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Abstract. Detecting duplicates is a problem with a long tradition in
many domains, such as customer relationship management and data
warehousing. The problem is twofold: First define a suitable similarity
measure, and second efficiently apply the measure to all pairs of objects.
With the advent and pervasion of the XML data model, it is necessary to
find new similarity measures and to develop efficient methods to detect
duplicate elements in nested XML data.
A classical approach to duplicate detection in (flat) relational data is the
sorted neighborhood method, which draws its efficiency from sliding a
window over the relation and comparing only tuples within that window.
We extend the algorithm to cover not only a single relation but nested
XML elements. To compare objects we make use of XML parent and
child relationships. For efficiency, we apply the windowing technique in
a bottom-up fashion, detecting duplicates at each level of the XML hier-
archy. Experiments show a speedup comparable to the original method
and the high effectiveness of our algorithm in detecting XML duplicates.

1 Introduction

The problem of duplicate detection has been considered under many different
names, such as record linkage[1], merge/purge[2], entity identification [3], and
object matching [4]. It generally addresses the problem of finding different rep-
resentations of a same real-world object, which we refer to as duplicates. Various
representations are due to errors, such as typographical errors, inconsistent rep-
resentations, synonyms, and missing data. Examples for applications where data
cleansing and hence duplicate detection are a necessary (pre)processing step in-
clude data mining, data warehouses, and customer relationship management.
Another scenario where duplicates naturally occur and need to be identified is
data integration, where data from distributed and heterogeneous data sources
are combined to a unique, complete, and correct representation for every real-
world object.

Most approaches address the problem for data stored in a single relation,
where a tuple represents an object and duplicate detection is performed by com-
paring tuples. In most cases however, data is stored in more complex schemata,



e.g., in relational database tables that are related through foreign key constraints,
or, in the case of XML data, as elements that are related through nesting. Only
recently has duplicate detection been considered for data other than an instance
of a single relation [5–8].

The work presented in this paper focuses on duplicate detection in XML.
More specifically, we present an approach that adapts the sorted neighborhood
method (SNM)—a very efficient approach for duplicate detection in a single
relation—to complex XML data consisting of several types of objects related to
each other through nesting. Similarly to the relational SNM, we compare XML
elements describing the same type of object. First, our XML adaptation to SNM,
called SXNM, generates a key for every element subject to comparisons in the
XML data source. This phase is referred to as key generation. In the second
phase, namely the duplicate detection phase, the elements are sorted using these
keys and a sliding window is applied over the sorted elements. Assuming that
the key-order places duplicates close to one another, we drastically improve ef-
ficiency while maintaining good effectiveness by comparing elements within the
window. Relationships between different types of objects are exploited by our
similarity measure, which considers duplicates among descendants, in addition
to the information defined manually to describe the particular object (a so called
object description). Therefore, we compare XML elements in a bottom-up fash-
ion. Experiments show that SXNM is an effective and efficient algorithm for
duplicate detection in XML data.

The remainder of this paper is structured as follows: In Sec. 2, we describe
related work with a special focus on the relational sorted neighborhood method.
Section 3 describes how sorted neighborhoods are used in XML. In Sec. 4, we
show results of evaluating our algorithm. To conclude, we provide a summary of
the paper and directions for further research in Sec. 5.

2 Related Work

2.1 Duplicate detection

The problem of duplicate detection, originally defined by Newcombe [9] and for-
malized in the Fellegi-Sunter model for record linkage [10] has received much
attention in the relational world and has concentrated on efficiently and effec-
tively finding duplicate records. Some approaches are specifically geared towards
a particular domain, including census, medical, and genealogical data [1, 11, 12],
and require the help of a human expert for calibration [13]. Other algorithms
are domain-independent, e.g., those presented in [3, 14].

Recent projects consider detecting duplicates in hierarchical and XML data.
This includes DELPHI [5], which identifies duplicates in hierarchically organized
tables of a data warehouse using a top-down approach along a single data ware-
house dimension. The algorithm is efficient because it compares only children
with same or similar ancestors. This top-down approach, however, is not well-
suited for 1:N parent-child relationships. As an example, let us consider <movie>



elements nesting <actor> elements. The top-down approach prunes comparisons
of children not having the same ancestors, an assumption that misses duplicates
for an M:N relationship between parent and child such as movie and actor, be-
cause an actor can play in several different movies. Our bottom-up approach
overcomes these issues. In the example of movies nesting actors, we first com-
pare actors independently of movies, and then compare movies also considering
duplicates found in actors. Consequently, duplicate actors can play in different
movies whereas duplicate movies are detected through co-occurring actors. We
compensate the additional comparisons by using sorted neighborhoods.

