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Abstract

Duplicate detection, which is an important subtask of data
cleaning, is the task of identifying multiple representations of a
same real-world object. Numerous approaches both for relational
and XML data exist. Their goals are either on improving the qual-
ity of the detected duplicates (effectiveness) or on saving compu-
tation time (efficiency). In particular for the first goal, the “good-
ness” of an approach is usually evaluated based on experimental
studies. Although some methods and data sets have gained pop-
ularity, it is still difficult to compare different approaches or to
assess the quality of one own’s approach. This difficulty of com-
parison is mainly due to lack of documentation of algorithms and
the data, software and hardware used and/or limited resources not
allowing to rebuild systems described by others.

In this paper, we propose a benchmark for duplicate detection,
specialized to XML, which can be part of a broader duplicate de-
tection or even data cleansing benchmark. We discuss all neces-
sary elements to make up a benchmark: Data provisioning, clearly
defined operations (the benchmark workload), and metrics to eval-
uate the quality. The proposed benchmark is a step forward to
representative comparisons of duplicate detection algorithms. We
note that this benchmark is yet to be implemented and this paper
is meant to be a starting point for discussion.

1. Motivation

Duplicate detection is an important subtask of data clean-
ing [16], whose aim is to identify multiple but possibly inconsis-
tent representations of a same real-world object. It is of practical
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relevance in important and business-relevant applications, such as
data warehousing, data mining, or data integration. The problem
has been studied extensively under various names, such as record
linkage [26], merge/purge [17], entity resolution [5], or reference
reconciliation [15], to name but a few. The proposed algorithms
most often improve either efficiency or effectiveness. In the first
case, the goal is to reduce the number of pairwise comparisons,
which is quadratic in the number of elements if all pairs are com-
pared. However, duplicates may be missed when pruning compar-
isons. The goal of such algorithms is to improve efficiency without
reducing effectiveness. Representatives of algorithms concerned
primarily in efficiency are the Sorted Neighborhood Method [17],
its domain independent version [18], or DELPHI [1]. When con-
centrating on effectiveness, the goal is to find duplicates more ac-
curately, e.g., using approaches such as [15, 24].

As numerous approaches exist both for increasing efficiency
and effectiveness, it is essential to provide some common ground
to compare these algorithms with each other. Some data sets (e.g.,
CORA1 used in [15, 24, 8] or selected subsets of the Internet
Movie Database IMDB2 [14, 25]) have gained popularity. How-
ever, the state of the art does not allow representative comparisons
between algorithms yet, for the following main reasons3.

• Lack of algorithm documentation. Many duplicate detec-
tion algorithms are described in scientific papers only, and
often a 12 page publication cannot cover all details and as-
pects of an approach. When it comes to re-implementing
an existing method, the information provided in a paper is
often insufficient.

• Different testing environments. When own results are
compared to results reported in a paper, the different test-
ing environments may falsify the comparison. That is, when
measuring time, the results are only comparable if the hard-
ware and the software are the same. Again, these parame-
ters are often not documented and even if they are, chances

1http://www.cs.umass.edu/~mccallum/data/
cora-refs.tar.gz
2http://www.imdb.com
3While the following bullets criticize what has become common
practice in publications and research, we do not exempt ourselves
from some of the misdoings.



are that the systems are not the same, and we cannot up-
or downgrade systems every time we want to compare our
results with others.

• Lack of common dataset. Freely available and simulta-
neously interesting datasets for duplicate detection are rare.
Even more seldom are datasets with true duplicates already
marked. As a consequence, even if same or similar datasets
were used, the results expressed as precision, recall and run-
time measure are not comparable: Two approaches might
not agree in what is a correctly detected duplicate and how
many duplicates are in fact hidden in the dataset.

To confront these problems, many publications create their
own data sets, inject duplicates and then let their duplicate
detection algorithm find them. Often these generators of
data are not freely available for legal reasons or simply be-
cause the original code is lost once the programmer leaves
the organisation.

• Obscure methodology. Comparing results to published
results is further problematic, because many approaches
"‘fudge"’ the original data to meet their needs. In papers,
we may read sentences like "We further cleaned [a com-
monly used data set] up by correcting some labels" or "we
used the technique [X]" without mentioning how X’s tun-
able parameters are set. In such cases, the methodology is
not reproducible, an essential property if we want to com-
pare approaches.

