
DogmatiX Tracks down Duplicates in XML

Melanie Weis
mweis@informatik.hu-berlin.de

Felix Naumann
naumann@informatik.hu-berlin.de

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, Germany

ABSTRACT
Duplicate detection is the problem of detecting different en-
tries in a data source representing the same real-world entity.
While research abounds in the realm of duplicate detection
in relational data, there is yet little work for duplicates in
other, more complex data models, such as XML. In this pa-
per, we present a generalized framework for duplicate detec-
tion, dividing the problem into three components: candidate
definition defining which objects are to be compared, dupli-
cate definition defining when two duplicate candidates are
in fact duplicates, and duplicate detection specifying how to
efficiently find those duplicates.

Using this framework, we propose an XML duplicate de-
tection method, DogmatiX, which compares XML elements
based not only on their direct data values, but also on the
similarity of their parents, children, structure, etc. We pro-
pose heuristics to determine which of these to choose, as well
as a similarity measure specifically geared towards the XML
data model. An evaluation of our algorithm using several
heuristics validates our approach.

1. XML DUPLICATE DETECTION
Duplicate detection is the problem of determining that

different representations of entities in a data source actually
represent the same real-world entity. The most prominent
application area for duplicate detection is customer relation-
ship management (CRM), where multiple entries of the same
customer can result in multiple mailings to the same per-
son, incorrect aggregation of sales to a certain customer,
etc. Other application areas include bioinformatics, catalog
integration, and in general any domain where independently
collected data is integrated.

The problem has been addressed extensively for relational
data stored in tables. However, more and more of today’s
data is represented in non-relational form. In particular,
XML is increasingly popular, especially for data published
on the Web and data exchanged between organizations.
Conventional methods do not trivially adapt, so there is a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

need for methods to detect duplicate objects in nested XML
data. XML data is semi-structured and is organized hier-
archically. This complicates the object identification task,
compared to relational data that is flat and usually well-
structured. We face two problems: object definition and
structural diversity.

Object definition refers to the problem of defining which
data values actually describe an object, i.e., which values
to consider when comparing two objects. Methods for rela-
tional duplicate detection assume that each tuple represents
an object and all attribute values describe that object. Suf-
ficiently similar data values of two tuples imply that they
are duplicates. This is not the case in XML: It is not clear
whether a child element represents part of the description of
an element (as does a relational attribute), or if it represents
a related object (as does a relationship with another table).
For instance, an XML element <Artist> has elements <AID>,
<name>, and some <CD> elements as direct children, and ev-
ery <CD> nests <CDID> and <title>. Among all these nested
XML elements, it is not clear how to distinguish actual ob-
jects (i.e., artists and CDs) from elements merely describing
these objects. In this paper we present a means to explicitly
specify which XML elements are objects, which XML ele-
ments describe the objects, and we present some heuristics
to find them automatically.

Structural diversity, the second problem, addresses the
fact that unlike tuples, XML elements describing the same
kind of object are not necessarily equally structured. These
structural differences are due to either different represen-
tations of same objects (e.g., persons may be represented
as managers or employees), or differences allowed by the
schema, e.g., multiplicities of elements (e.g., persons hav-
ing no, one, or multiple phone numbers). Whereas different
structures due to the first reason may be reconciled through
schema matching techniques, the second reason is in the
nature of semi-structured data and defeats conventional du-
plicate detection approaches for relations.

This paper makes three contributions:

1. Duplicate Detection Framework: We present a
general duplicate detection framework, in which all
necessary information for an algorithm can be pro-
vided independently of the data model (relational,
XML, etc.). It allows for individual definitions to spec-
ify what objects to compare, their respective descrip-
tions, and what makes them duplicates. The defini-
tions can be provided offline, and are processed by a
duplicate detection algorithm at runtime.

2. DogmatiX algorithm: We introduce an algorithm,
DogmatiX, where Duplicate objects get matched in
XML. It specializes our framework and successfully
overcomes the problems of object definition and struc-
tural diversity inherent to XML.

3. Domain-independence: We enable domain-
independency for DogmatiX by providing heuristics
that choose an object’s description and by providing
a domain-independent similarity measure for XML
data.

The remainder of this paper is organized as follows: In
Section 2, we present a generalized framework for object
identification. Section 3 introduces the DogmatiX algorithm
for XML duplicate detection implemented within the frame-
work. Domain-independent heuristics relevant to the algo-
rithm are presented in Section 4, followed by our domain-
independent similarity measure in Section 5. We experimen-
tally evaluate the effectiveness of the algorithm in Section 6
using various real-world and synthetic data sets. Section 7
describes related work, and the paper ends with a conclusion
and outlook on future research in Section 8.

2. FRAMEWORK
In this section, we define a general framework for duplicate

detection. To form an abstraction from any particular data
model, we distinguish objects and elements. Objects are
present in the real-world, while elements are present in a
certain data model. Different elements and different kinds
of elements can all represent the same real-world object.
We perform duplicate detection among elements describing
the same type of real-world object. Thus, we speak of the
general problem of object identification. Our framework is
flexible enough to cover a wide range of existing algorithms,
and new methods can easily be included. The framework is
represented in Fig. 1.

Figure 1: Object Identification Framework

Briefly speaking, the framework consists of three main
components.

1. Candidate Definition: Defines what objects in the data
source should be compared.

2. Duplicate Definition: Defines when two duplicate can-
didates are duplicates.

3. Duplicate Detection: Defines how we search duplicates
within duplicate candidates.

Components 1 and 2 specify knowledge and definitions that
tools and experts can provide offline during system setup.
They serve as input to online duplicate detection, which
works on the actual data.

The duplicate candidates component is used to specify
which elements described in the schema should be compared
with each other. For the actual duplicate detection, the du-
plicate candidate selection is translated into an executable
query during query formulation. This query, once executed,
produces sets of objects called the duplicate candidates. Ob-
jects within each set are potential duplicates of one another
and need to be compared.

Every object is identified by a certain amount of informa-
tion, i.e., typed data values. This description is not neces-
sarily all information about an object in a data source (e.g.,
all attributes of a relation), nor is it necessarily constrained
by the information provided in the data source (some ex-
ternal knowledge may be available). Using the description,
we associate information with objects. This association is
instantiated in the form of so called object descriptions (or
ODs) during duplicate detection, by first formulating and
executing the necessary query, and then transforming the
result to the OD representation.

To us, duplicate detection takes the form of classification
of pairs of ODs, as defined by duplicate classification. E.g,
a pair of duplicate candidates is classified as either ‘dupli-
cates’ or ‘non-duplicates’. At runtime, comparison reduc-
tion reduces the number of pairwise element comparisons
for efficiency reasons. Once all pairs of duplicates have been
detected through pairwise comparisons, the resulting set of
duplicate pairs can be further processed to obtain a set of
duplicate clusters, where all objects in a same cluster are
considered duplicates.

We now presents the three components in more detail.

2.1 Candidate Definition
The goal of candidate definition is to define which objects

are relevant for object identification and thus need to be
compared. It is based on three observations. (i) A data
source may store information about various types of real-
world objects, not all of which need to be considered for
duplicate detection. (ii) Among the elements relevant to
object identification, some may represent the same type of
real-world object, just represented differently. These should
be compared with each other. (iii) On the other hand, it
makes no sense to compare objects of different real-world
type, as they cannot be duplicates of each other. These
observations yield the following definition, which formally
describes duplicate candidates as a set of objects of same
real-world type and can be extracted from the entire data
set by selection and projection operations.