Work presented in [6, 15] describes efficient identification of similar hierar-
chical data, but it does not describe how effective the approaches are for XML
duplicate detection. At the other end of the spectrum, we have approaches that
consider effectiveness (in terms of recall and precision) [7, 16, 17]. For exam-
ple, Dong et al. present duplicate detection for complex data in the context of
personal information management [7], where different kinds of entities such as
conferences, authors, and publications are related to each other, giving a graph-
like structure. The algorithm propagates similarities of entity pairs through the
graph. Any similarity score above a given threshold can trigger a new propaga-
tion of similarities, meaning that similarities for pairs of entities may be com-
puted more than once. Although this improves effectiveness, efficiency is compro-
mised. In [8], we presented the domain-independent DogmatiX algorithm, which
considers both effectiveness by defining a suited domain-independent similarity
measure using information in ancestors and descendants of an XML element,
and efficiency by defining a filter to prune comparisons. However, in the worst
case, all pairs of elements need to be compared, unlike the sorted neighborhood
method that has a lower complexity.

2.2 The Sorted Neighborhood Method

The Sorted Neighborhood Method (SNM) is a well known algorithm for the
efficient detection of duplicates in relational data [13]. We describe it in detail,
as the method introduced in this paper is based on SNM. Given a relation with
possibly duplicate tuples, the algorithm consists of three main steps:

1. Key Generation: For each tuple in the relation a key is extracted according
to a given key definition specified by an expert. Normally a generated key
is a string consisting of concatenated parts of the tuple’s contents. Each key
is linked with a reference to its tuple. Consider a relation MOVIE(TITLE,

YEAR) and let a tuple of the relation be Mask of Zorro, 1998. Let a key
be defined as the first four consonants of the title and the third and fourth
digit of the year. Then, the key value for the sample tuple movie is MSKF98
(underlined characters).

2. Sorting : The keys generated in Step 1 are sorted lexicographically.
3. Duplicate Detection: A window of fixed size slides over the sorted keys and

searches duplicates only among the tuples referenced in the window, thus
limiting the number of comparisons. The size of the window is crucial for



the effectiveness of the algorithm and the quality of the result. With a small
window only a small set of elements are compared, leading to a relatively
fast duplicate detection, though with possibly poor recall. A large window
results in a slower algorithm, but the chance to find duplicates is better as
more comparisons are performed.

To compare tuples referenced by keys in the window SNM uses an equational
theory combined with a similarity measure. The equational theory defines under
which circumstances two tuples are considered duplicates, e.g., if a person’s name
and address are sufficiently similar.

Using the transitive closure on the detected duplicates increases the number
of duplicates found. Moreover, the multi-pass method, which executes SNM sev-
eral times with different keys, significantly increases recall [13]. For large amounts
of data as well as for repeatedly updated data there exists an incremental version
of the method dealing with how to combine data that have already been dedu-
plicated with new data packets. The basic SNM is very effective for duplicate
detection in relational data and achieves high recall and precision values. Next,
we adapt the method to XML.

3 SXNM – The Sorted XML Neighborhood Method

We apply the idea of the SNM to nested XML data and call our algorithm the
Sorted XML Neighborhood Method (SXNM). It consists of two independent
phases: The key generation and the duplicate detection phase. Figure 1 shows
the basic workflow of SXNM with its two phases. The key generation algorithm
uses the XML data source and some configuration as its input and returns the
generated keys. Note that our algorithm assumes that the XML data has a
common schema. That is, elements having the same XPath represent the same
type of object, and elements with different XPath have different object types
and are not compared. This assumption can be satisfied by applying schema
matching and data integration into a common target schema prior to SXNM.
During the duplicate detection phase, elements are sorted according to their
generated keys and a sliding window is applied over the elements, possibly using
multiple passes if multiple keys have been defined. To detect duplicates for every
element in the document, which is traversed in a bottom-up fashion, information
about previously detected duplicates, i.e., duplicates in descendants, is used.
Details about each step are provided in separate subsections as indicated in
Fig. 1, but first, we illustrate our approach with an example.

Fig. 1. The SXNM workflow (with section numbers).



3.1 Illustrative Example

As input SXNM requires some configuration in addition to the XML data on
which duplicate detection is applied. The configuration includes (i) the definition
of what object types are subject to deduplication, so called candidates, (ii) the de-
finition of what data describes an object, its object description (OD), and (iii) the
definition of keys. To illustrate the configuration, we consider the <movie> el-
ement in Fig. 2(a). The ellipses, rectangles, and dashed ellipses depict XML
elements, text nodes, and attributes, respectively. Matrix, the <title> content
of the <movie> element, is referenced by the relative path title/text(), the text
node of the <title> child. Further relative paths might include
people/person[1]/text() and @year.

(a) A single movie element. (b) Two movies with children.

Fig. 2. Two examples for XML data.

In the configuration, which is itself an XML document, we define all candi-
dates using relative paths. For the bottom-up traversal, the algorithm considers
only the subtrees consisting of candidates. Consider a simplified structure of an
XML data source depicted in Fig. 3(a). Candidates are shaded, and for only
these are keys and ODs defined as we will see shortly. The numbers and ranges
at the elements indicate the possible number of children. Note that for the XML
elements <actor>, <title>, and <person> only the object descriptions can be
used for duplicate detection, whereas for the XML elements <screenplay> and
<movie> information about duplicates in descendants can be used additionally.
Fig. 3(b) shows the subtrees consisting of candidates extracted only from the
XML structure in Fig. 3(a). The numbers at the elements indicate the order in
which the duplicate detection is executed.