In this paper, we propose a benchmark for duplicate detection
that alleviates the above problems as follows:

• Standardized data. By applying different duplicate detec-
tion approaches on the same data, comparing efficiency or
effectiveness of different approaches is easy. The proposed
benchmark proposes data from several different domains.
For the artificially generated data the size of the data and
error characteristics can be varied in order to evaluate algo-
rithms under varying settings. For the real-world data we
merely characterize their properties.

• Clearly defined operations and metrics.The problem of
lacking documentation about algorithms and experimental
methodology is alleviated by defining operations that an al-
gorithm may perform, as well as some clearly defined met-
rics to evaluate the results of these operations. Our bench-
mark proposal supports several variants of the duplicate de-
tection problem. For example, the benchmark considers
both detection of duplicate pairs as well as detection of du-
plicate clusters. Another example is the distinction between
duplicate detection as a batch process or duplicate search.
Results are then evaluated using a set of metrics.

• Central processing.We envision that the benchmark is ex-
ecuted on a central server to which a duplicate detection al-
gorithm can be submitted, which in turn will be executed on
the server. This way, the testing environment is guaranteed
to be the same across different approaches.

The duplicate detection benchmark proposed in this paper fo-
cuses on XML data because the XML data model is less restric-
tive than for instance the relational data model, which makes some
problems in duplicate detection even more difficult. Nevertheless,

duplicate detection algorithms focusing on flat relational data can
use the benchmark, because it can produce flat XML data that eas-
ily maps to relational data.

Our proposed domains and datasets are described in Sec. 2.
Then, we define the operations supported by our benchmark in
Sec. 3. Sec. 4 summarizes metrics used to evaluate the perfor-
mance of the algorithms. Tools supporting the benchmark are de-
scribed in Sec. 5. Related work is summarized in Sec. 6 before we
conclude and point out future work in Sec. 7.

2. Domain and Data

A key point to any data management benchmark is the choice
of a suitable data set that is representative of real world data and
the tasks to manage, here duplicate detection. In comparison to
benchmarks for the efficiency of database systems the choice of
data for a duplicate detection benchmark is even more important:
While speeding up a database is a purely syntactical task, whose
boundaries can be tested by simply producingmoredata, duplicate
detection is a semantic task, i.e., a task that can only be solved by
understanding (or guessing at) themeaningof data. Its boundaries
can only be tested by producing moredifficult data. In the fol-
lowing sections we elaborate on the domain the data of an XML
benchmark might come from, on the actual data set and if neces-
sary how to generate it, and finally on the types and numbers of
duplicates in the data.

2.1 Domain

The choice of domain for the XML benchmark should reflect
the usage of XML data in today’s applications. Therefore, we rec-
ommend to use domains from real-world applications for bench-
marking. Using real-world domains allows to generate or use data
that has similar characteristics to real-word data from that domain.
Another criterion for selecting a domain is the understandability of
the data. Indeed, we have seen that duplicate detection is a seman-
tic task, so understanding the data one is working on is crucial.

As data generation according to different criteria is part of the
benchmark we envision, we first consider domains where data gen-
erators are readily available. More specifically, we consider the
following domains used by the XML benchmarks XMach-14 [6]
and XMark5 [23]. Furthermore, to support benchmarking of ap-
proaches focusing on flat relational data, we use the popular do-
main of customer relationship management.

• XMach-1simulates a web application, a typical use case of
an XML data management system. The system architecture
consists of an XML database, application servers, loaders
to populate the database, and browser clients. In this do-
main, the XML data populating the database contains both
document-centric and data-centric XML documents.

• XMark models an auction website as a typical e-commerce
application. Here, the XML documents in the database
model the auction web site and include descriptions of
items, open auctions, closed auctions, persons and cate-
gories.

4http://dbs.uni-leipzig.de/en/projekte/XML/
XmlBenchmarking.html
5http://monetdb.cwi.nl/xml/



• Customer Relationship Managementmodels data that com-
panies store about their customers, e.g., addresses, products
bought, ...), needed for analysis, business reports, customer
care, etc.

In addition to the above domains for which artificial data can
be generated, we consider two other domains for which real-world
data is available.

• Digital libraries: This domain models an on-line digital li-
brary that stores information about publications (e.g., au-
thors, title, conference, proceedings). An example for such a
digital library is DBLP6, where the actual data can be down-
loaded as XML. Here, duplicates stem from multiple input
of data about the same object.