Let S be a schema containing schema elements s1, . . . , sn.
Further, let T be a real-world type describing real-world
objects. In many scenarios a real world type is represented
by many different schema elements. For instance, the real-
world type motion-picture can be represented by schema
elements movie and film. We assume a mapping M that
associates element types to real-world types.

Definition 1 (Duplicate Candidates). Let ST :=
{s1, ..., sk} be the set of schema elements describing the same
type T of real-world object according to M . Further, let
OT

i = {oi1, ..., oin} be the set of all instances of the schema
element si. Then we define the duplicate candidates of type
T as ΩT :=

⋃
1≤i≤k OT

i .

Example 1: Consider a relational schema S including
relations Movie, Film, and Actor. Movie and Film were
possibly obtained by integrating two data sources and are
different representations of the same type of real-world ob-
jects. Each relation may still contain duplicates in itself and
there may be further duplicates between the two, so all tu-
ples within Movie and Film should be compared with each
other. We arbitrarily label the combined real-world type
T motion-pic. Actor tuples need not be compared with
either Movie or Film tuples but might contain duplicates
within itself. These decisions result in SActor = {Actor}
and Smotion-pic = {Movie, Film}. The candidate instance
ΩActor is the set of all tuples in the Actor relation, whereas
Ωmotion-pic includes all tuples in the Movie relation, as well
as all tuples in the Film relation. Note again, that these can-
didates might have different structure but represent objects
of the same real-world type.

Candidate selection includes the specification of ST as a
set of schema elements. The set of duplicate candidates
ΩT is generated during duplicate detection as discussed in
Section 2.3).

2.2 Duplicate Definition
Towards the overall goal of identifying duplicate objects,

it is essential to define what characterizes duplicates. We
characterize them in the duplicate definition component by
(i) their description, and (ii) a classifier for pairs of objects
using a similarity measure.
Definition of Descriptions. It is often the case that not
all information of an object is useable or useful for object
identification. For instance, a CD object might be effectively
described using information about artist, track list, pub-
lisher, etc. However, the textual review of a CD is usually
not a useful indicator. In principle, one could choose any
data item as part of the description of an object.

Definition 2 (Description). For every candidate
duplicate oi ∈ ΩT we define its description IDi as a set of
data instances from the data source. This set is specified by
selections and projections in relation to oi.

In practice, an object’s description comprises sibling, child,
or parent data, such as attribute values of a tuple, or children
of an XML element.

We represent an object’s description in a special data
structure, called object description (OD).

Definition 3 (Object Description). An object de-
scription OD is a relation with schema OD(value, name).
The attribute value describes an instance of some informa-
tion and name identifies the type of information by a name.

The 2-tuples within an OD are referred to as OD tuples.
We believe that this OD schema can be used by a wide
range of object identification algorithms. Nevertheless, the
framework supports an easy replacement of the OD schema.
Example 2: Let us consider the an XML Schema de-
scribing the tree structure of Fig. 2. A corresponding XML

document contains 3 movies, their data being represented
in Tab. 1.
We assume that the description of a movie object is its
title, the year, and their actors’ name. The correspond-
ing OD instances are shown in Tab. 2.

Figure 2: Sample XML Schema

id title year actor/name actor/role
1 The Matrix 1999 Keanu Reeves Neo

L.Fishburne Morpheus
2 Matrix 1999 Keanu Reeves The One
3 Signs 2002 Mel Gibson Graham Hess

Table 1: Sample XML data

id OD
1 {(The Matrix, title), (1999, year),

(Keanu Reeves, actor/name),
(L. Fishburne, actor/name)}

2 {(Matrix, title), (1999, year),
(Keanu Reeves, actor/name)}

3 {(Signs, title), (2002, year),
(Mel Gibson, actor/name)}

Table 2: Examples for object descriptions

Duplicate Classification. Using the ODs of objects,
duplicate classification classifies every pair of candidates
(oi, oj), where both oi, oj ∈ ΩT

C into some class Ci ∈ Γ =
{C0, C1, ..., Cn}, according to a classifier δ(oi, oj). In our
framework, the class C0 is the class dedicated to pairs of
non-duplicates.

In practice, the duplicate detection problem uses two or
three classes, i.e., C1 being “oi and oj are duplicates”, C0

translating “oi and oj are no duplicates”, and possibly C2

that contains all pairs where “oi and oj may be duplicates”.
Typical examples for classification methods are thresholded
similarity measures among objects, or rule based decisions.
This framework provides a means to add new classifiers to
the framework. For every classifier, classes and the corre-
sponding classification methods can be added.
Example 3: Assume a classifier that classifies pairs of
candidates (oi, oj) into C1 when oi and oj are considered
duplicates, and into C0 otherwise. The classifier considers
two candidates to be duplicates if at least half of the OD tu-
ples in ODi match OD tuples in ODj , and vice versa. Using
this classifier, movie 1 and movie 2 inTab. 2 are considered
duplicates because the OD tuples (1999, year), and Keanu

Reeves, actor) occuring in both movies represent half of the
OD tuples for movie 1 and 2/3 of the OD tuples for movie 2.
On the other hand, movie 3 has no duplicate because it does
not share any OD with either movie 1 or movie 2.

2.3 Duplicate Detection
The duplicate detection component specifies the algo-

rithm that actually performs object identification, using the
information provided offline in the candidate definition and
duplicate definition components. To prepare the XML data
for duplicate detection, it undergoes three transformations,
which can be expressed as queries: the first extracts the rel-
evant candidates, the second selects for each candidate the
relevant data, and the third flattens their structure to the
OD representation. The remaining three steps perform the
actual detection of duplicates, based on the OD represen-
tation. The different steps the algorithm performs are the
subject of this section.
Step 1: Candidate Query Formulation and Execu-
tion. The first step of duplicate detection is to obtain du-
plicate candidates specified by ST in the candidate defini-
tion component. To this end, query formulation generates
a candidate query QC that selects all instances of a schema
element si ∈ ST . The result of candidate query execution is
the set of duplicate candidates ΩT . The data structure for
representing this instance can be any suited data structure.
Step 2: Description Query Formulation and Execu-
tion. The description of an object oi ∈ ΩT can be expressed
as a query QD in the query language appropriate to the data
model at hand. In its current state, our framework automat-
ically derives XQueries from a description specification—the
support of other query languages is under development. Af-
ter execution, the schema of the query result is a subset
(projection of schema elements selected by the description
definition) of the original schema and still needs to be trans-
formed to the OD-schema (value-attribute-pairs). This is
the goal of OD generation.
Step 3: OD Generation. Since an OD is nothing other
than a relation, it can be obtained by a mapping from the
result of the description query formulation to the OD schema
OD(value, name). The result of OD generation is a set
{OD1, . . . , ODn}, where ODi is the OD (the set of OD
tuples) that describes object oi ∈ ΩT .

All above steps include the formulation and executions of
queries. Indeed, we have three queries, namely the candidate
query QC , the description query QD, and the query of the
mapping used for OD Generation. Clearly, they are not
independent of each other, and in practice the queries may
be combined to increase efficiency.
Step 4: Comparison Reduction. Once the OD instance
is generated, all necessary information about duplicate can-
didates is available, so we could start with comparisons of
object pairs. However, for large data sets, the number of
pairwise comparisons is computationally prohibitive, so an
efficient algorithm should include a method to reduce the
number of comparisons. Consequently, the comparison re-
duction provides a pruning method to efficiently prune pairs.

