Rather,
calculations are accumulated along peers as the reformulated query is passed on.

We pass along between the peers information about the aggregated map-
ping selectivity for every distinguished variable and the accumulated projections.
Clearly, several selections based on the same variable may be aggregated along
a mapping path by multiplying their selectivities, which we assume to be the
result of statistical assessment methods (Sec. 7). If we further assume the vari-
ables of the user query being independent of each other, their respective mapping
selectivities can also be aggregated by multiplication. The main idea of our algo-
rithm to calculate the query plan completeness is to traverse the rule-goal tree
recursively in the same way as for single query plan creation (Sec. 3.1), and to
combine the completeness scores on the way back starting with the given values

at the leaf nodes, which represent only local sources. Combinations of coverage
and density scores of subtrees are required at the occasions highlighted below.
Coverage and density scores of data originating from the local sources are de-
creased by selectivities and projections in the mappings on the path to a certain
peer. If every goal node returns its coverage and density based on the user query,
we can calculate the coverage and density the receiving peer perceives using that
peer’s aggregated mapping selectivity and projections for the path from the peer
to the root of the rule-goal tree.
Branching goal nodes. In this case we use the results from the rule node chil-
dren, which are coverage scores referring to the goal node’s peer. As in query plan
creation we must perform a union and thus may use Equation (3) to calculate
the resulting coverage. Attribute densities are calculated using Equation (4).
Branching rule nodes. To calculate the coverage scores of rule nodes, we use
the results from the underlying goal nodes. As a branching rule node is created by
a join in a mapping, Equation (1) can be employed to determine the resulting
coverage. In the last step we multiply with the mapping selectivity s(m) to
return the coverage score of the data the above peer actually receives. With x
denoting a distinguished variable of the user query occurring in the mapping
m, the mapping selectivity is s(m) =

∏
x∈m sx(m). We use Equation (2) to

propagate the attribute densities.
Our algorithm captures LaV expansions as well, but for brevity we omit this

description. When our recursive algorithm reaches the root of the rule-goal tree
we can calculate the query dependent density and, finally, the completeness of the
query. We summarize the set of statistics we assume a peer should maintain in
our PDMS setting: (i) Coverage and attribute densities for all local data sources,
(ii)Selectivities for all selection predicates in outgoing peer mappings, and join
selectivities for outgoing mappings that contain joins over different peers.

4 Pruning Subplans

The rule-goal tree typically becomes very large and shows a high branching
factor even for relatively small PDMS with tens of peers [6]. Therefore, handling
queries in web-scale PDMS using the algorithm from Sec. 3.1 is not feasible. To
keep query reformulation in PDMS tractable for large PDMS, e.g., for semantic
web applications [7], it is crucial to optimize both query planning and evaluation
to reduce latency and determine first answers quickly.

To meet these problems, we exploit the influence of mappings on the query
results to decide which mapping paths are not worth following or may be de-
ferred. Our approach tries to identify mapping paths that preserve potential
completeness of the intermediate query results “behind” these mappings. In gen-
eral, during the query reformulation phase a peer has no knowledge about the
completeness of data it will receive during query evaluation. In the rule-goal tree
this fact is expressed by having subgoals of local sources only at the leaves of
the tree.

If we want to avoid coordination between peers about completeness of in-
termediate query results, only the “completeness” of peer mappings may be
exploited to prune the search space. We build on the results from Sec. 3.2 to
characterize the influence of mappings on the completeness of query results in
the PDMS context. In particular, we introduce a heuristic to either prune the
search space or defer expansion of certain mappings to determine the first an-
swers showing high completeness quickly. Because query reformulation is done
recursively, every mapping that needs not be used potentially saves consideration
of many more mappings later. Additionally, in a highly interconnected PDMS
the probability that for a certain mapping path there are alternatives with less
loss of information is considerable. In Sec. 5 we present experiments showing this
effect.
Using selections and projections. Selections not overlapping with the user
query may significantly reduce the amount of data transported by a mapping.
Based on this observation we propose the following strategy for completeness-
based query reformulation in PDMS: If a goal node is related to several mappings
that can be used for expansion, we order them by their selectivity, favoring less
selective mappings. To break ties, we additionally regard projections, favoring
mappings with less projections. In a simple strategy, we only use a threshold
for a normalized measure combining selectivity and the number of variables
projected out to decide which mappings to follow and which to prune (Fig. 2).
This strategy is fully decentral, i.e., no coordination between peers is needed at
all. However, we lose answers. That is why this approach requires a trade-off
between cost and benefit of the answer, which conforms to the concession to the
completeness of query answers in large PDMS described above.
Using joins. Assessing the impact of joins on the coverage of (intermediate)
query results is more subtle. There may be situations where very small join hit
rates between the relations to be joined lead to considerable loss of information.
In such cases it is desirable to have alternative mapping paths that may help to
exploit more data from the join partners. The following example illustrates such
a situation.