• Movie databases: This domain models data related to
movies and CDs. The scenario involves several repositories
of information about movies, similar to the Internet Movie
Database (IMDB). Here, duplicates typically stem from dif-
ferent sources whose integration brings about the duplicates.

We include several different domains in our benchmark to have
the possibility to test algorithms on various types and “difficulties”
of data.

2.2 Data

Depending on the domain chosen for evaluation, the data dif-
fers. For the XMach-1 and XMark domain, we intend to use data
produced by their respective XML data generators. For the dig-
ital library and the movie domain, both artificially generated and
real-world data is provided by the benchmark.

As mentioned earlier, we focus on XML data but the bench-
mark also offers the possibility to evaluate duplicate detection al-
gorithms for relational data. Hence, both variants need to be pro-
vided by the benchmark. More generally, the data provided by
the benchmark allows users to experiment on different structures:
from flat and same structure for all elements as in relational data
to deeply nested and scarcely or heterogeneously structured data.

XML content is produced by the XMach-1 and XMark data
generators when the respective domain is chosen. Advantages of
using these domains and data are that (i) the XML structure is
close to a real-world structure, (ii) data generation scales to large
amounts of data, and (iii) data is easily generated with already
existing tools. However, the text content is not necessarily rep-
resentative of the domain. For instance, in the XMark bench-
mark where auction data is modeled, the actual text data origi-
nates from Shakespeare’s plays. This is certainly acceptable for
XML database benchmarks, but for XML duplicate detection, the
actual data values play a more important role. Hence, we plan to
offer data of the library and movie domain to create more realistic
data. A method to achieve this is to collect lists of names, titles,
and other data from the real-world domain (e.g., from DBLP or
IMDB), and to create data by randomly combining values of these
lists. Additionally, the creation of standardized relational CRM
data can be achieved with the UIS Database Generator7.

6http://www.informatik.uni-trier.de/~ley/
db/
7written by Mauricio Hernández and available at
http://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz

To evaluate efficiency and scalability of an approach, the size
of the input data needs to be variable by some scale-up factor. The
data generators of the existing XML benchmarks and the one we
envision to create bibliographical and movie data allow the cre-
ation of small to large documents by varying the number of ele-
ments in the XML files.

In addition to efficiency and scalability, the quality of the result
of duplicate detection needs to be measured. This requires “dirty”
data as testing data, a property difficult to implement, as discussed
next.

2.3 Data contamination

Data contamination refers to the type and number of duplicates
within the data. An XML duplicate detection benchmark should
have two modes of contamination: first, existence of duplicates
that are already part of the real world data set, and second, inser-
tion of duplicates into the data set given a set of parameters. Both
modes are difficult to implement.

Existing duplicates. A contaminated XML data set from the
real-world might already contain duplicates. The difficulty of im-
plementing the benchmark using this kind of data and contamina-
tion is to actually find and mark these duplicates. Without such a
pre-analysis of the data one cannot evaluate precision and recall
of a duplicate detection algorithm. To actually determine all true
duplicates in a data set without relying on approximate algorithms,
one must manually compare all pairs of objects and determine
whether they are duplicates—a tedious and possibly error-prone
task.

We are currently developing and testing a tool, calledManDup
for manual duplicate detection, which supports persons in the pro-
cess of manually iterating through all pairs of objects and their
decision if the pair is indeed a duplicate. Each pair is analyzed by
at least two persons and there is the possibility to defer the decision
to a domain expert.

Inserting duplicates. Artificially contaminating a data set on
the other hand gives at least the knowledge of all duplicates, as-
suming the data set was clean from the outset. Here the challenge
is to determinehow to create duplicates,how manyto create, and
whereto place them in the data set. We consider the following
types of data contaminations when duplicating objects (some con-
tamination types can be combined with others).

• Exact duplicates: No change is made to the duplicated ob-
ject.

• Contradictory text: Text includes text nodes and attribute
values and is considered contradictory if two or more text
values exist and are different. Contradictory text is for ex-
ample caused by typographical errors, synonyms, abbrevia-
tions or incomplete text.

• Missing data: Missing data refers to missing structural data
(elements and attributes) as well as to missing textual data
(text nodes and attribute values).

• Wrong referential constraints: Key references may point to
keys that do not actually represent the related entity.

• Different structure: The text remains the same but structure
is changed by renaming labels, by changing the order of
subelements, and by moving subelements across levels of
the hierarchy.



Contamination Type How Where
Exact duplicates Exact copy of an element Applied on instance of a specified element type.

