
Efficiently Detecting Inclusion Dependencies

Jana Bauckmann Ulf Leser Felix Naumann Véronique Tietz

Department for Computer Science, Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

{bauckmann,leser,naumann,vtietz}@informatik.hu-berlin.de

Abstract

Data obtained from autonomous data sources often come
with only superficial structural information, such as rela-
tion names and attribute names. For effective integration
and meaningful querying of those data sets, relationships
among attributes, such as foreign keys, are equally impor-
tant. The efficient discovery of such relationships is diffi-
cult, because in principle for each pair of attributes in the
database each pair of data values must be compared.

A precondition for a foreign key is an inclusion depen-
dency (IND) between the key and foreign key attributes.
We present our algorithm SPIDER (Single Pass Inclusion
DEpendency Recognition) that efficiently finds all INDs
in large databases. It uses the efficient sorting facilities
of a DBMS but performs the actual comparisons outside
the database thus saving many value comparisons. SPI-
DER analyzes a2 GB database in∼ 20 min and a21 GB
database in∼ 4 h. We generalize SPIDER to find compos-
ite INDs covering multiple attributes, and partial INDs that
are true for all but a certain number of values. This last
type is particularly relevant when integrating dirty data as
is often the case in the life sciences domain – our driving
motivation.

1. Schema Discovery for Data Integration

In large integration projects one is often confronted with
poorly documented data sources, i. e., data sources for
which the schema is underspecified. For effective integra-
tion knowledge beyond attribute names is important. One
particularly useful structural information are keys and for-
eign keys. Very often these constraints are not defined, for
instance due to lacking knowledge about the constraints,
laziness, lack of a specification language, or simply because
the data are dirty and constraints do not entirely hold.

One example is the important Protein Data Bank (PDB).
The PDB is distributed as structured flatfile and can be im-

ported into a relational schema using the OpenMMS soft-
ware1. The OpenMSS schema consists of 175 tables with
2705 attributes but without any foreign key constraint.

The goal of the research presented in this paper is to
automatically and efficiently detect inclusion dependencies
(INDs) as a precondition for foreign key constraints. An in-
clusion dependencyA ⊆ B between two attributesA and
B (a candidate pair) is satisfied iff the set of values inA

is a subset of the set of values of attributeB. Assuming
that B contains only unique data values, this relationship
constitutes the syntactically testable part of a foreign key.
WhetherA is in fact a foreign key or not can only be veri-
fied by a human expert.

An IND A ⊆ B between a candidate pairA, B can
be tested by checking for each value ofA whether it ap-
pears as a value ofB. This test can be performed in various
ways by programs of SQL queries, as suggested in previous
works [3, 9]. However, as soon as a check fails, the test for
that candidate pair can be aborted. A key insight is the in-
ability of relational database systems and SQL to perform
this early stop which makes them inefficient for detecting
INDs (shown experimentally in [2]). To compensate, our
SPIDER algorithm sorts all data in the database, exports
them into the file system and then simultaneously checks
for INDs in all candidate pairs using a single read of the
data. Experiments show that our approach places automatic
foreign key discovery even for very large databases with
many attributes and many tuples into the realm of the fea-
sible. SPIDER analyzes a2 GB database with about1200
attributes in∼ 20 min and a21 GB database in∼ 4 h.

We generalize our approach to the detection of com-
posite inclusion dependencies to reflect composite keys
and foreign keys. That is, we test for all sets of at-
tributesA1, . . . , Ak and attributesB1, . . . , Bk of two re-
lations whether(A1, . . . , Ak) ⊆ (B1, . . . , Bk). We also
describe how SPIDER can be extended to detect partial in-
clusion dependencies, i. e., INDs which are satisfied for all
but a certain number of values. Partial INDs are impor-

1openmms.sdsc.edu

tant to handle dirty data, which quickly occur when foreign
keys are not checked. A partial IND cannot immediately be
turned into a foreign key constraint but may provide valu-
able information about the data. We show experiments for
all types of INDs.