Definition 4 (Pruning Method). Let φ(oi, oj) be a
pruning method on pairs of candidates oi and oj. φ(oi, oj)
is a classifier with two classes that signify “pair (oi, oj)
pruned” and “pair (oi, oj) not pruned”, respectively.

Possible methods for reducing the number of pairwise com-
parisons are filtering and clustering. A filter reduces the set
of candidate duplicates by pruning pairs of candidates that
provably cannot be duplicates in ΩT

C . In the case of cluster-
ing, candidates that are likely to be duplicates are grouped,
and only candidates within a group are compared with each

other. Hence, all pairs consisting of candidates in different
clusters are pruned.
Step 5: Comparisons. During this step, the actual object
identification is performed through pairwise comparisons.
Pairs of ODs are compared and classified according to the
duplicate classifier δ. In general, the result of the compari-
son step is a set of object pairs {(oi, oj)|(oi ∈ ODi) ∧ (oj ∈
ODj)} for each class Ck ∈ Γ. In practice, pairs are instanti-
ated only for those classes that are input to further process-
ing. For example, for the three classes C1 =“duplicates” ,
C2 =“possible duplicates”, and C0 =“non-duplicates”, only
C1 and C2 are instantiated. C1 is required for data cleaning,
whereas C2 is subject to revision by a domain expert.
Step 6: Duplicate Clustering. The relationship “is-
duplicate-of” is transitive. For instance, if o1 is duplicate
of o2, and o2 duplicate of o3, then through transitivity o1

is duplicate of o3. So, if a class Ck represents pairs of du-
plicates, the pairs can be combined to duplicate clusters
through transitivity.

Once object identification has been performed according
to the duplicate detection algorithm, duplicate representa-
tions of the same real-world entity are detected and object
identification is complete. The resulting identified data may
be input to many applications, such as data fusion meth-
ods or ETL tools. We now specialize this framework for
detecting duplicates in XML data.

3. DOGMATIX
As pointed out in Section 1, object identification in XML

data bears additional challenges compared to object identi-
fication in relational data. The two main problems are that
(i) the definition of objects and their description is not clear,
and (ii) structural heterogeneity of XML elements represent-
ing the same real world type. In this section, we specialize
the concepts of our framework to present the DogmatiX al-
gorithm for object identification in XML. This algorithm
takes an XML document, its XML Schema S, and a file de-
scribing a mapping M of element XPaths to a real world
type T as input. The type mapping format is (name of
the real-world type, set of schema elements). DogmatiX is
rendered domain-independent in its description selection by
using specialized heuristics, which we present in Section 4.
It is also domain-independent in its duplicate classification
using a domain-independent similarity measure presented in
Section 5. Thus, the only remaining part of the framework
that relies on expert input is the candidate selection. That
is, the framework must be fed with the XPaths of objects
to identify. In future work, we intend to explore methods to
determine candidates automatically, e.g., by searching for
primary element types and finding related types through
schema matching. Before we start describing DogmatiX in
more detail, an introductory example shows the basic idea.

3.1 Example
We input to our algorithm an XML document containing

the 3 movies of Tab. 1. It conforms to the schema S depicted
in Fig. 2. The mapping M of schema elements in S to real
world types is shown in Tab. 3. Note that in this example,
every real world type is represented by exactly one element
in S, but of course, there can be more. Users interested
in detecting duplicates in MOVIE objects simply choose
MOVIE from the list of real-world types in M . Then, the
candidate selection SMOV IE = {$doc/moviedoc/movie}.

For the remaining steps, DogmatiX requires a choice of a
heuristic for description selection and the specification of
similarity thresholds used by the duplicate classifier. These
parameters need to be set manually in the current implemen-
tation, but we will explore how to make them self configuring
in the future.

Real-world type element xpaths
MOVIE {$doc/moviedoc/movie}
TITLE {$doc/moviedoc/movie/title}
YEAR {$doc/moviedoc/movie/year}
ACTOR {$doc/moviedoc/movie/actor}
ACTORNAME {$doc/moviedoc/movie/actor/name}
ACTORROLE {$doc/mociedoc/movie/actor/role}

Table 3: Mapping

Once duplicate detection has been performed, DogmatiX
outputs the XML document shown in Fig. 3 (using the same
description selection and similarity measure as in the ex-
amples provided through Section 2). For every cluster of
duplicate objects, a dupcluster element is generated and
identified by a unique object identifier oid. The duplicate
elements within a cluster are identified by their XPaths.

Figure 3: Description Selection in XML

3.2 Duplicate Definition
Given a definition of candidate duplicates as a selection

of real-world types in the mapping M , DogmatiX defines
description selection and duplicate classification by special-
izing the framework’s duplicate definition component in a
domain-independent way.
Description Selection. DogmatiX uses domain-
independent heuristics to define the description query QD.
These heuristics exploit the XML Schema S, e.g., the tree
structure, data types, and element cardinalities as we show
in Section 4. They are generally defined as follows.

Definition 5 (Heuristic for descr. selection).
Given an XML Schema S, a heuristic h determines a
selection σi as description for every element si ∈ ST .
Selection σi is a set of XPaths in S relative to si.

For instance, in the scenario of Fig. 2, a heuristic return-
ing title and year as description for a movie results in
σ = {./title, ./year}.
Duplicate Classification. Pairs of candidates are clas-
sified into one of the classes C0 and C1 denoting non-
duplicates and duplicates, respectively. DogmatiX employs
a classifier based on a thresholded approach, using the
domain-independent similarity measure described in Sec-
tion 5.

Definition 6 (XML Duplicate Classifier). Let
sim(oi, oj) be a similarity measure for XML objects oi and

oj , and let θcand be a threshold value. Then, we classify
the pair of objects oi and oj into C0 (non-duplicates) and
C1(duplicates) using the classifier

δ(oi, oj) =

{
C1 if sim(oi, oj) > θcand

C0 otherwise
(1)

3.3 Query Formulation
The XML query formulation component takes as input the

set of XPaths σi and returns an XQuery the result of which
is the description of a candidate duplicate as XML. We
are currently developing a graphical tool that automatically
composes XQueries consisting of selections and projections,
specified by users over the graphical tree representation of
an XML Schema S (e.g., through selecting specific tree el-
ements). By automating the projection of schema elements
using heuristics, we can readily use the tool’s query compo-
sition algorithm as query formulation component.