The original element and the copy are assigned Duplication of an instance occurs with a specified
a common identifier to identify them as duplicates. probability. The maximum number of duplicate is

parameterized as well.
Duplicates can be inserted
1. after the original.
2. at a random offset of the original.
3. at the beginning or at the end of the document.

Contradictory text Insert, delete, swap, or replace specified number In text of an instance of a specified element type.
of characters in text. The contamination (insert, delete, ...) is applied on

a generated duplicate with a specified probability.
Missing data Delete text or element. Applied on an instance of a specified element type.

Deletion is performed on a generated duplicate with
a specified probability.

Wrong referential Change, add, delete reference element. Specified on a referencing element type.
constraints Reference is contaminated on generated duplicate

with a specified probability.
Different structure Element names are contaminated similarly Rename is performed on an instance label of a

to text contamination (insert, delete, swap character). specified element type with a specified probability.
Order of sibling elements is changed by swapping Swapping siblings occurs with a specified probability
siblings. and requires the specification of the element type.
A subelement is moved up in the hierarchy and replacesChanges in the hierarchy are parameterized by a
an ancestor. probability, the element type, and the number of

levels an element of that type is shifted upwards.

Table 1. Contamination of Duplicate Elements

In Tab. 1 we describe how these types of contaminations can be
implemented and where they are introduced. Basically, contami-
nation is applied on user-specified element types with a specified
probability. Duplicate elements are created as copies of elements
in the clean data, and the other contaminations are only applied on
these duplicated elements. A sample specification of a contamina-
tion could read like this. Movie elements should be duplicated at
most three times with a probability of 50 %. These duplicates con-
tain the following errors: (i) the actor names include a character
swap with a probability of 30 %, and (ii) actor elements are miss-
ing with 30% probability. (iii) In 10 % of all cases, references to
production studios are corrupted, meaning deleted (80% probabil-
ity) or swapped (20% probability). (iv) Structure is contaminated
by swapping characters of<title> with a probability of 50 %.
Considering the movie element shown in Tab. 2, a contaminated
version according to the above definitions could be the XML ele-
ment of Fig. 3, in the event that all contaminations apply on this
particular duplicate.

Using data generated according to our proposal, the benchmark
can ask duplicate detection algorithms to solve several different
tasks, which we describe next.

<movie>
<title> Troy </title>
<actor>Pitt</actor>
<actor>Bana</actor>
<actor>Cox</actor>
<prodCom>

refWB
</prodCom>

</movie>

Table 2. Duplicate Contamination Example

<movie>
<titel> Troy </titel>
<actor>iPtt</actor>

<actor>Cox</actor>
<prodCom>
refRP

</prodCom>
</movie>

Table 3. Duplicate Contamination Example

3. Benchmark Tasks

As duplicate detection approaches specialize on different as-
pects, our XML duplicate detection benchmark supports several
tasks (the “workload”), as given in Tab. 4. The different tasks are
described in more detail in the following subsections.

3.1 Pairs vs. Cluster

The goal of duplicate detection is to identify multiple repre-
sentations of a same real-world object. Clearly, the number of
representations is not limited, therefore, the final goal is to identify
clusters of duplicates. Two techniques have been used. Algorithms
such as [17, 20] detect duplicates pairwisely and then cluster du-
plicate pairs by computing the transitive closure over these pairs.
Opposed to that, algorithms such as [5, 12] apply clustering algo-
rithms to directly identify clusters of duplicates, i.e., they skip the
intermediate step of finding duplicate pairs. The benchmark we
propose in this paper supports both the task of pairwise duplicate
detection and of clustered duplicate detection:



Task name Description
Pairwise d.d.∗ Detects pairs of duplicates.
Clustered d.d. Detects clusters of duplicates.

Batch d.d. Detects all duplicates in a source.
Duplicate search Detects duplicates to a particular element.

Algorithm-centric Concentrates on efficiency, given a
similarity measure.

Similarity-centric Uses a provided comparison algorithm to
focused evaluate a similarity measure.
Mixed focus Detects duplicates without using any

provided technique.
∗d.d. = duplicate detection

Table 4. Task overview

Task 1 Pairwise duplicate detection: Within a given data set find
duplicate pairs such that all pairs within a cluster are detected.
For instance, consider duplicatesa, b, andc, the pairs to detect as
duplicates are(a, b), (a, c), and(b, c).

