Fuzzy Duplicate Detection on XML Data

Melanie Weis

Humboldt-Universitiat zu Berlin
Unter den Linden 6, Berlin, Germany
mweis@informatik.hu-berlin.de

Abstract

XML is popular for data exchange and data
publishing on the Web, but it comes with er-
rors and inconsistencies inherent to real-world
data. Hence, there is a need for XML data
cleansing, which requires solutions for fuzzy
duplicate detection in XML. The hierarchical
and semi-structured nature of XML strongly
differs from the flat and structured relational
model, which has received the main attention
in duplicate detection so far. We consider four
major challenges of XML duplicate detection
to develop effective, efficient, and scalable so-
lutions to the problem.

1 Introduction

Data cleansing is an issue of critical practical impor-
tance. It is required to ensure high data quality in
scenarios such as report generation over data ware-
houses and CRM. Another application is data integra-
tion, where data from distributed and heterogeneous
data sources should be combined into a unique, com-
plete, and correct representation for every real-world
object. A crucial subtask in data cleansing is fuzzy
duplicate detection (duplicate detection for short). It
resolves which entries in a data source actually repre-
sent the same real-world object. Fuzzy duplicates are
not trivial to detect, because several inconsistencies,
such as spelling errors, missing information, and in-
complete information, require more sophisticated tech-
niques than comparisons based on equality.

Past research has mainly focused on duplicate de-
tection on relational data. As XML has become a
standard for data exchange and data publishing on

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

the Web, concerns in XML data quality and efforts to
integrate XML data are justified. Hence, algorithms
for XML duplicate detection are required. We explore
solutions to XML duplicate detection, considering the
following aspects.

Real-world object vs. Object description. In
relations, we can easily distinguish between real-world
objects and object descriptions (ODs). A relation
represents objects whose description is provided by
the attributes of the relation. For example, re-
lation BOOK(ISBN,TITLE,YEAR) describes real-world
BOOK objects by their 1sBN, TITLE, and YEAR. In
XML, all data is represented by XML elements, so
there is no clear structural distinction between objects
and their ODs. Consequently, the task of determining
ODs, which is refereed to as description selection, is
challenging in XML.

Structural Heterogeneity. The XML data model
allows structural differences for XML elements that
represent the same kind of real world object. We dis-
tinguish two kinds of structural differences, namely
schematic heterogeneity and instance heterogeneity.
Schematic heterogeneity occurs when two different
XML elements represent the same real world object.
For example, <MoviE> and <F1LM> both represent the
same type of real-world object but are different ele-
ments in the schema. Instance heterogeneity signifies
that two instances complying to the same schema can
differ in their XML representation, e.g., in the number
of occurrences of an element, or the order of elements.
Element Dependencies. Due to the hierarchical
structure of XML, elements relate to their ancestors
and descendants. These relationships can be consid-
ered to improve duplicate detection. For instance, two
<c1iTy> elements with text Los Angeles are nested un-
der different <counTRY> elements with text USA and
Chile. Although the city names are identical, we can
detect that they are not the same city in the real-world,
because they are in different countries.

Before we define our four research challenges in
Sec. 3, we briefly discuss related work in Sec. 2. In
sections 4 to 7, we discuss solutions to each of the four
challenges. Sec. 8 describes the data sets used to eval-
uate our approaches, and we conclude in Sec. 9.

2 State of the Art

Research on fuzzy duplicate detection has mainly con-
centrated on efficiently and effectively finding dupli-
cate records in relational data. Due to space limita-
tions, we only highlight a few solutions in this sec-
tion. We classify approaches into two areas: domain-
dependent solutions, such as the ones proposed in
[4, 10], assume a certain domain and the help of hu-
man experts to calibrate algorithms. Examples of
domain-independent approaches are [7, 5]. All these
approaches have in common that description selection
and structural heterogeneity are not considered be-
cause the problems do not arise in relational duplicate
detection. The work presented in [1] detects dupli-
cates in hierarchically organized relations by consider-
ing data of tables related to the object table through
foreign keys. In this context, instance heterogene-
ity has to be considered but description selection and
schematic heterogeneity are still not an issue. There
is work on identifying similar hierarchical data and
XML data. However, most work does not consider
the effectiveness of the similarity join. Rather, the au-
thors concentrate on fast execution of the algorithm
[3, 6]. In [3], the focus is on the efficient incorporation
of tree edit distance in a framework performing ap-
proximate XML joins. The authors present upper and
lower bounds for the tree edit distance, which are used
as filters to avoid expensive tree edit distance compu-
tations. They further introduce a sampling method to
effectively reduce the amount of data examined during
the join operation. The only approach we are aware of
that considers recall and precision of XML similarity
joins is [2]. They present four different strategies to
define the similarity function using the vector space
model.