(a) XML tree structure. (b) Candidate trees.
Fig. 3. XML candidates in an XML data source (a) and extracted subtrees (b).

For every candidate the object description and key are defined as exemplarily
shown in Tab. 1 for the particular candidate <movie>. The tables hold the defin-



ition for two keys for <movie> elements (relations KEYmovie,1 and KEYmovie,2)
and the object descriptions definition (in ODmovie). In the pattern attribute of
the key relations K, C, and D stand for consonants, characters, and digits respec-
tively. The number after the character type indicates its position in the text value
of the relative path referenced by the pid attribute and stored in relPath. For
example, the first key for <movie> elements uses relative paths 1 and 3, which
are title/text() and @year. From the text value of path 1, the key definition
defines a key consisting of the first two consonants from path 1 concatenated
with the third and fourth digit from path 3. Applying both key definitions to
the <movie> element of Fig. 2(a) we obtain the keys MT99 and 5MA.

Table 1. Relations defining the keys and object descriptions for <movie> elements.

(a) PATHmovie

id relPath

1 title/text()

2 @ID

3 @year

(b) ODmovie

pid relevance

1 0.8

3 0.2

(c) KEYmovie,1

pid order pattern

1 1 K1,K2

3 2 D3,D4

(d) KEYmovie,2

pid order pattern

2 1 D1

1 2 C1,C2

Using all these definitions provided in the configuration, we begin key gen-
eration. To save an extra pass of the XML data, we simultaneously extract the
object descriptions that are necessary for the second phase. The result of the first
phase is a temporary relation GK (Generated K eys) for every candidate storing
the generated keys as well as the corresponding object descriptions. For exam-
ple, using the definitions for the movie candidate in Tab. 1, we obtain GKmovie

shown in Tab. 2(a). The sample tuple describes the movie of Fig. 2(a). Further
tuples represent other movies stored in the XML document.

Table 2. Temporary tables used by SXNM

(a) Subset of the GKmovie relation.

elID key1 key2 od1 od2

1 MT99 5MA Matrix 1999

... ... ... ... ...

(b) Several clusters in CSperson.

cluster ID <person> elements

1 {te1,1, te1,3, te2,2}
4 {te1,2, te2,1}
8 {te2,3}

During each pass of the duplicate detection phase (there is one pass for every
defined key), GK is sorted according to a key. A sliding window is then applied
over the sorted table, and pairs of tuples within the same window are compared
using a similarity measure. The similarity measure is a combination of the simi-
larity of object descriptions and the similarity of children sets, if applicable. The
similarity measure is defined in Sec. 3.4. By applying the transitive closure over
duplicate pairs over all passes, we obtain clusters of duplicates. For every candi-
date, cluster sets are stored in a temporary table CS together with information
that can be used for computing similarities of ancestors. As an example, con-
sider the <movie> elements e1 and e2 in Fig. 2(b). Information about duplicates
in <person> elements helps to detect duplicates in <movie> elements. As the
result of duplicate detection in <person> elements, Tab. 2(b) shows clusters in
CSperson. We observe that e1 and e2 have two actors in common, namely Keanu



Reeves and Don Davis. Consequently, we conclude that e1 and e2 are similar
enough based on children data to be duplicates.

For every candidate, the result of duplicate detection can be retrieved from
the corresponding CS table for further processing. The following sections provide
formal definitions and descriptions for every phase of Fig. 1.

3.2 Configuration

In addition to the XML data to be deduplicated, our algorithm requires some
configuration. The configuration contains information about

– Candidates: the XML elements for which duplicates should be detected, and
which therefore need a generated key.

– Object description: which information (text elements) of candidates is used
for comparisons.

– Key definition: which information (text elements) of candidates is used to
generate keys.

– Key patterns: which parts of this information comprise the keys.

To distinguish specific XML elements and their corresponding XML schema
elements in the following, we use s as an element in an XML schema and e as
an instance of s.

Candidates are specified by their absolute XPath and are given a unique
name, which is required to associate configuration tables with temporary tables.
For example, the <movie> candidate of Fig. 3(a) is specified with the XPath
movie database/movies/movie and is assigned name = movie. To specify in-
formation necessary for key generation and duplicate detection for a single can-
didate, we use relative paths (relPath), i.e., XPath structures relative to the
candidate. Relative paths identify text nodes or attribute values that belong to
either the key or the object description of the candidate.

We construct separate relations for paths, keys, and object descriptions rel-
evant for comparisons of instances of an XML schema element s. We show ex-
amples in Table 1.