1.1. Heterogeneous life science data sources

The motivation for our research is rooted in our work
on data integration in the life sciences domain where many
large databases are openly available. The Aladin2 project
strives to achieve automated integration of such databasesin
several steps [10]. In the first step an expert chooses the new
database that is to be included in the system. Most life sci-
ences databases are provided in a relational form or parsers
are openly available to generate that form. But, as stated
before, this relational form often lacks detailed schema in-
formation, such as specific data types, keys, or foreign keys.
From this step on we have devised a fully automatic proce-
dure to integrate life sciences databases. Clearly, one cannot
expect error-free integration, but for many scenarios, man-
ual integration and curation is too expensive making an ex-
plorative approach attractive. For details and a discussion
of this approach see [10].

The second step of Aladin checks uniqueness for each
attribute to discover key candidates. The third step is the
focus of this paper: the discovery of intra-source relation-
ships among attributes. We check for set inclusion of each
attribute in each key candidate. Knowledge about INDs also
lets us determine theprimary relationof the schema, i. e.,
the relation that stores the main class of the database, as is
typical in life sciences data sources. This relation also de-
fines the external IDs of the database’ objects.

The next, fourth step aims at discovering relationships
between different data sources. This step also profits from
the results of this paper, as links between database objects
are usually reflected in the form that one database stores the
external IDs of objects of another database in its schema.
Finally, the fifth step discovers relationships not between
schema elements but between data items in the form of du-
plicates, i. e., information about a certain real-world object
stored in several databases.

1.2. Data sets

We test the algorithms described in this paper on real
life databases from our application domain:UniProt3 is
a database of annotated protein sequences [1] available in
several formats. We used the BioSQL4 schema and parser,

2ALADIN – ALmost hAnds-off Data INtegration
3www.pir.uniprot.org
4obda.open-bio.org

creating a database of 16 tables with 85 attributes. The to-
tal size of the database is 667 MB, with the largest attribute
having approximately 1 million different values.

PDB is a large database of protein structures [4]. We
used the OpenMMS software for parsing PDB files into a
relational database. The PDB populates115 tables over
1, 711 attributes in the OpenMMS schema. There are no
specified foreign keys. The total database size is21 GB,
with the largest attribute having approximately152 million
different values. To achieve a better idea of the scalability
of our approach, we also used a2.7 GB fraction of the PDB
obtained by removing some extremely large tables.

Finally, we also verify our results by using a generated
TPC-Hdatabase (scale factor1.0).

1.3. Structure and contributions

The following section describes several approaches to
the discovery of unary inclusion dependencies, and in par-
ticular the SPIDER algorithm which requires only a single
scan of the data. Section 3 presents several filter techniques,
which efficiently exclude pairs of attributes before running
the IND detection algorithm. In Section 4 we present exper-
imental results and compare SPIDER with other approaches
from the literature. We show that our algorithm either sur-
passes those in runtime or makes less assumptions. Sec-
tions 5 and 6 present extensions of SPIDER to find com-
posite INDs and partial INDs, respectively. Related work is
discussed in Sec. 7, and we conclude in Sec. 8.

Note that some preliminary results from our project were
presented already in [2]. We extend these results in several
ways with the present paper. SPIDER improves on the Sin-
glePass algorithm described in [2] by a factor of approx. 10
for large databases. Further, all material from Section 3 on
is new.

2. Detecting Unary INDs

An inclusion dependencyA ⊆ B requires that the set of
values of thedependentattributeA is included in the set of
values of thereferencedattributeB. We call a pair of at-
tributesA andB an IND candidate prior to any tests. An
IND is satisfiedif the IND requirements are met andunsat-
isfiedotherwise. An attribute iscovered by an IND (candi-
date)if it is part of that IND (candidate) as dependent or as
referenced attribute. For complexity analysis, we consider
a schema withn attributes and maximallyt values in each
attribute.

2.1. SQL approaches

One possible way to implement the IND tests is to utilize
SQL statements. In this case each IND candidate is tested

2

independently of all other tests. Therefore, the number of
comparisons isO(n2t log t) assuming a sort merge join on
both attributes after removing duplicate values [8].