3.4 Duplicate Detection
After the candidate duplicate specification and duplicate

definition phases, we perform candidate query formulation
and execution (Step 1) and have in hand the objects that
are to be compared. These definitions can be provided of-
fline, and are prerequisites to the duplicate detection phase,
during which the actual comparisons are performed (it is
therefore considered an online phase). The next paragraphs
follow the remaining steps of the duplicate detection com-
ponent in the framework.
Steps 2 and 3: Description Query Execution and
OD Generation. Our XML object identification ap-
proach starts online duplicate detection with the descrip-
tion query execution. The result of this XQuery is the de-
scription of each candidate. Next, OD generation trans-
forms each description into the OD representation: For ev-
ery XML element in the description, an OD tuple of the
form < text, xpath > is generated. Here, text denotes the
string representation of the text node of the XML element,
and xpath is the string representation of the absolute XPath
of the element in the XML document. Towards efficient com-
putation of the next steps we chose a graph representation
to associate ODs and their contained OD tuples.
Step 4: Comparison Reduction. To reduce the number
of pairwise comparisons, we use an element filter f(oi) that
is defined as an upper bound of our similarity measure, i.e.,

sim(oi, oj) ≤ f(oi) ∀j (2)

As a reminder, two elements are considered duplicates if
sim(oi, oj) > θcand. If f(oi) ≤ θcand, it follows from (2) that
sim(oi, oj) ≤ f(oi) ≤ θcand for any oj ∈ ΩT

C . Thus, without
expensively calculating any similarity for oi, we can conclude
that oi has no duplicates whatsoever and can remove these
duplicate candidates from ΩT

C . Hence, we filter not only
individual pairs of candidates, but entire sets of pairs in
a single step, namely all pairs involving oi. We postpone
the definition of the filter f(oi) to follow the discussion of
the similarity measure in Sec. 5, as they are both based on
similar distance measures.
Step 5: Pairwise Comparisons. Those duplicate candi-
dates not pruned by the object filter are compared pair-
wisely, using our XML duplicate classifier and similarity
measure (Sec. 5).
Step 6: Duplicate Clustering. When pairs of objects
are detected as duplicates, we reflect this in our graph data

structure. Finally, the transitive closure is easily computed
and results in the final duplicate clusters.

4. HEURISTICS TO SELECT DESCRIP-
TIONS

In this section, we present heuristics that conform to Def-
inition 5. As a reminder, we require the heuristic to deter-
mine a candidate’s description by determining the selection
σid of XPaths domain-independently. We propose two ba-
sic heuristics, namely r-distant ancestors and r-distant de-
scendants. These heuristics are further refined by several
conditions. We also show how heuristics may be combined.

4.1 Heuristics
The intuition behind the heuristics is that the “farther”

information lies from the considered element e0, the less re-
lated it is to e0, as illustrated in Section 1. E.g, in the XML
structure of Fig. 2, title and year are strong in describ-
ing a movie (few movies have the same title and appeared
the same year), whereas an actor’s name is less descriptive
of a single movie. The observation can be verified for a
wide range of schemas. Therefore, we use proximity to e0

as heuristic for determining e0’s description. More specifi-
cally, we define proximity to e0 in two ways that exploit the
tree structure of the XML tree on both the descendants and
ancestor axes.

The first, referred to as r-distant considers as description
all elements whose depth in the XML Schema does not differ
more than radius r from e0’s depth.

Heuristic 1. r-distant ancestors hra: Let ai be the i-
th ancestor of e0, e.g, a1 is e0’s parent element, a2 is its
grand-parent, and so on. Further, let ra > 0 be the ra-
dius of ancestors to consider. Then, a description of e0

can be defined by the r-distant ancestors heuristic hra by
σid = {xpath(ai)|1 ≤ i ≤ ra}.

Heuristic 2. r-distant descendants hrd: Let Ei be
the set of e0’s descendants at depth i from e0, e.g.,
E1 are e0’s direct children, E2 are its grand children,
and so on. Further, let rd > 0 be the radius of de-
scendants to consider. Then, a description of e0 can
be defined by the r-distant descendants heuristic hrd by
σid = {xpath(ej) | ej ∈ Ei, 1 ≤ i ≤ r }.

The second way of selecting descriptions, named k-closest,
considers the next k elements following e0 in breadth-first
order. Note that we do not consider k-closest ancestors, as
it is the same as r-distant when k = r.

Heuristic 3. k-closest descendants hkd: Let ei be the
i-th element in breadth-first order in the subtree rooted at
e0. Further, let k be the number of elements to consider.
Then, a description of e0 can be defined by the k-closest
descendants heuristic hkd by σid = {xpath(ei)|1 ≤ i ≤ r}.
Figure 4 clarifies the heuristics. In the bottom figure,
movidoc is selected by the r-distant ancestors heuristic, for
ra = 1. All direct children are selected by the r-distant
descendants heuristic, when rd = 1. The figure at the top
shows the selection for the k-closest heuristic, for k = 5.

The advantage of the r-distant descendants heuristic hrd

over the k-closest descendants heuristic hkd is that we are
sure that all descendants within radius r are considered,

Figure 4: Heuristics k-closest and r-distance

and none is preferred over the other just because of the
ordering. The advantage becomes clear if we consider an
xs:any construct in a schema. There, it is not clear which
element appears. Arbitrarily selecting the element defined
first is hardly justified. On the other hand, hkd avoids an
explosion of elements to consider (in the schema, the number
of instances may still explode), unlike hrd, where the size of
Ei is not limited.

Clearly, a sensible choice of ra, rd, and k is essential for the
algorithm’s effectiveness. Indeed, for small values of r and
k, the resulting ODs do not contain enough information for
comparisons. On the other hand, if too many elements are
selected, chances are that information not relevant to com-
parisons is considered. Both cases may affect effectiveness
dramatically. The correct choice of r and k is also essential
for efficiency, because less selected elements result in less
OD tuples to compare.

4.2 Additional Conditions
The XML Schema gives us additional information that

can be used to refine the selection of descriptions. In this
section, we discuss how we use content models, data types,
and cardinality of relationships between elements (1:N, 1:1,
optional).
Content Model: An XML element can have one of three
content models, namely simple, complex, and mixed. Only
simple and mixed content models allow a text node for
an element, complex elements can only nest further ele-
ments. Without a text node, the resulting OD tuple’s value
is empty. Consequently, it is not similar to any other OD
tuple, however, it should not be considered contradictory as
it contains no data. This leads us to Condition 1.

Condition 1. Content Model: The content model con-
dition ccm signifies that only elements with non-empty text
node are considered for the selection of descriptions, i.e.,
elements of simple or mixed content model.

Data Type: Due to the fact that the similarity measure
uses string similarity, it is not accurate on other data types.
Therefore, we introduce the following condition.

Condition 2. String Data Type: The data type condi-
tion csdt signifies that only elements of string data type are
considered for the selection of descriptions.

Cardinality: If an element e with parent p is declared as
mandatory (minOccurs = 1, key, ID, nillable = false),
this signifies that p cannot exist without e. We see this as a
tighter relation between p and e, compared to their relation
when e is optional. Therefore, on the descendants axis of
p, the description includes elements that are mandatory to
p. Furthermore, it is guaranteed to be available for all com-
parisons. For the ancestor axis, we also consider only those
elements that are tightly related to e, i.e. those for which e
is mandatory.

Condition 3. Mandatory Elements: The data type
condition cme signifies that only mandatory elements to e0

are considered for the selection of e0’s description.

If maxOccurs of a child equals 1 (which is the default), we
have a 1:1 relationship between parent and child. For mea-
suring similarity, such a relationship is more helpful than a
1:N relationship: In a 1:N relationship possible children may
be missing, or elements describing the same object may have
a different subset of children. In a 1:1 relationship, there
is only one possible child, which does not pose the above
problems. Additionally, we can be certain that the number
of instances does not explode.

Condition 4. Singleton Elements: The data type con-
dition cse signifies that only elements with a 1:1 relation with
e0 are considered for the selection of e0’s description.