3 Research Tasks

The general problem of duplicate detection, be it in
relational or XML data, can be divided into four sub-
tasks, and in consequence into four research questions.
In this section, we discuss why these challenges are par-
ticularly tackling in XML.

Challenge 1: Description Selection defines which
information describes an XML element that is consid-
ered as an object. As we have seen in Section 1, this
task is not trivial for XML data because we cannot
distinguish schema elements representing objects from
schema elements describing objects. We consider two
ways of obtaining object description selections. The
first is manual definition, the second is automation.
We have followed both approaches and have developed
both a GUI to specify object descriptions and heuris-
tics that automatically come up with object descrip-
tions of their own. While the first solution is merely an
engineering feat, the second is an interesting research
challenge that is addressed in Sec. 4.

Challenge 2: Duplicate Classifier. Generally, a
duplicate classifier takes a pair of objects as input and
classifies them as duplicates or non-duplicates, based
on their ODs. Domain-dependent classifiers have the
advantage of experts defining thresholds for similarity
values and there are many commercial products mak-
ing use of this. A more interesting challenge is to find
a domain-independent classifier that performs well in
many different scenarios. The problem becomes even
more challenging when regarding XML data, because
classifiers not only have to deal with data, but also
with instance heterogeneity and schematic heterogene-
ity of objects. We discuss possible solutions in Sec. 5.
Challenge 3: Comparison Strategy. We need to
perform duplicate detection efficiently. Efficient so-
lutions for relational data take into account a single
relation - for XML data things become more complex:
A full duplicate detection run must detect duplicates
at every level of the hierarchy. The research challenges
we address to increase efficiency are strategies to tra-
verse this hierarchy and methods of altogether avoid-
ing comparisons while only slightly compromising the
quality of the result, which is presented in Sec. 6.
Challenge 4: Scalability. Automatic duplicate de-
tection is particularly relevant for large data sets. Here
the research challenge is to minimize the number of
runs across the data and thus the number of disk ac-
cesses. One question to be answered is to what degree
relational and XML databases can support the dupli-
cate detection process and to what degree calculations
are performed by applications on top. Ideas are pre-
sented in Sec. 7.

Good solutions to these problems already exist for
relational data. We address them in the XML scenario
considering the additional problems described above.

4 XML Description Selection

Knowing ODs is necessary for duplicate detection, be-
cause they represent the information that is used to
classify objects as duplicates or non-duplicates. Ide-
ally, an OD includes information that characterizes a
particular object, such as a book’s ISBN, and does not
vary depending on external influence (e.g., who wrote
the book’s review). In this section, we describe how
ODs can be determined automatically in XML.

4.1 Using Schema Information

The concepts described in this subsection are pre-
sented in [9], so we only give a condensed description
here and refer readers to [9] for details. We introduce
two heuristics to select XML elements as part of an
OD of an XML object, based on the XML schema
the data complies to. The two heuristics are based
on the observation that attributes describing an ob-
ject are usually defined in proximity of the XML ele-
ment that represents the object, called the object el-
ement. The two heuristics are illustrated in Fig. 1,

where we select description elements for the object el-
ement <MovIE>. The first heuristic hj selects the next
k schema elements in breadth-first order (top figure,
where k = 5). The second heuristic uses a radius r
that selects all schema elements on the ancestor axis
(hrq) or the descendants axis (h,q) that do not differ
in depth to <MoviE> by more than r.

=1
(Y

=1 o] [earfasiar,

name | |address

[Selected by hy, ry =1
[Selected by h,

2

[ISelected by h,, k=5

r,=1

ra’ 'a

Figure 1: Two heuristics for description selection

We further introduce conditions that prune schema
elements selected by the heuristic from the OD. The
conditions are based on content model, data type, and
cardinality of XML elements (minOccurs, maxOccurs)
as defined by an XML Schema.