Task 2 Clustered duplicate detection: Within a data set find du-
plicate clusters such that (i) all elements within a cluster are true
duplicates and (ii) no true duplicates span two different clusters.

3.2 Batch vs. Search

Duplicate detection can be considered as batch process, where
all pairs of duplicates are determined in a single process (e.g., [22,
24]), or it can be considered a search problem, i.e., given a partic-
ular element, find its duplicates in a given data set (e.g.,[10, 11]).
The latter is particularly important to support during data input,
so that users can warned of a possibly existing entry for the par-
ticular real-world object. For batch duplicate detection, both pair-
wise and clustered duplicate detection are possible. For duplicate
search, the goal is to find a subset of elements in a data set that
includes all duplicates of the searched element and excludes any
non-duplicate.

Task 3 Batch duplicate detection: Find all duplicate pairs or
clusters in a data set.

Task 4 Duplicate search: Given an elemente, find duplicates ofe
in a given data set. The result is expressed as a cluster of dupli-
cates. That is, ifP = {p1, ..., pn} is the set of positive matches
returned by the search, then the result is{e, p1, ..., pn}.

3.3 Efficiency vs. Effectiveness

As mentioned earlier, approaches generally concentrate either
on efficiency or on effectiveness. Depending on the goal of the
algorithm, we propose different tasks. When the primary goal is
to increase efficiency, our benchmark provides a given similarity
measure to the algorithm, so that no effort needs to be put into
developing the similarity measure. Effectiveness can be increased
using various techniques, e.g., new similarity measures [1, 25] or
new algorithms [15, 24]. In the first case, comparability is ob-
tained by applying the novel similarity measure to a reference al-
gorithm, whereas in the second case, it is possible to use a readily
available similarity measure provided by the benchmark. Essen-
tially, depending on the goal of the algorithm, one of the tasks
defined below can be used.

Task 5 Algorithm-centric. Apply duplicate detection algorithm
using a similarity measuresim provided by the benchmark.

Task 6 Similarity-centric. Using a reference comparison algo-
rithm, apply similarity measure for comparisons.

Task 7 Mixed focus. Neither similarity measure nor algorithm
are provided by benchmark.

4. Metrics

The results obtained for one of the above operations must be
evaluated using clearly defined metrics. Effectiveness is most
commonly evaluated using precision, recall, and the f-measure. As
for efficiency evaluation, both the number of comparisons (com-
putational complexity) and the observed runtime can be used.

4.1 Metrics for Effectiveness

To measure effectiveness, we distinguish metrics that apply to
duplicate pairs and metrics used to evaluate approaches that detect
duplicate clusters.

Metrics for duplicate pairs. Pairwise duplicate detection is eval-
uated using recall, precision and f-measure. They have been used
extensively to evaluate duplicate detection algorithms and origi-
nate from information retrieval [2]. Basically, the goal is to obtain
high precision for high recall, resulting in a high f-measure.

Opposed to information retrieval, duplicate detection ap-
proaches do not provide a ranking or order of duplicate pairs as
their output, but merely thesetof duplicate pairs. Thus, precision
and recall of only the final result can be computed. While some ap-
proaches do provide a ranking function, e.g., a similarity score or a
confidence for duplicates, the benchmark requires to also produce
a threshold. This similarity threshold ultimately decides upon the
result set of duplicates.

Definition 1 Set definitions for pairs. Let Sall =
{(e1, e

′

1), ..., (en, e′n)} be the set ofall duplicate pairsin a
data set. A duplicate detection algorithm detecting pairs of
duplicates returns a set ofpositivesSpos = {(ei, e

′

i)...(ej , e
′

j)}.
Then, the setStrue of true positivesis defined asStrue =
{(ei, e

′

i)|(ei, e
′

i) ∈ Spos ∧ ((ei, e
′

i) ∈ Sall ∨ (ei, e
′

i) ∈ Sall)}.

Metric 1 Recall. Recall is the fraction of true positives over all
duplicate pairs.

Recall =
|Strue|

|Sall|

Metric 2 Precision. Precision is the fraction of true positives
over positives.

Precision =
|Strue|

|Spos|

If Spos is empty, precision is set to 0.

These metrics are applicable both on pairs resulting from
batch duplicate detection, as well as pairs resulting from duplicate
search.



Metric 3 F-measure. The f-measure is the harmonic mean be-
tween recall and precision.