Example 3. Regard the PDMS on the right of Fig. 1. The relation Part models
parts of technical products having attributes, such as name, identifier, social
security number and name of the responsible person, and the supplier. Person is
a simple list of persons that are referenced by the foreign key RespPersonSSN.
Assume that P1 is queried on parts of a certain supplier.

We consider a situation where the overlap between P3.Part and P4.Person
is very small compared to the size of both relations. As a consequence, the
join P3.Part �� P4.Person filters out all parts from P3 where the corresponding
author is not included in P4.Person. It follows that P2.Part may offer only a small
fraction of parts stored at P3. However, our query posed to P1 does not ask for
responsible persons. Hence, with respect to the query, the join performed at P2

loses most of the “coverage” available at P3. In recognizing this situation query
reformulation could decide not to expand the goal node representing P2.Part.
Here, this would not affect coverage of the final query result, because there is

an alternative mapping from P1.Part to P3.Part, which may help to retrieve all
parts at P3.

As a conclusion from this example we propose a look-ahead strategy to handle
joins between peers: (1) Check if the query to be answered requires to perform
the join. (2) If so, try to assess the information overlap between the join rela-
tions. (3) If the loss of coverage is above a certain threshold, prune or defer the
expansion performing the join. (4) If the joined peer that contributes tuples to
the query result (P3 in the example) can be reached on an alternative mapping
path, finalize the decision of the last step. Observe, that this approach requires
coordination between a small set of peers.

5 Experiments

Due to the complex structure of PDMS the effect of most algorithms and strate-
gies can be validated only experimentally. Our PDMS implements the pruning
strategy exploiting selections and projections in the peer mappings. The query
reformulation is simulated on a single computer. However, we note that this does
not imply any restrictions compared to a fully decentral query reformulation on
multiple sites. In our experiments every peer covers only 5% of the size of the
world. The following table lists the data sets and their characteristics:

Peer schema #Peers rank
P1 Single relation 10 5.7
P2 Single relation 30 3.4
P3 Heterogeneous 50 2.5

Measurements. Alternative paths in highly interconnected PDMS lead to a
quite strong convergence of the completeness to the final result, as can be seen
in Fig. 3 on the left (solid line). There, the final coverage value is almost reached
after about half of the cost for obtaining all answers has been spent. This means
that in the second half of the query reformulation phase many mapping paths
are exploited that are expected to contribute almost nothing to the final result.
We use our approach of threshold-based pruning of mapping paths. Regard the
results depicted on the left in Fig. 3. They show that pruning of mappings
containing selections with medium selectivities (11% of all mappings concerned,
dashed line) may still yield the same completeness as without pruning, but at
half of the cost compared to the experiment without pruning. Moreover, if we
choose an even stronger pruning condition (33% of all mappings concerned), the
cost decreases to 10 times less than without any pruning. The results for the
dataset P2 are displayed on the right in Fig. 3. It also shows a cost reduction of
more than an order of magnitude along with improved completeness at any time
during query reformulation. In this experiment maximally 20% of all mappings
fell under the pruning condition. With the heterogenous PDMS P3 we yield
similar results. There, about 10% of all mappings include selections and a fourth
projects out some attributes. We pruned all mappings which are expected to lose
more than a third of the data of the peer at their head (34 prunings and 1175

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500

C
o
m
p
le
te
n
e
s
s

Cost (#mappings used)

without pruning
moderate pruning
strong pruning

Peer005 :
Peer

LS001_1 :
LocalSource

LS005_1 :
LocalSource

LS004_1 :
LocalSource

LS003_1 :
LocalSource

Peer0 06 :
Peer

LS006_1 :
LocalSource

Peer007 :
Peer

Peer008 :
Peer

Peer009 :
Peer

Peer010 :
Peer

LS007_1 :
LocalSource

LS008_1 :
LocalSource

LS009_1 :
LocalSource

LS010_1 :
LocalSource

Peer0 04 :
Peer

Peer003 :
Peer

Peer001 :
Peer

LS002_1 :
LocalSourcePe er 002:

Pe er

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
o

rm
a

liz
e

d
 c

o
s
t

no pruning

moderate pruning

strong pruning

P1 P2 P3

Fig. 3. Results and topology of P1 under different pruning thresholds and cost reduc-
tion. Normalized cost are based on the cost for using all mapping paths. Notice that
ending graphs indicate a cost reduction (explicitly depicted on the right).

reformulations in total) while still achieving 100% completeness. Observe that
pruning has to be applied with care: As depicted in the left-most graph in the
left diagram in Fig. 3 very strong pruning can lead to a significant reduction of
query answer completeness. Of course, choosing suitable pruning thresholds is a
matter of experience. We believe that statistics about query answers could help
(Sec. 7). In summary, our experiments clearly show effectiveness and considerable
efficiency gains by applying a rather simple IQ-based pruning of the search space.

6 Related Work

In this section we review the PDMS literature under the aspects of informa-
tion quality and efficiency of query answering. The mediation between schemas
of a PDMS is the main concern of Piazza [2]. Concessions to the complete-
ness of query results are mentioned, but not discussed in detail. New algorithms
usable for safe pruning during query reformulation are contributed in [6]. How-
ever, they are independent from information quality, which according to the
authors remains an open challenge. Additionally, this pruning approach involves
non-local coordination between peers, whereas our mapping-based strategy is
strictly local to autonomous peers. The Semantic Gossiping approach of Aberer
et al. uses cycles in mapping networks to examine loss of information [1]. That
is, instead of explicitly modeling completeness as in our approach, the authors
use instance sampling to assess information quality criteria. The authors use a
simple data model and mappings only between attributes and without selection
queries. Calvanese et al. [3] propose new semantics for PDMS based on epistemic
logic, which leads to general decidability. In this semantics only consistent facts
are exported by a peer. However, the “weaker” logic loses some of the answers
compared with our first order logic approach. In Edutella, semantic overlay net-
works consist of clusters of semantically “similar” peers [8]. This approach does
not utilize arbitrary mappings between peer schemas. According to [9], inaccura-
cies and uncertainties in mappings are an important research perspective, which
we have not adopted yet.

7 Conclusions

Peer data management systems offer a decentralized and dynamic infrastruc-
ture to share heterogeneous data between autonomous peers. To scale PDMS
to a large number of peers it is crucial to optimally trade-off between the cost
of query execution and the benefit of the query answers. We presented a solu-
tion for PDMS query reformulation that exploits completeness characteristics of
mappings between peers. First, we described the influence of GLaV mappings
on the completeness of query answers. Next, we introduced a fully local strategy
to prune those mappings that have a high expected information loss based on
statistics. Using experiments, we highlighted the the minimal completeness loss
during query reformulation and showed the feasibility of our approach. In sum-
mary, quality based exploitation of mappings may yield efficiency gains of up to
an order of magnitude. Gathering statistics in the PDMS context, relaxing the
assumptions of independent variables and equal distribution of null values, and
a detailed cost model containing network transfers are major challenges for fu-
ture work. Moreover, we aim to refine our search strategy for query reformulation
in presence of limited resources.
Acknowledgments. We want to thank Stefan Winkler for helpful discussions.
This research was supported in part by the German Research Society (DFG
grant no. NA 432).

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent se-
mantics through gossiping. In: World Wide Web Conf. (WWW). (2003)

2. Halevy, A.Y., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data
management systems. In: Conf. on Data Engineering (ICDE). (2003)

3. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical foundations of
peer-to-peer data integration. In: Symposium on Principles of Database Systems
(PODS). (2004)

4. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information
sources. Information Systems 29 (2004) 583–615

5. Pottinger, R., Levy, A.Y.: A scalable algorithm for answering queries using views.
In: Conf. on Very Large Databases (VLDB). (2000)

6. Tatarinov, I., Halevy, A.: Efficient query reformulation in peer data management
systems. In: Conf. on Management of Data (SIGMOD). (2004)

7. Heese, R., Herschel, S., Naumann, F., Roth, A.: Self-extending peer data man-
agement. In: Conf. Datenbanksysteme in Business, Technologie und Web (BTW),
Karlsruhe, Germany (2005)

8. Löser, A., Nejdl, W., Wolpers, M., Siberski, W.: Information integration in schema-
based peer-to-peer networks. In: Conf. on Advanced Information Systems Engineer-
ing (CAiSE). (2003)

9. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and rea-
soning about mappings between domain models. In: Proc. of the National Conf. on
Artificial Intelligence (AAAI). (2002)