4.2 Using Instance Statistics

We consider using statistics on the actual XML data
in addition to schema information. Statistics can be
collected either on the structure of the instance XML
document or on the content of XML elements. In the
following, we denote by od an XML element included
by a heuristic in the OD of an object element o. For in-
stance, in the bottom figure of Fig. 1, o is the <MmovIE>
element and od can be any of the dark shaded ele-
ments.

Statistics on XML Element Structure. Our first
statistic captures how often an instance of o includes
a particular number of instances of od. Examples
are shown in Fig. 2. The left histogram shows the
frequencies of the number of <TITLE> elements per
<MoviIE>. 8,000 movies have exactly one title, opposed
to 2,000 movies nesting two title elements. When
a histogram shows that a majority of instances have
one occurrence, although the element is declared with
max0ccurs=unbounded, we declare it as loose 1:1 re-
lationship. We prefer elements with loose 1:1 relation-
ships over elements with 1:N relationships for ODs
because this leverages the problem of instance het-
erogeneity for comparisons. The second histogram of
Fig. 2 shows that most movies do not have a <YEAR>
element at all, indicating a tight optional relationship.
Such elements can be pruned from the OD selection
because they will rarely provide useable information
for comparisons.

Statistics on XML Element Content. We can
collect statistics on the actual content to prune ele-
ments that are unlikely to be useful in later steps from
an OD selection. More specifically, we collect the el-

10000 10000

5000 5000

frequency
frequency

0 0
0 1 2 3 0 1 2 3

#title/movie #year/movie

Figure 2: Statistics on Structure

ement frequency of values for every XML element od.
The element frequency for the content of od is defined
as the number of elements of type o in which od oc-
curs with same content. For instance, in Fig. 3, the
left histogram shows that the <YEAR> element has two
distinct values that each occur in roughly 50% of all
<MoVIE> elements. The good news is that the value
is never null, so when the element exists it always has
a value that we can use for comparisons. However,
the value is common to so many movies that it can-
not be considered as very descriptive of a particular
movie. Therefore, it is not suited in an OD. On the
other hand, <T1TLE> has a wide range of values that all
have low frequencies. Consequently, titles distinguish
movies fairly well and are suited as OD.

600 1500

N
o
o

1000

N
=]
S
o
=]
]

Element Frequency
Element Frequency

0
NULL BCDEFGH I J

Title Value

NULL 2000 2001
Year Value

Figure 3: Statistics on Content

5 XML Duplicate Classifier

Once ODs are available, we need to define how objects
are compared based on their ODs. Several duplicate
classifiers that consider data exist for relational ap-
proaches. In XML, instance and schematic heterogene-
ity need to be considered as well. We distinguish three
approaches for defining domain-independent XML
classifiers that all use a similarity measure to classify
pairs of objects as duplicates or non-duplicates. First,
we investigate how classifiers solely based on data per-
form in XML. Second, we define classifiers that con-
sider instance heterogeneity and data. The third kind
of classifiers takes into account schematic heterogene-
ity as well.

Considering Data. In relations where only tuples
are compared with each other, the structure is uni-
form across all tuples, and attributes are single valued
and hence there is only one possible comparison for
each attribute. In this scenario, which can be mapped
to some XML scenarios such as XML data generated
from relations, classifiers based on data similarity per-
form well. A commonly used similarity measure for

string data is the edit distance (the minimum num-
ber of insert, delete and change operations necessary
to transform one string into another). When applied
to tuples, a sample classifier compares attribute data
pairwisely using edit distance, and if 75% of all at-
tributes between two tuples are similar according to
edit distance, they are considered duplicates. This eas-
ily maps to XML where attributes are XML elements
that are part of ODs and attribute values are the cor-
responding text nodes.

Considering Instance Heterogeneity. Well-
structured XML data is not the general case, so we
have to deal with differences in the structure of two
XML elements’ ODs. In data integration, data com-
ing from different data sources is usually mapped to
a global schema. If the global schema is XML, the
mapped XML objects have the same structure on
schema level, but may differ in their instance struc-
ture. In this case, classifiers that consider data and
instance heterogeneity are required. We propose such
a classifier in [9]. It addresses the problem of multiple
occurrences of a description element within an OD by
computing the best similarity match between multi-
ple occurrences in the two ODs. For example, let two
<COUNTRY> elements ¢; and co nest <CITY> elements.
The three text nodes of <ciTy> elements under c¢;
contain San Jose, Gilroy, San Francisco, and cs nests
cities Gillroy, and San Francesco. The best match is
(Gilroy,Gillroy), (San Francisco, San Francesco) and
the overall similarity is high because all cities from
co match cities from c¢;. Determining the best match
among all possible matches is not trivial. One possi-
bility is to use stable marriage.