F − measure =
2

1

recall
+ 1

precision

Metrics for duplicate clusters. To evaluate approaches that
find duplicate clusters, we again use recall, precision, and the f-
measure. Whereas the formal definitions for recall, precision, and
f-measure remain unchanged, the sets considered in the formulas
are different.

Definition 2 Set definitions for clusters.LetSall be the set ofall
duplicate clustersin a data set, such that no two clusters contain
duplicates of the same entity and all elements in a cluster are du-
plicates. A duplicate detection algorithm detecting duplicate clus-
ters returns a set ofpositive clustersSpos = {C1...Cn)}, where
Ci is a set of elements and corresponds to a duplicate cluster.
We define two clustersC = {e1, ..., ek} and C′ = {e′1, ..., e

′

k}
as equal if for all ei ∈ C, 1 ≤ i ≤ k there exists exactly
oneej ∈ C′, 1 ≤ j ≤ k such thatei = ej . Then, the setStrue of
true positivesis defined asStrue = Sall ∩ Spos

Using the above definitions of recall and precision for cluster-
ing algorithms is strict in the sense that a clusterCP ∈ P needs to
exactly match a cluster withinCD ∈ D in order to be considered
as true positive. That is, in cases where clusters are incomplete
or contain some non-duplicates the metrics are overly pessimistic.
For example, consider

Sall = {(a1, a2, a3), (b1, b2, b3)}

and

Spos = {(a1, a2, a3, b1), (b2, b3)}

Using the above definitions, recall and precision both equal0. We
address this issue by considering a cluster as a set of pairs. More
specifically, a cluster {a,b,c} consists of three pairs, namely {(a,b),
(a,c), (b,c)}. Once clusters have been divided into pairs, recall and
precision as defined on pairs is applied for evaluation. Considering
the above example, we obtain

S
pairs

all = {(a1, a2), (a2, a3), (a1, a3), (b1, b2), (b2, b3), (b1, b3)}

and

Spairs
pos = {(a1, a2), (a2, a3), (a1, a3), (a1, b1), (a2, b1), (a3, b1),

(b2, b3)}

This results in a precision of4
7

at a recall of2
3
.

We considered other measures for evaluating duplicate cluster-
ing approaches, includingentity dispersionandcluster diversity
proposed in [4]. However, as pointed out by Chen et al. [12],
these metrics do not always reflect the quality of a duplicate de-
tection result. Chen et al. propose a new entropy-based quality
measure to evaluate duplicate clustering algorithms that overcome
the limitations of dispersion and diversity. However, we prefer re-
call and precision over pairs that form clusters because it allows
direct comparisons among duplicate detection algorithms that de-
tect pairs, and algorithms that detect clusters.

4.2 Metrics for Efficiency

To measure the efficiency of an approach, we propose two met-
rics in our benchmark. The first one is the number of pairwise
comparisons performed by an algorithm. Therefore, it only applies
to pairwise duplicate detection. The second metric is the runtime
of the algorithm and applies to all types of tasks.

The number of comparisons is an important measure for du-
plicate detection algorithms, because the difficulty of the problem
lies in the fact that in principle all pairs of objects should be com-
pared. A main feature of most algorithms is to reduce precisely
this number. However, as the provider of a benchmark we cannot
hope to actually determine the number of comparisons but must
rely on statements of the submitters.

Metric 4 Pairwise comparison count.This metric measures the
number of pairwise comparisons performed by the algorithm. The
lower the count, the more efficient the algorithm is.

Metric 5 Runtime. Runtime of an algorithm is the time needed
from start to end of a duplicate detection algorithm.

Runtime as defined above includes all phases of an algorithm,
e.g., reading the data, performing duplicate detection, and return-
ing a result. Runtime measurements in finer granularity that mea-
sure runtime for different phases should be included and its out-
put produced by the program itself. All runtime measurements
are suited for comparing different duplicate detection approaches,
because we envision a central benchmark server where all appli-
cations are executed. That is, the system is the same for all algo-
rithms, so time measurements are indeed comparable.

Up to this point, we have defined the data used by the bench-
mark and tasks that can be addressed and evaluated using metrics.
To support these features, it is essential to have a system that sup-
ports data creation and pollution, lets users upload programs that
can be executed and that returns evaluation results that can be ana-
lyzed by users. Additionally, the system should support easy com-
parisons of approaches. In the following section, we describe a
possible system to run the benchmark.