– PATHs(id, relPath) is the path relation containing all relative paths that
refer to information of an XML element, used for key definitions and object
descriptions. The id attribute contains a unique id of the relative path.

– The relation KEYs,i(pid, order, pattern) defines the ith key of s. The pid
attribute is a foreign key to id in PATHs and refers to the relative path of
the information that build parts of the key. The order attribute indicates the
position of the information in the key, and pattern describes what characters
to extract from a description referenced by the relative path. Note that we
allow an arbitrary number of keys for each relevant XML element, enabling
the use of the multi-pass variant of SNM [13].

– ODs(pid, relevance) is the object description relation (OD relation) indi-
cating the information that is compared between two instances of s. The
relevance attribute constitutes the relevancy (weighting) of the information,
which is used by our similarity measure, and pid references the id of PATHs.



In summary, several parameters are needed in conjunction with the XML
data source to provide input for the key generation algorithm. For an XML
schema element s, its parameters Ps = {PATHs, ODs,KEYs,1, . . . ,KEYs,n}
(where n is the number of keys defined for s) contain all relations needed for the
key generation algorithm. For the set S of all XML schema elements for which
definitions are made, the parameter set P =

⋃
s∈S{Ps} denotes the complete set

of parameters.

3.3 Key Generation

P provides the input for the key generation algorithm. Whilst this task for the
original SNM was to extract only the keys, the key generation algorithm of
SXNM extracts the keys as well as the object descriptions needed for compar-
isons, reading the given XML data in a single pass. The result of the key gener-
ation algorithm is GK, the set of generated keys, again stored in a relation. Let
S be the set of all XML schema elements, for whose instances duplicates should
be detected, and s ∈ S. The relation GKs = (eid, key1, . . . , keyn, od1, . . . , odn)
denotes the result of the key generation. The attribute eid contains the ID of the
respective XML element—for instance the position of the element in the data
source; key1, . . . , keyn and od1, . . . , odn contain the keys generated for this XML
element and the extracted object descriptions respectively. GK =

⋃
s∈S{GKs}

denotes the combination of all generated keys.

3.4 Duplicate Detection

In the duplicate detection step the generated keys in GK are processed. Along
with GK, the duplicate detection process takes several parameters:

– The parameter set P containing object description and their relevancies,
– the window sizes to use for the XML elements,
– thresholds needed to classify XML elements as duplicates and non-duplicates,
– information about when not to use descendants for duplicate detection.

We expect that a domain expert is able to set these parameters. We experienced
that performing duplicate detection both manually and automatically on a small
sample can help determine suitable parameters values.

As the main idea of SXNM is to use information about duplicates in descen-
dants, the order in which candidates are processed hast to be defined accordingly.
In the following, we start with a description of how duplicates for a single can-
didate are detected. Thereafter we describe the order in which candidates are
processed.

The general duplicate detection process. For each key attribute in GKs,
e.g., key1, the GKs relation is sorted according to the appropriate key attribute.
A sliding window of a specified size ws slides over the tuples in the sorted re-
lation, in analogy to the window in the relational SNM. For each pair of tuples
in the window, a similarity is computed based on their object description and
descendants, if available. If the similarity exceeds a given threshold, the corre-
sponding XML elements are classified as duplicates. The result of this multi-pass



method executed for s is a set of element ID pairs that represent duplicates. A
transitive closure algorithm is applied to the duplicates, resulting in the cluster
set CSs.

Definition 1 (Cluster Set). Let s be an element of an XML schema. CSs =
{C1, . . . , Cm}, m ≤ n is a cluster set where each cluster represents a real-world
object o, holds a unique cluster ID, and contains references to all XML data
instances of s represented by o. Each instance of s belongs to exactly one cluster
of the cluster set.

A cluster set is created for every candidate XML schema element. The clus-
ter sets can then be used to create a de-duplicated version of the XML data
source. Moreover, cluster sets help to detect and verify duplicates in other XML
elements, using a bottom-up duplicate detection process.

Bottom-up duplicate detection. In SXNM, the similarity of two XML ele-
ments can consist of (i) the similarity of their object descriptions (Def. 2) and
(ii) the similarity of their descendants (Def. 3).

Using information about key elements stored in P , the tree structure of the
entire XML document can be split into a set of trees by extracting all elements
s (Ps ∈ P ) from the XML document and preserving the ancestor-descendant
relationships. This was demonstrated in Figure 3. We need this tree set structure
to execute duplicate detection in a bottom-up fashion. The duplicate detection
process as described above can be executed on an extracted tree independently
from other extracted trees. For each tree, the process starts with the nodes
having the largest distance δ to the root node. It continues with the nodes
having distance δ − 1 etc. up to the root node.

Lacking descendants of their own, the similarity of elements that are instances
of the XML schema elements (represented by the leaf nodes of the extracted
tree structures) is based on the similarity of their object descriptions alone.
This is true also for other schema elements, for which the expert decided that
descendants should not be taken into account during duplicate detection.