Considering Schematic Heterogeneity. The
third and most general class of classifiers considers
schematic heterogeneity in addition to data and in-
stance heterogeneity. A similarity measure consid-
ering schematic heterogeneity can use tree edit dis-
tance to calculate the minimum cost of transform-
ing the schema of one object into the schema of the
other object. Data and instance heterogeneity are then
computed on the transformed representation and are
weighed according to the tree edit distance.

We consider using statistics to support or even au-
tomate the choice of a classifier for a given application.
For instance, we can derive from statistics on the value
distribution (see Fig. 3) which data type prevails. De-
pending on whether data is mainly text, date/time, or
numerical, we choose an appropriate similarity mea-
sure. Considering instance heterogeneity is only nec-
essary if the histograms of the occurrence frequency
of elements (see Fig. 2) show a high variance in the
distribution.

6 Comparison Strategy

A full duplicate detection run on XML data requires
the detection of duplicates at every level of the hierar-

chy. We present three traversal strategies that we de-
velop with efficiency in mind. The goal is to prune ex-
pensive computations (mainly pairwise comparisons)
to reduce the overall duration of duplicate detection,
either by exact pruning and heuristical pruning.

Exact pruning saves expensive operations and prov-
ably does not alter the final result of duplicate detec-
tion. An example for exact pruning is the filter f to the
similarity measure sim that we define in [8]. Two ob-
jects are considered duplicates if sim is above a given
threshold 6. The filter f is defined as an upper bound
to sim. If f < 6, it follows that sim < 6, so sim is
not computed because it will provably not find a du-
plicate. Of course, such a filter only makes sense when
the complexity of the filtering step is below the com-
plexity for computing the similarity of pruned pairs.

Heuristical pruning does not guarantee that saving
comparisons does not alter the final result of duplicate
detection. We consider three comparison strategies
that classify as heuristical pruning, namely a bottom-
up, a top-down, and a relationship-aware strategy.
Top-down strategy. Inspired by work presented in
[1], we developed a bottom-up comparison strategy,
published in [8]. We limit pairwise comparisons to
XML elements that have the same or similar ancestors.
This works well when nesting represents a 1:N relation-
ship where there is exactly one possible parent for an
element. By comparing elements in a breadth-first or-
der from the root to the leaves, we detect duplicates in
ancestors of every element first. This maintains good
effectiveness because we limit comparisons to elements
with equal ancestors, and at the same time, efficiency
is greatly improved because we prune all pairwise com-
parisons of elements with different ancestors.
Bottom-up strategy. The drawback of the top-
down approach is that its effectiveness degrades when
the strict 1:N relationship does not hold, a common
case in XML data. Furthermore, XML data is often
stored in nested leaf nodes, and the data required for
comparing ancestors is precisely the data in these leaf
nodes. We consider a traversal strategy that first com-
pares all leaf nodes and then only compares ancestors
that have at least one child in common. This way,
we save comparisons on ancestors and effectiveness re-
mains good even if strict 1:N relationships do not hold.
Relationship-aware strategy. Both previous ap-
proaches consider relationships between nested ele-
ments in one direction only. However, it is possible
that elements influence each other in both directions.
For example, movies with same actors are likely to be
duplicates, and actors playing in the same movies are
also likely to be duplicates. So detecting duplicates in
movies influences duplicate detection in actor, and vice
versa. We cannot afford recomputing similarities and
perform duplicate detection for both movies and actors
alternately until the result converges, which is in prin-
ciple possible, although this algorithm may be best in

terms of effectiveness. A compromise is to develop an
algorithm that, based on the influence that elements
have on each other determines an order of compar-
isons where each pairwise similarity is computed at
most once, while maximizing the benefit of element
dependency.