5. Tools

For the duplicate detection benchmark for XML Data a stan-
dardized data basis is needed on which the algorithms can be
tested. With tools like the XMLgen from XMark or with ToX-
Gene8 this basis can be achieved. To contaminate data we propose
a tool – the Dirty XML Generator. A first version can be down-
loaded from the project’s web site9. Currently, the Dirty XML
Generator supports contradictory text, missing data, and duplicate
elements contamination, as described in Tab. 1. Duplicate ele-
ments are only appended at the end of the document. The alter-
ation of key references is part of future work. Other dirty data
generators exist [17, 3] that actually perform both data creation
and data contamination, but to the best of our knowledge, they
only create relational data.

The benchmark should run on a centralized system to guaran-
tee the comparability of time measurements. Thus, a server needs
8http://www.cs.toronto.edu/tox/toxgene/
9http://www.informatik.hu-berlin.de/mac/
dirtyxml/



Documentation:

- Description of benchmark (domains, operations, metrics)
- Data samples
- Benchmark user guide (using website, alg. interfaces, ...)
- FAQ

Registration:

- Registration
- Login

User area

Algorithm management:

- See scheduling of algorithm and its current status (in queue, running, terminated)
- Download result

- Set algorithm privacy (private, protected, public)
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- Set data generation parameters (domain, contamination, size)
- Set algorithm operations parameters (operation, priority)
- File upload

- Data download

Downloads:

- Sample Data.
- Dirty XML Gen
- Links

Before

Benchmarking

During

Benchmarking

After

Benchmarking

Benchmark Results:

- Overview of public results (e.g., by operation, by domain, by contamination)
- Result comparator (generates comparison summary for selected approaches automatically)

Figure 1. Web site Overview

to be set up, and interfaces need to be published. We propose two
options for submitting algorithms to the benchmark server: The
first option is completely file-based. That is, executable code is
submitted to the benchmark server and is scheduled for execution.
The second option is to submit java packages that implement pre-
defined java interfaces, so that the algorithm can be executed on
the server. The two options require dealing with security issues,
e.g., the submitted executables or class files may include some
malicious code.

After running a duplicate detection algorithm on the server, re-
sults are communicated to the authors. We believe that it is suffi-
cient to return a result as a file of ID-pairs or ID-clusters, as well
as a file providing some information about resources used by the
algorithm (time and space). When duplicates in the input data are
known, i.e., they have been generated, recall and precision can
be calculated on server side, which is returned in an effectiveness
summary file in addition to the other two files.

The entire benchmarking process is presented and guided
through a web site. That is, researchers can communicate with
the benchmark server via this web site to upload their algorithm
with a certain priority, see when the algorithm execution is sched-
uled, download their results and publish them on the web site, or
look at results of other approaches.

A proposed overview of the web site is shown in Fig. 1. The
overview divides functionality into three categories: before, dur-
ing, and after benchmarking. Before using the benchmark, docu-
mentation is available so that users can learn about the purpose of
the benchmark, what data to expect, and how to use it. For private
testing, the dirty XML generator is available for download, as well
as some data samples. Furthermore, links to other used tools (e.g.,
ToxGene, XMLGen, XMark data generator) are provided as well.
To use the benchmark, users must register and login to get access
to a private user space, where the algorithm can be uploaded and
managed. Before uploading an algorithm, data needs to be gen-
erated. This generation requires setting up some parameters. The

generated data can be downloaded so that results can be analyzed
more accurately. Users further have to set up their algorithm task,
i.e., its operation. After uploading files (either java classes or exe-
cutables), the server schedules the algorithm. Users can keep track
of their algorithm’s status looking at scheduling and status infor-
mation. Once the algorithm is terminated, results can be down-
loaded. Results can be classified as private (the default), protected
(only visible to selected users), or public (visible for all). Pub-
lic results appear in the benchmark overview, that can be used to
compare results to each other. The comparison may be grouped or
sorted by domain, by operation, or by contamination, to name just
a few possibilities. A result comparator is available that allows the
selection of public approaches and that automatically generates a
comparison summary. We include this result comparator to mo-
tivate users to make their results public by leveraging the task of
algorithm comparison.

6. Related Work

Benchmarks have been used in various areas to provide stan-
dardized evaluation for solutions, so that they can be compared.

In this section, we do not provide a survey on benchmarks, in-
stead, we mention a few that have been used throughout database
publications. The first example of benchmarks that are widely
used are the benchmarks proposed by the Transaction Processing
Performance Council (TPC)10 that focus on evaluating transaction
processing and databases. For example, it provides the TPC-H
benchmark that models complex queries for decision support sys-
tems, e.g., data warehouses. These benchmarks are widely used
both in industry and research to evaluate and rank systems against
each other (see for example the top-ten TPC-H results by perfor-
mance11).