Definition 2 (OD Similarity). Let e1 and e2 be two instances of schema
element s occurring together in a sliding window. Let ODs contain n entries
odej ,1, . . . , odej ,n; ri indicates the relevancy of path i as defined in the ODs rela-
tion. With φOD

i being a similarity function for the ith entry in ODs, the similar-
ity of the object descriptions of e1 and e2 is simOD

e1,e2
=

∑n

i=1
riφ

OD
i (ode1,i, ode2,i).

An example for a φOD function is the edit distance [18], with computes the
minimum number of operations needed to convert one string into another. Using
domain-knowledge, more accurate φOD functions can be used, e.g., a numeric
distance function for numerical values.

Except for XML elements that are leaf nodes where only the object descrip-
tion is available, duplicate detection for XML elements can be performed using
the similarity of their object descriptions and their descendants. As an XML
element can have descendants of several types, we start with the similarity of



individual descendants and combine the similarities of all descendants of this
XML element thereafter.

For two instances e1 and e2 of an XML schema element s having a descendant
schema element t, tej ,i denotes the i-th instance of t descendant of ej (j ∈ {1, 2}).
As our duplicate detection is a bottom-up process, duplicates in the instances
of t have already been detected, leading to the cluster set CSt, which helps to
detect whether e1 and e2 are duplicates. The function cid returns the unique
cluster ID of a cluster in a cluster set (cf. Def. 1), given a cluster set and an
instance of an element in the cluster set. Using cid we define lists of cluster IDs
for e1 and e2 and with them the descendant-based similarity of two elements:

le1
= (cid(te1,1, CSt), . . . , cid(te1,i, CSt)) = (id1, . . . , idi)

le2
= (cid(te2,1, CSt), . . . , cid(te2,j , CSt)) = (id1, . . . , idj)

Definition 3 (Descendants Similarity). The similarity of two instances e1

and e2 of an XML schema element s regarding a single descendant schema ele-
ment t is calculated using the φdesc

t function: simdesc
e1,e2,t = φdesc

t (le1
, le2

).

Let t1, . . . , tn be the n descendant schema elements of s. We use agg() to
obtain the combined similarity simDesc

e1,e2
for all instances of the descendants of e1

and e2: simDesc
e1,e2

= agg(simdesc
e1,e2,t1

, . . . , simdesc
e1,e2,tn

)

There are numerous possibilities for the φdesc and agg() functions. One ex-
ample for the first would be to calculate the ratio between the cardinalities of
the intersection and the union of le1

and le2
; this is our current implementation.

The agg() function could simply calculate the average of its arguments, or it
could weigh the importance of different descendants. Currently, we calculate the
average; future implementations will have declarations of different weights in the
configuration.

Consider the <movie> elements e1 and e2 in Fig. 2(b). Information about du-
plicates in <person> elements helps to detect duplicates in <movie> elements. As
the result of duplicate detection in <person> elements, Tab. 2(b) shows clusters
in CSt, t = person. This leads to le1

= (cid(te1,1, CSt), cid(te1,2, CSt), cid(te1,3, CSt)) =
(1, 4, 1) and le2

= (4, 1, 8). Using the similarity function proposed above we have

simdesc
e1,e2,t =

|le1
∩le2

|

|le1
∪le2

| = 2

3
.

Finally, to gain the resulting similarity for the XML elements e1 and e2 of the
same schema element s we combine simOD

e1,e2
and simDesc

e1,e2
. The result is simcomb

e1,e2
,

reflecting the final combined similarity of both XML elements. An example for
calculating the combined similarity is to weigh simOD

e1,e2
and simDesc

e1,e2
to gain

simcomb
e1,e2

. Our current implementation calculates the average of the two values.

Having executed the duplicate detection process for all instances of the de-
fined XML schema elements, we have a resulting cluster set for each of these
schema elements. What to do with this information remains up to the domain
specific application. A typical approach selects a prime representative for each
cluster and discards the others. More sophisticated approaches perform data
fusion by resolving conflicts among the different representations.



4 Evaluation

In this section we present various experimental results of SXNM and show that
this method is ready to detect duplicates in complex, large, and nested XML
data structures.

4.1 Data Sets

We use three different data sets for our experiments—both artificial and real-
world XML data. To generate artificial data, we use two tools consecutively:
The first is ToXGene1, which, using a template similar to an XML schema,
generates clean XML data sets. We assign an unique ID to the data objects
for identification. The second tool is the Dirty XML Data Generator2. It uses
the clean XML data and some parameters, e.g., the duplication probability, the
number of duplicates, and the errors to introduce into the duplicates, as its
input and generates dirty XML data according to the parameters. To observe
the recall, precision, and f-measure values we use the unique IDs of the clean
data objects. Of course these IDs are not made available to SXNM. The data
sets are described below. When not specified, the OD of a candidate is its text
node with relative path text() and relevance 1. Key definitions used in our
experiments are provided in Tab. 3.