Of course, other sensible conditions are conceivable, but
we restricted ourselves to the few mentioned above.

4.3 Combining Heuristics and Conditions
The heuristics and conditions presented so far can be com-

bined in multiple ways. In this section, we discuss how they
are combined. We have two heuristics, r-distant and k-best,
separately applicable to ancestors and descendants. Possible
combinations of heuristics are AND and OR.

Combination 1. Combination of heuristics: Let σ1

and σ2 denote the selections of heuristics h1 and h2, respec-
tively. Then, we define (i) the AND combination of h1 and
h2 as: h1 ∧h h2 = σ1 ∩ σ2, and (ii) the OR combination of
h1 and h2 as: h1 ∨h h2 = σ1 ∪ σ2.

Similarly to the combination of heuristics, conditions can be
combined with logical AND and OR operations.

Combination 2. Combination of conditions: Let c1

and c2 denote two conditions. Then, we denote (i) the logical
AND combination of c1 and c2 as c1∧cc2, and (ii) the logical
OR combination of c1 and c2 as c1 ∨c c2.

Last, heuristics and combinations are combined together so
that combinations refine the selections performed by heuris-
tics.

Combination 3. Combination of heuristics with
conditions: Let h be a heuristic (can be a combination of
several heuristics) with σh = {xpath1, ..., xpathn}, and c a
condition (can be a combination of condition). The combi-
nation of h and c, denoted h[c], is a new selection σ′h defined
as: σ′h = {xpath(ei)|xpath(ei) ∈ σh ∧ ei satisfies c}.
As an example, we want to consider all direct children of
string data type and having text nodes, which corresponds
to conditions csdt and ccm, respectively. Moreover, only

mandatory ancestors are considered by applying cma on the
ancestor axis. We denote this combination of heuristics and
conditions as: hra[cma] ∨h hrd[csdt ∧c ccm].

The evaluation of different heuristic and condition combi-
nations is part of the Experiments described in Section 6.

5. DOMAIN-INDEPENDENT SIMILARITY
To classify pairs of objects as duplicates, we choose a

thresholded similarity measure approach. In this section,
we present a new similarity measure for XML duplicate de-
tection specifically geared for our purposes. We consider the
following conditions important for XML duplicate detection.

1. OD tuples having different real-world type (accord-
ing to mapping M) between two objects should not
be compared, and are considered as incomparable
data. For instance, let us consider the OD tuples
OD1 = {(The Matrix, title), (great!, review)} and
OD2 = {Matrix, title), (500, sold-number)} describing
movies. Whereas titles are comparable, review and
sold-number are not comparable, and they cannot be
used to conclude on the similarity of the two movies.

2. Data similarity between comparable elements should
be considered in addition to data equality, so that
typographical errors are compensated. E.g., the two
movie titles The Matrix and Matrix are similar enough
to be considered the same titles.

3. The identifying power of a piece of information should
be considered. E.g., the fact that two movies appear
in the same year is not as strong an indicator that they
are duplicates as if they have the same title.

4. Comparable but contradictory data should reduce sim-
ilarity, whereas non-specified (missing) data should
not. E.g., the fact that two movie XML elements have
several different artists is an indicator that they do not
represent the same movie in the real-world. On the
other hand, the fact that one movie is missing some
actors should not be penalized by our similarity mea-
sure.

In the remainder of this section, we show how we meet
above requirements in our similarity measure, that is de-
fined together with an upper bound, used for filtering in
comparison reduction.

5.1 Similarity Measure
In the following, we define our domain-independent simi-

larity measure sim(oi, oj) that is used to classify the pair of
objects oi and oj as duplicates or non-duplicates. The ODs
of these objects are denoted ODi and ODj , respectively.
Comparable OD Tuples: We do not wish to compare OD
tuples that represent different kinds of information, because
they cannot contribute to the similarity of two objects. We
use the input M to lookup comparable XPaths and thus de-
termine which OD tuples are comparable between ODi and
ODj . By not considering incomparable data when measur-
ing similarity, we meet the first condition.
Similar OD Tuples: To satisfy condition (2), we have to
determine which OD tuples are similar between two ODs.
Formally, for every possible pair (odti, odtj) ∈ ODi × ODj

of OD tuples, we determine a distance measure.

Definition 7 (OD tuple distance.). Let odti =
(vi, ni) ∈ ODi, odtj = (vj , nj) ∈ ODj. Further, let
ned(si, sj) be the edit distance between two strings si and
sj normalized by the maximum of the two strings’ length.
Then,

odtDist(odti, odtj) =





1 if ni and nj

are not comparable
ned(vi, vj) otherwise

(3)

Two OD tuples are considered similar when their odtDist
is below a given threshold θtuple. The set of all similar OD
tuples between two ODs is

ODT T
≈ (ODi, ODj) =

{(odti, odtj) | odtDist(odti, odtj) < θtuple}
(4)

Note that we need to compare all OD tuples of ODi with all
comparable OD tuples of ODj , j 6= i by calculating their edit
distance. Edit distance is a very expensive operation and
needs to be avoided when possible. In [18], we introduced a
simple combination of upper and lower edit distance bounds
to substantially reduce the number of pairwise comparisons.
Data Relevance: In our similarity measure, we weigh the
relevance of terms (condition (3)) using a variation of the in-
verse document frequency (IDF) [2], called softIDF . Gen-
erally, if D is the complete set of objects in a document,
and n the number of objects in which a term k occurs, then

we define the IDF of k as IDF = log(|D|
n

). In our context,

D = ΩT , and a term k is an OD tuple t. To account for
the fact that we do not only consider exact matches of in-
formation between two ODs, but also similar matches, we
extend the definition of IDF to consider pairs (odt1, odt2) of
similar terms. This is achieved by defining n as the number
of objects in which odt1 or odt2 occurs.

Definition 8. softIDF and setSoftIDF : Let
(odti, odtj) be a pair of OD tuples, such that
odtDist(odti, odtj) < θtuple. With Oodti = {ODi |
odti ∈ ODi} and Oodtj = {ODj | odtj ∈ ODj}, the
softIDF of (odti,odtj) is defined as

softIDF ((odti, odtj)) := log(
| ΩT |

| Oodti ∪Oodtj |
) (5)

The softIDF of a set Stuple ⊆ S is

setSoftIDF (Stuple) :=
∑

(odti,odtj)∈Stuple

softIDF (odti, odtj)

(6)

Non-specified vs. contradictory OD Tuples: Our goal
is to distinguish non-specified and contradictory data (Con-
dition (4)) in the sense that the former does not negatively
influence the similarity of two objects, whereas the latter
reduces the similarity. E.g., the fact that two Movie XML
elements have several different actors is an indicator that
they do not represent the same movie in the real-world. On
the other hand, the fact that one Movie is missing some ac-
tors should not be penalized by our similarity measure. We
say an OD tuple odti ∈ ODi is contradictory to an OD tuple
odtj ∈ ODj if they (i) represent the same kind of object ac-
cording to mapping M , but (ii) are not similar according to
odtDist(odti, odtj), and (iii) are not considered contradic-
tory to other OD tuples. Whereas the reasons for the first

two conditions are intuitive, the third needs clarification,
provided by the following example. Consider two countries
countryi and countryj that respectively nest the cities (New
York, Los Angeles, Miami) and (Miami, Boston). Clearly,
they share one city, namely Miami. On the other hand, they
differ in three cities. However, the contradictory data at
most includes one city, because the lists of cities are not ex-
haustive. Boston is contradictory to either Los Angeles or
New York, but not both. Either Los Angeles or New York

may have been not-specified in the list of cities.
Formally, due to the possibly different cardinalities of