10http://www.tpc.org
11http://www.tpc.org/tpch/results/tpch\_perf\



Another group of benchmarks we want to point out are XML
Database benchmarks used to evaluate XML database systems.
Examples are XMach-1 [6], XMark [23], and XOO712 [9], a com-
parison of which is provided in [21]. Whereas XMach-1 and
XMark have an application scenario and domain, XOO7 does not
provide an actual application. Instead, it uses generic descriptions
based on an ER model. In our choice of domains, we opted for the
domains of XMach-1 and XMark because of their relative simplic-
ity compared to XOO7. Simplicity is one of the four criteria for a
domain-specific benchmark [21]. The other criteria are relevance,
portability, and scalability. Our benchmark meets relevance, be-
cause it covers several domains to capture a wide range of problem
difficulty. Portability is satisfied because exchanging XML data is
easy. Scalability is achieved by varying data sizes from small to
large.

To the best of our knowledge, no benchmark for duplicate de-
tection is currently used. Throughout the literature, several data
sets have been used by more than one approach. For instance, the
CORA data set that consists of bibliographical data proposed by
McCallum has been used for evaluation in [15, 24, 8]. Another
popular data source is the internet movie database IMDB. Data
sets extracted from IMDB have been used in [14, 25]. A reposi-
tory of other available data sets (both for relational and XML data)
and other valuable resources on duplicate detection is the RID-
DLE repository13. However, most data sets require some further
processing before they can be used for experiments. For example,
the CORA data set includes annotations for duplicate publications,
but not for authors or venues, so whenever duplicates are detected
among these entities, there is no guarantee for a common data set
anymore. When extracting data from IMDB, different sampling
techniques (and possibly different error introduction techniques)
result in data sets with different characteristics. Our benchmark
leverages these problems because its centralized processing guar-
antees that the data is not modified and all created data sets have
similar characteristics.

Providing data is only the first step towards a benchmark.
It leverages the problem of using different evaluation environ-
ments, but the problems of insufficient documentation and ob-
scure methodology remain. A benchmark framework for relational
record linkage using a single relation has been proposed in [19].
More complex scenarios, e.g., XML duplicate detection, where we
focus on, or relationship-based duplicate detection [15, 24] cannot
be evaluated using this framework. Additionally, the framework
does not provide actual data, it essentially provides criteria for data
sets, which the data sets of our benchmark satisfy (e.g., provide
both artificial and real-world data). The authors of [7] present a
study on evaluation and training-set construction for adaptive du-
plicate detection, which is a necessary step towards a benchmark
supporting adaptive duplicate detection methods such as [13, 22].
The authors conclude that recall-precision curves are the most ap-
propriate method to adopt when evaluating effectiveness, which is
considered in our benchmark, as well.

7. Conclusion

In this paper, we presented a benchmark for XML duplicate
detection, which is easily applicable to duplicate detection in re-

_results.asp
12http://www.comp.nus.edu.sg/~ebh/XOO7.html
13http://www.cs.utexas.edu/users/ml/riddle/

lational data as well. The benchmark facilitates comparisons be-
tween duplicate detection algorithms, which is currently a tedious
task because of lack of algorithm documentation, system hetero-
geneity and undocumented evaluation methodologies. Indeed, the
benchmark allows to apply algorithms to the same data, leverag-
ing the problem of system heterogeneity. By defining operations
that algorithms should perform, a common goal is clearly defined
and achievement of that goal can be evaluated using suited met-
rics, again provided by the benchmark. By choosing a centralized
benchmark server where all applications are run, the system en-
vironment is guaranteed to be the same. Using such centralized
evaluation, there is no need for re-implementation, so algorithm
documentation and experimental methodology are not as relevant
for comparisons of approaches anymore. As we have seen, the pro-
posed benchmark requires several tools and administration. Some
of these tools are already available, whereas the environment and
administration is still an open question.

We believe that putting some effort in realizing this benchmark
will significantly improve the quality of scientific publications in
the area of duplicate detection. And eventually, this benchmark
may become part of a more general data cleaning benchmark. We
hope that this contribution will spark fruitful discussions leading
to a wide acceptance of a new data cleaning benchmark.
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