Table 3. Configurations for the three data sets

(a) Data set 1 (art. movies)

candidate key relPath pattern

movie title/text() K1-K5

@year D3,D4
@length D1,D2
title/text() K1,K2

@genre C1,C2
title/text() K1-K4

(b) Data set 2 (CDs)

candidate key relPath pattern

disc artist[1]/text() K1-K4
year/text() D3,D4

did/text() C1-C4
dtitle[1]/text() C1-C4

genre/text() C1,C2
year/text() D3,D4
artist[1]/text() K1,K2
did/text() C1,C2

disc/tracks/title text() C1-C6

(c) Data set 3 (real-world movies)

candidate key relPath pattern

disc dtitle[1]/text() K1-K6
artist[1]/text() K1-K4

did/text() C1-C4
dtitle[1]/text() C1-C4

disc/dtitle text() C1-C6

disc/artist text() C1-C6

disc/tracks/title text() C1-C6

Data set 1: Artificial movie data. We generate various data sets of different
sizes consisting of artificially generated <movie> data using ToXGene and the
Dirty XML Data Generator. The resulting <movie> elements in the data sets
contain several <title>, <person>, and <review> descendants. The <person>

elements can contain one <lastname> and several <firstname> elements. A

1 http://www.cs.toronto.edu/tox/toxgene/
2 http://www.informatik.hu-berlin.de/mac/dirtyxml/



<movie> element has two attributes, namely year and length. As a candidate,
we consider the movie schema element only. As its object description, we use
title/text() and @length with respective relevancies 0.8 and 0.2.
Data set 2: Real-world CD data, artificially polluted. Here we use real-
world CD data consisting of 500 clean CD objects extracted from the FreeDB
data set3 and 500 artificially generated duplicates (one duplicate for each CD;
using the Dirty XML Data Generator) as a test data set. Each <disc> element
contains several <title> descendants nested under a <tracks> element and
at least one <artist> and <dtitle>. Optional children of <disc> are <year>,
<did>, a disc id that FreeDB provides and <genre>. As candidates, we use disc
schema elements and their descendant /tracks/title. The object description
of a disc consists of did/text(), artist/text() and dtitle/text() with re-
spective relevancies of 0.4, 0.3, and 0.3.
Data set 3: Real-world movie data. For precision tests of larger bodies
of XML data we use real-world movie data consisting of 10,000 CDs selected
from FreeDB. Having the same schema as Data set 2, the candidates are disc,
disc/title, disc/artist and disc/tracks/title.

4.2 Experimental Results

We now show the results of a variety of experiments. In the first set of experi-
ments we examine SXNM in terms of recall, precision, and f-measure. The second
set of experiments deals with the scalability of our duplicate detection method.
Finally, in the third set of experiments we show how and when duplicates in
descendants help to detect duplicates in higher levels of the hierarchy. For all
experiments we only show a selection of the result graphs.

Experiment set 1: Single- vs. Multi-Pass with varying window sizes.
Purpose: In these experiments we show the overall effectiveness of our

method by examining recall, precision, and f-measure results on different data
sets. We use varying window sizes and different keys. Moreover, the advantage
of the multi-pass vs. the single-pass method is shown.

Methodology: We use all three data sets for this experiment. For Data
sets 1 and 2, we can evaluate recall and precision and therefore calculate the f-
measure, because we know the true duplicates in these data sets. This is not the
case for Data set 3, for which we determine only precision. For all experiments
in this subsection, we used threshold values that we consider sensible based on
our experience. Results are shown in Figure 4. Each line in a graph represents
the use of a different key in single-pass SXNM (SP), or the combination of all
keys for the multi-pass SXNM (MP).

Discussion Data set 1: The results for this experiment on artificial movies
can be seen in Figures 4(a) and 4(b). We used the three different keys shown in
Tab. 3(a). As an example of how to read the table, consider the first key defined
for the relative path “title/text()” as “K1-K5”. The relative path of the key
definition points to the movie’s title, from which the first five consonants are
used as key.

3 http://www.freedb.de
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Fig. 4. Results for experiment set 1 on effectiveness.

We can see in Fig. 4(a) that for the single keys as well as for the multi-pass
method the recall increases with increasing window size. The individual keys
lead to very different results. In terms of recall, Key 2 leads to the worst results.
This is explained by the fact that the first part of this key consists of the year
of the movie, which results in poorly sorted keys when the year is missing or
contains severe errors. With increasing window size, more pairs are compared and
more duplicates are found, which increases the recall of Key 2, while precision is
not considerably compromised. The same argument can be used to explain the
results of Key 3, however, the development with increasing window size is not
as pronounced as for Key 2.