XML elements reflected in ODi and ODj , not necessar-
ily all OD tuples are contradictory to another, and the
remaining OD tuples are considered non-specified data.
Pairs of contradictory OD tuples are selected according to
highest odtDist. E.g., for the possible contradictory pairs
(Boston, Los Angeles) and (Boston, New York) with respec-
tive odtDist 8/11 ≈ 0.72 and 7/8 = 0.875 we choose the
latter because it has highest distance. All pairs of contra-
dictory OD tuples between ODi and ODj are summarized
in the set

ODT T
6= (ODi, ODj) =

{(odti, odtj)|odti and odtj are contradictory} (7)

Similarity Measure: Using the previous definitions
and considerations, we define our similarity measure
sim(ODi, ODj).

sim =
setSoftIDF (ODT T

≈)

setSoftIDF (ODT T
6=) + setSoftIDF (ODT T≈)

(8)

We omitted the parameters (ODi, ODj) for sim, ODT T
≈ ,

and ODT T
6= for clarity. Intuitively, sim measures the rele-

vance of similar data between two objects, relative to the
relevance of their difference.

Note that our similarity measure considers both reasons
of structural heterogeneity and leverages their impact on
similarity. The first one, different schemas, is solved by con-
sidering the mapping of schema elements to real world types,
and the second is captured by the fact that we distinguish
unspecified vs. contradictory data. In future work, we will
explore how to adapt tree edit distance to consider these
issues as well, so that we can use it as similarity measure for
duplicate detection.

5.2 Object Filter
As announced in Section 3, we now define the object filter

used for comparison reduction. It is an upper bound to the
similarity measure sim(ODi, ODj) and is defined as follows:

Sshared =
⋃

i6=j

ODT T
≈ (ODi, ODj),

Sunique =
⋂

i6=j

ODT T
6= (ODi, ODj)

f(ODi) =
setSoftIDF (Sshared)

setSoftIDF (Sunique) + setSoftIDF (Sshared)
(9)

Intuitively, f(ODi) measures the amount of information
ODi shares with any other ODj , compared to the amount
of information unique to ODi. The cost of computing f() is
comparable to the cost of calculating sim(). However, f()
only needs to be calculated once for every element, whereas

sim() has to be computed for every pair of elements. There-
fore, f() is a suitable filter for reducing the number of pair-
wise element comparisons. Experiments in Section 6 show
its effectiveness.

6. EXPERIMENTS
We evaluate our domain-independent approach for object

identification under two aspects, namely (i) the effective-
ness of our similarity measure, depending on heuristics, and
(ii) the effectiveness of our object filter. We considered two
typical scenarios in which duplicates occur: In the first sce-
nario, we search for duplicates in a single XML document.
There, errors are mainly due to typos and missing data. Be-
cause the XML Schema and XML data have been created
together, it is unlikely that duplicates have significantly dif-
ferent structure or that the data is represented in consid-
erably different ways. This is not the case in our second
scenario, where we consider two data sources that are to
be merged in the context of data integration. There, we
search for duplicates among different sources that are differ-
ently structured and that represent data differently. There,
duplicates are due to synonyms and contradictory data, in
addition to the usual typos and missing data.

We expect our algorithm to be very effective in the first
scenario: Edit distance should compensate typos, and our
similarity measure is specifically designed to identify dupli-
cates despite missing data. On the other hand, synonyms,
although having the same meaning, are recognized as con-
tradictory data and the similarity decreases. They are more
difficult to detect without additional knowledge, such as a
thesaurus or a dictionary. Thus, we expect the second sce-
nario to yield poorer results.

In the remainder of this section, we present the different
data sets and setups for our experiments. Then, we eval-
uate the effectiveness of the similarity measure and finally
evaluate the object filter.

6.1 Data Sets and Setup
We use three different data sets.

• Dataset 1: 500 non-duplicate CD objects extracted
from the FreeDB dataset1 + 500 artificially generated
duplicates (1 for each CD).

• Dataset 2: 500 non-duplicate Movies extracted from
IMDB 2 + the same 500 movies from Film-Dienst3.

• Dataset 3: 10,000 CDs randomly extracted from
FreeDB.

The 500 artificially duplicated CD objects in Dataset 1 were
generated automatically with an XML Dirty Data Genera-
tor4. The parameters (i) percentage of duplicates, (ii) per-
centage of typographical errors, (iii) percentage of missing
data, and (iv) percentage of synonymous (but contradictory)
data were set to 100%, 20%, 10%, and 8%, respectively.
Hence, Dataset 1 represents the scenario where mostly uni-
formly structured objects are duplicated by typos and miss-
ing data. On the other hand, Dataset 2 represents our

1http://www.freedb.de/
2http://www.imdb.com
3http://film-dienst.kim-info.de/
4http://www.informatik.hu-berlin.de/mac/dirtyxml/

Experiment Heuristic
exp1 h
exp2 h[csdt]
exp3 h[cme]
exp4 h[cse]
exp5 h[csdt ∧ cme]
exp6 h[csdt ∧ cse]
exp7 h[cme ∧ cse]
exp8 h[csdt ∧ cse ∧ cme]

Table 4: Combinations of conditions

r k Elements in OD (object description)
1 1 disc/did (string, ME, SE)

2 disc/artist (string, ME, not SE)
3 disc/title (string, ME, not SE)
4 disc/genre (string, not ME, SE)
5 disc/year (date, ME, SE)
6 disc/cdextra (string, not ME, not SE)
7 disc/tracks (complex, ME, SE)

2 8 disc/tracks/title (string, ME, not SE)

Table 5: Elements in Dataset 1

second scenario, where duplicate objects have very differ-
ent structures and representations as they come from two
distinct data sources. Hence, the difference between com-
parable data of duplicates is mainly due to synonyms and
contradictory information. For example, data from IMDB
is in English, whereas data from FILMDIENST is in Ger-
man, and date formats are different. Note that we did not
apply any data scrubbing before performing experiments.
Dataset 3 is used to show the effectiveness of our algorithm
on a larger amount of real-world data.

6.2 Effectiveness of Similarity Measure
We evaluate the effectiveness of our approach using the

combinations of heuristics and conditions shown in Tab. 4,
where h signifies one of the three heuristics specified indi-
vidually in the experiments.

The first series of experiments uses Dataset 1 (errors
mainly due to typographical errors and missing data). In
Tab. 5 we see which XML Schema elements become part
of an object’s description for increasing r and k of hrd and
hk, respectively. Next to the elements’ XPaths we see their
data type, whether they are mandatory elements (ME) or
not, and whether they are singleton elements (SE) or not.
We apply exp1 to exp8 using hk as heuristic, varying k from
1 to 8, with θtuple = 0.15 and θcand = 0.55. Note that the
experiments for k = 7 and k = 8 are the same as if we
applied the r-distance heuristic for r = 1 and r = 2, re-
spectively. We evaluate the effectiveness by both recall and
precision. The results are summarized in Fig. 5.