7 Scalability

In order to efficiently detect duplicates on large data
sets, we have to consider scalability. One question
that we address is to what degree relational and XML
databases can support the duplicate detection process
and to what degree calculations are performed by ap-
plications on top. Databases can be used as storage
for information necessary for comparisons. Currently,
we use a relational database to store ODs. We need to
define a retrieval strategy for objects that minimizes
database accesses when we perform pruning and pair-
wise comparisons in main-memory. Today’s databases
can perform much more than storing and retrieving
large amounts of data. A database can support auto-
matic description selection by gathering the necessary
statistics. Collecting statistics is commonly used for
query optimization, so we will explore which statis-
tics are collected for XQuery optimization and whether
we can use them. Pruning of comparisons as well as
pairwise comparisons can be performed by a database,
e.g., by defining filters and similarity measures as user
defined functions (UDFs) in relational databases. An
interesting issue is how to optimize the underlying cal-
culations.

8 Experiments

We need to evaluate the proposed measures, heuris-
tics and methods against large, realistic, and interest-
ing data sets. We conduct experiments on synthetic
as well as real world data. We use synthetic data to
control several parameters, such as types and amount
of errors, and probability of duplicates. We generate
duplicates from clean data using a tool developed in
our group!. Our real world scenarios currently include
large real-world data sets from the CD domain? and
movie domain® ,*. We plan to classify duplicates by
hand on the FILMDIENST movie dataset, containing
data about roughly 56000 movies and 180000 actors,
using a tool that supports manual duplicate detection
and which is currently under development.

9 Conclusion

Our research in XML duplicate detection addresses
four major challenges. First, we investigate on how
object descriptions can be selected automatically,
a difficult task in XML where objects and object

Lhttp://www.informatik.hu-berlin.de/mac/dirtyxml/
2FREEDB: http://www.freedb.org/

3IMDB: http://www.imdb.com/

4FILMDIENST: http://film-dienst.kim-info.de/

descriptions are both represented by XML elements.
Second, we define new domain-independent duplicate
classifiers that take into account not only data, but
also structural diversity of XML objects. Third, we
define comparison strategies that make use of element
dependencies to improve efficiency without jeopar-
dizing effectiveness. Finally, we consider scalability
by investigating how relational and XML databases
can support the duplicate detection process. By
considering the problem of XML duplicate detection
under the aspects of effectiveness, efficiency and
scalability, we believe that our insights and solutions
will significantly contribute to solving XML duplicate
detection for a wide range of applications.

Acknowledgments. This research is supported
by the German Research Society (DFG grant no. NA
432). Thanks to my thesis advisor Felix Naumann for
helpful discussions.

References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In
Proc. of VLDB, Hong Kong, China, 2002.

[2] J. C. Carvalho and A. S. da Silva. Finding similar
identities among objects from multiple web sources. In
CIKM-2003 Workshop on Web Information and Data
Management, pages 90-93, New Orleans, LA, 2003.

[3] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava,
and T. Yu. Approximate XML joins. In Proc. of
SIGMOD, pages 287-298, Madison, WI, 2002.

[4] M. A. Hernéndez and S. J. Stolfo. The merge/purge
problem for large databases. In Proc. of SIGMOD,
pages 127-138, San Jose, CA, 1995.

[5] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage
in large data sets. In Proc. of DASFAA, Kyoto, Japan,
2003.

[6] K. Kailing, H.-P. Kriegel, S. Schnauer, and T. Sei-
del. Efficient similarity search for hierarchical data in
large databases. In Proc. of EDBT, pages 676—693,
Heraclion, Crete, 2004.

[7] A. E. Monge and C. P. Elkan. An efficient domain-
independent algorithm for detecting approximately
duplicate database records. In SIGMOD-1997 Work-
shop on Research Issues on Data Mining and Knowl-
edge Discovery, pages 23-29, Tuscon, AZ, 1997.

[8] M. Weis and F. Naumann. Duplicate detection in
XML. In SIGMOD-2004 Workshop on Information
Quality in Information Systems, pages 10-19, Paris,
France, 2004.

[9] M. Weis and F. Naumann. Dogmatix tracks down
duplicates in XML (to appear). In Proc. of SIGMOD,
Baltimore, MD, 2005.

[10] W. E. Winkler. Advanced methods for record linkage.
Technical report, Statistical Research Division, U.S.
Census Bureau, Washington, DC, 1994.