Key 1 performs best and almost as good as the multi-pass method which
uses all keys. This is because the first five consonants of a movie’s title are very
distinguishing and lead to a very good order after sorting. The precision curve
of Key 1 (and consequently of MP) in Figure 4(b) shows an at first surprising
decrease in precision for small window-sizes (2-6) and increases afterwards to
converge to a precision around 0.95. This can be explained as follows: Because
we introduced artificial errors in titles that constitute the key, the good order is
compromised. Indeed, 5% of the titles were polluted in such a way that their keys
are sorted far apart. These duplicates are not detected for small window sizes
but can be found with larger windows. We observe that with increasing window
size, the precision converges to 0.95. In fact, the precision for large window sizes
converges to the precision the similarity obtains when comparing all pairs. In
terms of recall, the multi-pass method performs best (as already shown in [13])
but not much better SP for Key 1, because Keys 2 and 3 do not increase the



number of detected duplicates much (low recall values). However, in terms of
precision the multi-pass method performs worst (although overall the values are
still high between 0.93 and 0.96). This is because the multi-pass method executes
the largest number of comparisons and there is an increased probability of false
positives.

Discussion Data set 2: We discuss the results on Data set 2 for the disc
candidate only, using three different keys shown in Tab. 3(b). Figure 4(c) shows
the result of this experiment in terms of f-measure. The individual keys perform
in a similar range between 0.75 and 0.87. Key 3 leads to the worst results because
genre and year are not very distinctive attributes (same reason as for Key 2 in
Data set 1). Key 1 yields better results than Key 3 because an artist’s name
is more distinctive than the genre. Key 2 consists of the first characters of the
CD’s ID, which in only some cases is incorrect and missing and therefore leads
altogether to the best results. The multi-pass method results show that even
the smallest window size (2) leads to much better results in terms of f-measure
than the largest tested window size of 12 for the single keys. Larger windows
give only slight improvement, so in this case window size 4 is sufficient. For all
keys (single-pass and multi-pass) we observe that the f-measure increases with
increasing window size. This is explained by the fact that with increasing window
size, the recall increases because more pairs are compared. At the same time,
the precision settles at large window sizes because its degradation is limited by
the similarity measure.

Discussion Data set 3: In Fig. 4(d) we show precision for different window
sizes obtained using SXNM on 10,000 disc candidates and the keys of Tab. 3(c).
Recall could not be measured, because we do not know the true duplicates in
this data set. We observe that Key 2, which is the same as Key 2 used on
Data set 2 again yields the highest precision. At window size 5, we detect 48
duplicates. Key 1 results in a lower precision but detects far more duplicates,
e.g., at window size 5, it finds 289 duplicates. Using multi-pass SXNM with
both Key 1 and Key 2 results in the worst precision, because the false positives
of both keys are cumulated. In this real-world data set, we observe that most
duplicate clusters consist of two elements only, and that our algorithm detects
false duplicates mainly due to two reasons. Between 54% and 77% (decreasing
with increasing window size) of false duplicates are pairs of CDs that are part
of a series and differ in a single number only, e.g., Christmas Songs (CD1) and
Christmas Songs (CD2) or that feature various artists (the two cases are often
correlated). Between 19% and 36% (increasing with increasing window size) of
false duplicates are CDs whose text is provided in a format that failed to enter
the database (e.g., Japanese or Russian). Comparisons were then only performed
on “readable” attributes (year and genre). For any window size, less that 10%
of false duplicates are due to other reasons.

To summarize the experiments for all three data sets, SXNM achieves overall
high precision and recall, comparable to or exceeding related approaches. Also
as expected, the multipass method outperforms the single-pass method. Finally,
the choice of good keys is of course very decisive to achieve good results.



Experiment set 2: Scalability.

Purpose: In the second series of experiments, we show how the individual
phases of SXNM scale with the amount of data and the number of duplicates. The
distinguished phases are key generation (KG), sliding window (SW), transitive
closure (TC) as currently provided in our implementation, and overall duplicate
detection (DD), which is the sum of the SW and TC.

Methodology: We use artificially generated movie data so we can gener-
ate data sets with different sizes and numbers of duplicates. With ToXgene we
generated 9 XML files containing from 100 to 2000 movies. Each movie has one
to three title- and three to ten person-descendants. Using the Dirty XML Data
Generator, we polluted the clean movie data using two configurations with dif-
ferent duplication probabilities (dupProb) and different numbers of duplicates
for <movie> and <person> elements to obtain two different pollution degrees:

– few duplicates: 20% dupProb for <movie>, <title>, and <person> elements
each producing exactly one duplicate.

– many duplicates: 100% dupProb for <movie> and <person>, each generating
up to two duplicates, and 20% dupProb for <title> elements each generat-
ing exactly one duplicate object.

We polluted the text nodes of the duplicate elements by deleting, inserting,
or swapping characters as described for the Dirty XML Data Generator. The
window size used in these experiments is 3.

Discussion: Figure 5 shows the results for this series of experiments. To
enable a comparison to the clean XML data resulting from ToXGene, we exe-
cuted SXNM over the set of clean movie data to show the difference to the least
possible time needed to detect duplicates in a specific data set (Fig. 5(a)). In all
graphs, the duplicate detection time DD is the sum of the transitive closure TC
and the sliding window SW time. SXNM’s comparisons are performed in SW.