We see that Experiments 1,2,3, and 5 form one group.
Their recall and precision curves have similar behavior for
r = 1 (k ∈ [1, 7]). That is, we observe an increase between
k = 1 and k = 3 and stability for values 3 ≤ k ≤ 7, which can
be explained as follows: For k = 1, we only have the disc-id
(did) available for comparisons. These IDs apparently have
been generated automatically, and most IDs do not differ
by more than one character. Hence, they are falsely recog-
nized as similar according to odtDist(), which explains the
relatively low precision. Recall is high because all duplicate
pairs have a similar did, except for those whose did was
affected by introduced errors. Recall and precision increase
from k = 1 to k = 3 because the added elements (artist
and title) have high distinguishing power (according to

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

k for k-closest heurisitc

re
ca

ll
p

er
ce

n
ta

g
e

exp1

exp2

exp3

exp4

exp5

exp6

exp7

exp8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8
k for k-closest heurisitc

p
re

ci
si

o
n

 p
er

ce
n

ta
g

e

Figure 5: Effectiveness Evaluation on Dataset 1

IDF); and the more such information is available, the less
impact errors have on similarity. The elements added with
even higher k either have low distinguishing power (genre,
year, cd-extra) or are not considered because they do not
have a text node (tracks). Consequently, recall and preci-
sion are stable for 3 ≤ k ≤ 7. By adding track-titles, recall
increases and all duplicates are found. However, precision
drastically drops: All duplicates are found because track ti-
tles include a lot of information, and errors no longer have
an impact. However, due to dummy titles (“Track 1”) for
non-specified titles in approximately 20% of all CDs, the
similarity of non-duplicates increases. The behavior of the
remaining experiments can be explained as follows: exp8
only considers did for any k, hence, recall and precision are
constant. Exp7 drops in both recall and precision at k = 5
because year, with small distinguishing power is added. For
the same reason, exp4 and exp6 drop at k = 3, where genre

is added.
From this series of experiments, we see that small de-

scriptions are too sensitive to errors, and hence do not yield
high precision and recall values. On the other hand, if too
much data is added to the description, non-duplicates be-
come more similar, because it is more likely that information
matches. We further observe that the larger k and especially
r, the smaller is the identifying power of added data. This
validates the proximity assumption underlying these heuris-
tics and emphasizes that good heuristics are valuable.

We make similar observations for the second scenario
when duplicates are mainly due to structural differences
(Dataset 2). We apply hrd with the eight conditions of Ta-
ble 4, θtuple = 0.15, and θcand = 0.55. Comparable elements
between the two different data sources available for different
values of r are summarized in Table 6. Recall and precision
are represented for the r-distant heuristic in Fig. 6.

We observe that the similarity measure performs well and
its effectiveness is highest when neither too few nor too much
information is selected. It is the task of heuristics to se-
lect that information, and it is not clear which heuristic to
choose. Due to the small size of the schemas of Dataset 1
and Dataset 2, we cannot give generally applicable advice

0%
10%
20%
30%
40%
50%

60%
70%
80%
90%

100%

1 2 3 4

radius r for r-distance heuristic

re
ca

ll
p

er
ce

n
ta

g
e

exp1

exp2

exp3

exp4

exp5

exp6

exp7

exp8

0%

10%

20%

30%

40%

50%
60%

70%

80%

90%

100%

1 2 3 4
radius r for r-distance heursitic

p
re

ci
si

o
n

 p
er

ce
n

ta
g

e

Figure 6: Effectiveness Evaluation on Dataset 2

for choosing heuristics.
On Dataset 3, we are only able to measure precision of

the result, because we did not (yet) pairwisely compare the
10.000 elements by hand. For exp1 (heuristic hk with k = 6)
we found 252 pairs of duplicates, from which 27 pairs were
exact duplicates. Figure 7 shows the precision of the result,
for θcand between 0.55 and 1. We observe that precision
increases with increasing θcand, hence, trivially the similarity
measure is proportional to the similarity of the elements.
At θcand = 0.85 precision reaches 100%. At this point 36
duplicates are detected.

0%

20%

40%

60%

80%

100%

0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

duplicate threshold

p
re

ci
si

o
n

 p
er

ce
n

ta
g

e

Figure 7: Effectiveness on Dataset 3

6.3 Effectiveness of the Object Filter
To evaluate the effectiveness of the object filter f defined

in Section 5.2, we use the original 500 CDs from Dataset 1
and vary the percentage of artificially generated duplicates
from 0% to 90%. For instance, at 0% duplicates, the data
consists of 500 non-duplicates, at 50% duplicates, we have
generated 250 duplicates, so we have 250 duplicate pairs and
250 singletons. In Fig. 8, we plot the recall and precision of
the filter for exp1 and k = 6. Recall is measured as the num-
ber of correctly pruned candidates divided by the number of

r Elements in OD (object description) from IMDB Elements in OD (object description) from FILMDIENST
1 movie/year(date, ME, not SE) movie/year(date, ME, SE)
2 movie/title (string, ME, SE) movie/movie-title/title (string, ME, SE)

movie/aka-title/title (string, optional, not singleton)
movie/genre(string, not ME, not SE) movie/genres/genre(string, not ME, not SE)
movie/release-date/date(date, ME, SE) movie/premiere(date, not ME, SE)

3 - -
4 movie/people/actors/actor/name (string, ME, SE) movie/people/person/firstname + lastname (string, ME, SE)

movie/people/actresses/actress/name (string, ME, SE)
movie/people/producers/producer/name (string, ME, SE)

Table 6: Elements in Dataset 2

non-duplicate candidates in the XML documents. Precision
is defined as the number of correctly pruned candidates di-
vided by the total number of pruned candidates. As we see,
both the filter’s recall and precision are high (above 70%)
for any percentage of duplicates. So we can conclude that
the filter is effective in pruning candidates that do not have
a duplicate.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

percentage of duplicates

re
ca

ll
&

 p
re

ci
si

o
n

 p
er

ce
n

ta
g

e

recall

precision

Figure 8: Effectiveness of Object Filter

7. RELATED WORK
Object identification has received much attention in the

relational world, and first efforts exist in identifying dupli-
cate objects in hierarchical and XML data. In this section,
we give a brief overview of past research in that area.

7.1 Object Identification for Relational Data
Object identification has received much attention in the

database and other communities [5, 15, 16]. In particu-
lar, research has concentrated on efficiently and effectively
finding duplicate records in relational data. Research in
relational duplicate detection can be classified into two ar-
eas: domain-dependent and domain-independent. The first
assumes a certain domain, such as the domain of address-
data, and the help of human experts to calibrate algorithms.
For instance, in the sorted neighborhood method dupli-
cate records within a table are detected by first sorting the
records according to a user-specified key [7]. For XML data,
even defining the sorting key by hand is not at all straight-
forward. Examples where domain-dependent solutions have
been applied include census data sets [19], medical data [8],
and genealogical data [14].

In [12], the authors describe a domain-independent and
more efficient version of the sorted neighborhood method.
While the same problem of finding a sorting key remains, we
have adopted a graph structure similar to the one suggested
in [12] and plan to include the notion of prime representa-
tives in future work. Other domain-independent solutions

include [9, 11]. Other approaches include learning similarity
measures [3, 17].

The problem of object identification in relational data
has also been positioned in a framework in [13]. In this
framework, object identification is divided into three steps,
namely (i) conversion to obtain comparable and descrip-
tive information about objects, (ii) comparison of objects,
and (iii) classification of pairs as matches (duplicates), non-
matches, and matches to some degree. These steps can be
found in our framework as well. However, we set an ad-
ditional focus on candidate definition and the distinction
between definitions independent of the kind of data source,
and the algorithm. There are also data cleaning frameworks,
such as AJAX [5], that include object identification. AJAX
separates the logical and physical levels of the process that
separate quality and performance of a data cleansing sys-
tem. This is similar to our separation of offline definitions
and online algorithm. However, the focus of AJAX is data
cleansing, so the details of object identification are not de-
scribed in detail. In a sense, we consider our framework
a zoom-in of their matching operator on both logical and
physical level.

7.2 Object Identification for Hierarchical and
XML Data

To the best of our knowledge, the closest approach for
detecting duplicates in hierarchical data is the DELPHI
project, from which our work is inspired [1]. DELPHI iden-
tifies duplicates in hierarchically organized tables of a data
warehouse. Duplicates in the outer-most dimension are dis-
covered first and help duplicate detection in the children
table and finally in the fact table. Therein, the authors fo-
cus on a single branch of the hierarchy, and do not consider
the cases where one table may have several children tables.
Our approach and DELPHI further differ in the similarity
measure. In DELPHI, the authors choose a non-symmetrical
measure (i.e., ‘A is duplicate of B’ does not imply that ‘B
is duplicate of A’), which determines the degree of contain-
ment of one element within another. As a consequence, the
difference of the two elements is not reflected in the result.
Our similarity measure, is both symmetrical and takes into
account not only similarity but also differences of the com-
pared elements.

There is other work on identifying similar XML data.
However, most do not consider the accuracy (e.g., in terms
of recall and precision) of their similarity join. Rather, the
authors concentrate on fast execution of the algorithm: In
[6], the focus is on the efficient incorporation of tree edit dis-
tance in a framework performing approximate XML joins.
The authors present upper and lower bounds for the tree
edit distance, which are used as filters to avoid expensive
tree edit distance computations. They further introduce a

sampling method to effectively reduce the amount of data
examined during the join operation. Another solution has
been proposed in [10]. They present various filtering tech-
niques for structural and for content-based information in
tree-structured data. The filters are integrated in a so-
called filter-refinement architecture. Its goal is to reduce
the number of complex and time consuming distance calcu-
lations in the query process. They also focus on efficiency
and effectiveness of their filtering techniques, but not on the
effectiveness of the actual duplicate detection. The only ap-
proach we are aware of that considers recall and precision of
their XML similarity joins is [4]. They present four different
strategies to define the similarity function using the vector
space model. An experimental comparison of our work with
their results is under way.

8. CONCLUSION AND OUTLOOK
In this paper, we presented a generalized framework for

object identification and an XML-specific specialization.
The framework consist of three main components: (i) the
candidate definition that specifies what objects to compare,
(ii) the duplicate definition defining what information is part
of a candidate’s description and when two candidates are
duplicates. These definitions are processed by (iii) the du-
plicate detection component. Duplicate detection is divided
into six steps. The first three prepare the data for compar-
isons, whereas the remaining three perform the actual du-
plicate detection by pruning, comparing pairs of candidates,
and clustering pairs of duplicates.

Further, we presented an algorithm specifically geared to-
wards solving the problems of object definition and struc-
tural heterogeneity inherent to XML data. The DogmatiX
algorithm for XML duplicate detection uses heuristics to de-
termine candidate descriptions domain-independently. Fur-
thermore, it uses a domain-independent similarity measure
tailored to hierarchical and semi-structured XML data.

Through experimental evaluation of the effectiveness of
the similarity measure, we have seen that it yields good re-
sults in terms of recall and precision when adequate heuris-
tics are chosen. But clearly the choice of the best heuristic
is not trivial, and future investigation will include automat-
ing the choice of a good heuristic by exploiting the XML
Schema and statistics about the data. Additional experi-
ments in this paper consider the effectiveness of the object
filter, used to reduce the number of pairwise candidate com-
parisons. They showed that the candidate filter is effective
in pruning candidates that are not duplicates of any other
candidate.

We intend to further validate our similarity measure by
comparing its effectiveness to other similarity measures
when applied to XML. Preliminary experiments have
shown that our similarity measure performs better than
other approaches for data from heterogeneous data sources,
but we still need to validate this observation. Furthermore,
we intend to explore the automation of the selection of
candidates, so that no domain-knowledge whatsoever is
required. Another very important aspect in object identi-
fication only marginally considered yet, is the efficiency of
the approach.

Acknowledgment. This research was supported by
the German Research Society (DFG grant no. NA 432).

9. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.

Eliminating fuzzy duplicates in data warehouses. In
International Conference on Very Large Databases, Hong
Kong, China, 2002.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
information retrieval. ACM Press / Addison-Wesley, 1999.

[3] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In International
Conference on Knowledge Discovery and Data Mining,
Washington, DC, 2003.

[4] J. C. Carvalho and A. S. da Silva. Finding similar identities
among objects from multiple web sources. In CIKM-2003
Workshop on Web Information and Data Management,
pages 90–93, New Orleans, Louisiana, USA, 2003.

[5] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C. Saita. Declarative data cleaning: Language, model, and
algorithms. In International Conference on Very Large
Databases, pages 371–380, Rome, Italy, 2001.

[6] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and
T. Yu. Approximate XML joins. In International
Conference on Management of Data, pages 287–298,
Madison, Wisconsin, USA, 2002.

[7] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In International Conference
on Management of Data, pages 127–138, San Jose, CA,
May 1995.

[8] M. A. Jaro. Probabilistic linkage of large public health data
files. Statistics in Medicine, 14(5–7):491–498, 1995.

[9] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in
large data sets. In International Conference on Database
Systems for Advanced Applications, Kyoto, Japan, 2003.

[10] K. Kailing, H.-P. Kriegel, S. Schnauer, and T. Seidel.
Efficient similarity search for hierarchical data in large
databases. In International Conference on Extending
Database Technology, pages 676–693, Heraclion, Crete,
2004.

[11] E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson.
Entity identification in database integration. In
International Conference on Data Engineering, pages
294–301, April 1993.

[12] A. E. Monge and C. P. Elkan. An efficient
domain-independent algorithm for detecting approximately
duplicate database records. In SIGMOD-1997 Workshop
on Research Issues on Data Mining and Knowledge
Discovery, pages 23–29, Tuscon, AZ, May 1997.

[13] M. Neiling and S. Jurk. The object identification
framework. In KDD03 Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, Washington DC, 2003.

[14] D. Quass and P. Starkey. Record linkage for genealogical
databases. In KDD-2003 Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, pages 40–42,
Washington, DC, 2003.

[15] E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
Volume 23, pages 3-13, 2000.

[16] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In International
Conference on Very Large Databases, pages 381–390,
Rome, Italy, 2001.

[17] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In International Conference on
Knowledge Discovery and Data Mining, Edmonton,
Alberta, 2002.

[18] M. Weis and F. Naumann. Duplicate detection in XML. In
SIGMOD-2004 Workshop on Information Quality in
Information Systems, pages 10–19, Paris, France, 2004.

[19] W. E. Winkler. Advanced methods for record linkage.
Technical report, Statistical Research Division, U.S. Census
Bureau, Washington, DC, 1994.