The overall time (duplicate detection) needed for the largest clean data set
is 129 s. Although there are no duplicates and the transitive closure algorithm
is expected to need almost no time, there is an increasing possibility for false
duplicates when the file size increases, leading to some pairs of duplicates for
which the transitive closure algorithm is executed. Altogether, the key generation
is a linear process, compared to the comparisons in the sliding window, which is
polynomial.

We can also see from Figures 5(a) and 5(b) that the duplicate detection for
the file with “few duplicates” performs almost as well as for the clean data. Look-
ing on Fig. 5(d), which shows the time overhead of the sum of key generation and
sliding window for both few and many duplicates, compared to the time needed
on clean data, we observe a time overhead of below 20% for few duplicates.
For the file with “many duplicates” the time needed for the transitive closure
exceeds the time needed for key generation, as the transitive closure algorithm
has to process many duplicate pairs (Fig. 5(c)). Additionally, for the largest file
size, this file needs almost 20 minutes for duplicate detection (the dirty data is
about four times the size of the clean data) and represents a considerable time
overhead compared on clean data.
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Fig. 5. Results for experiment set 2 on scalability.

Experiment set 3: Threshold impact.
Purpose: In our third experiment we evaluate the effect of different thresh-

olds on recall, precision, and f-measure. The two thresholds are the OD threshold
that is used for comparisons of two element’s object description, and the descen-
dants threshold that is used for the similarity measurement of children. It shows
how descendants help duplicate detection, depending on thresholds.

Methodology: Using Data set 2, we first detect duplicates in <disc> el-
ements using only the object descriptions of the CDs, namely the disc ID, the
artist and the CD title. We vary the OD threshold from 0.5 to 1. Afterwards,
we use a fixed threshold for the OD and take the descendants <title> elements
of the <disc> elements into account for duplicate detection. For these, we vary
the descendants threshold from 0.1 to 0.9. Results are summarized in Figure 6.

Discussion: Figure 6(a) shows the results for different object description
thresholds. Using a low threshold of 0.5 results in a large amount of detected
duplicates, leading to high recall but also to low precision, as many false positives
occur. When the threshold increases, precision increases and recall decreases as
expected. The f-measure peaks at a threshold of 0.65.

For the varying descendants threshold we use the OD threshold of 0.65 deter-
mined as optimal from the last experiment. We vary the descendants threshold
from 0.1 to 0.9 and observe two things. First, Fig. 6(b) shows that the best f-
measure obtained using descendants is higher than the best f-measure obtained
when only considering the object description. Thus, we can conclude that it is
worthwhile to take into account descendant information when detecting dupli-



precision
recall

f-measure

OD threshold

re
ca

ll
,
p
re

ci
si

o
n
,
f-
m

ea
su

re

10.90.80.70.60.5

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(a) Varying OD thresholds

precision
recall

f-measure

descendants threshold

re
ca

ll
,
p
re

ci
si

o
n
,
f-
m

ea
su

re

0.90.80.70.60.50.40.30.20.1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

(b) Varying descendants thresholds

Fig. 6. Results for experiment set 3 on threshold impact.

cates. Second, we observe that a very high descendants threshold downgrades
the results, whereas the low descendants threshold of 0.3 leads to the best re-
sult of almost 0.96 in terms of f-measure. Choosing a low descendants threshold
yields better results because it implies that a small overlap in children is al-
ready sufficient to consider children sets as similar. This compensates the effect
of non-overlapping children, which drastically reduces similarity in our similarity
measure (Def. 3).

5 Conclusions and Outlook

The Sorted Neighborhood Method is a very efficient method to detect duplicates
in relational data. We have shown that our extension of this method to XML
data, combined with new approaches in duplicate detection, is a reasonable al-
ternative for XML duplicate detection for large amounts of data. However, there
remain several open issues to further improve our method both in efficiency and
in effectiveness.
Efficiency. In previous work we have shown that filters are quite effective to
avoid comparisons, especially with the edit distance operations [17]. The work
presented in the paper at hand also performs filtering but based on the gen-
erated keys and the sliding window. It will be interesting to see how the two
filters interact. Moreover it could be useful to include the ideas of the Duplicate
Elimination Sorted Neighborhood Method (DE-SNM) of [19] in our algorithm.
Effectiveness. In our current algorithm we use a simple approach of similar-
ity function and threshold to determine whether two elements are duplicates.
However, our algorithm is ready for the usage of equational theory, which was
used for the relational SNM. We believe that the domain knowledge considered
using the equational theory will yield even better results. Also, the choice of the
thresholds yet remains an open issue. In [5] the authors propose a corresponding
learning technique, which we plan to adapt to our problem of more than one
type of descendant. Another knob to turn is the window size. In [20], a method
to dynamically adapt the window size using distance measures on the keys is
proposed. We plan to examine how sampling techniques can help determine an
appropriate window size for each data set.
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