In [2] we tested the performance of several possible SQL
statements for IND tests, i. e.,join, minus, andnot in.
The fastest approach was to join the IND candidate’s at-
tributes and to compare the join cardinality with the de-
pendent attributes cardinality. However, we showed that all
SQL approaches are much slower for large databases than
the algorithms we describe in the following. The reason is
twofold: First, the independent test of each IND candidate
prevents reusing intermediate results, in particular sorting.
Thus, each attribute is sorted as often as it is part of an IND
candidate. Second, one cannot formulate in SQL that query
execution should stop immediately after a counter-example
for the IND is found. Thus, each SQL statement we an-
alyzed computed more than necessary. For instance, the
join variants essentially computes the number of counter-
examples.

2.2. Two efficient algorithms

To compute all unary INDs we must test all pairs of at-
tributes. The test can be performed using the following pro-
cedure: First, sort the value sets of all attributes using an
arbitrary but fixed sort order. From this point on it is suf-
ficient to regard only distinct values. Second, iterate over
the sorted value sets of each pair starting from the small-
est item using cursors. Letdep be the current dependent
value andref be the current referenced value of an IND
candidate. There are three possible cases: (i) Ifdep = ref
move both cursors one position further, because the depen-
dent value was found in the set of referenced values. (ii) If
dep > ref move only the referenced cursor, i. e., look for the
current dependent value in the remaining referenced values.
(iii) Otherwise, ifdep < ref, dep is not included in the ref-
erenced value set and we can stop immediately, because the
tested IND is unsatisfied. An IND candidate is shown to
be a satisfied IND if all dependent values were found in the
referenced value set.

The two following algorithms apply this approach. Both
use the database to sort and “distinct” the values of all at-
tributes, and then write the sorted lists to disk. However, the
order in which those sets are read is quite different. Thus,
the total time of a run consists of sorting inside the database,
shipping the sets to a client, writing them to disk, and read-
ing them in different ways. In Section 4 we shall analyze in
detail which of these components dominate the runtime of
our algorithms.

Brute Force This algorithm creates and tests all IND can-
didates sequentially, i. e., one by one. Compared to a SQL
join, the main advantage is the implemented early stop for

unsatisfied INDs as, of course, most IND candidates are un-
satisified and the test can often stop after comparing only a
few or even only a single value pair. The brute force algo-
rithm has the disadvantage that each attribute’s values are
read as often as the attribute is part of an IND candidate.

We needO(nt log t) comparisons to sort alln attributes
inside the database. Furthermore, we needO(n2t) compar-
isons to test all(n−1)2 IND candidates. Thus, the complex-
ity of this approach isO(nt log t + n2t), which is already
considerably better than the SQL approach. Furthermore,
this worst case complexity is grossly misleading on aver-
age, as for most IND candidates only very few values must
be read and compared. The number of values read from disk
in the client isO(n2 ·2t), because for each of the candidates
we must read at most once all of the two attribute’s values.

Single Pass Inclusion DEpendency Recognition (SPI-
DER) This algorithm eliminates the need to read data
multiple times. All IND candidates are created and tested
in parallel. SPIDER improves on the algorithm in [2] by us-
ing an entirely different data structure for managing cursors,
thus reducing the run time by a factor of about10.

The algorithm first opens all attribute files on disk and
starts reading values through one cursor per file. The chal-
lenge is to decide when the cursor for each file can be
moved. All dependent attributes affect the point in time
when the cursor of a referenced attribute can be moved.
But also all referenced attributes control when the cur-
sor of a dependent attribute can be moved. Consider the
following dependent attributes with their sorted value sets
Dep1 = {1, 2} andDep2 = {2, 3}, and the referenced at-
tributesRef1 = {1, 3} andRef2 = {1, 2}. The IND candi-
dates areDep1 ⊆ Ref1, Dep1 ⊆ Ref2, Dep2 ⊆ Ref1, and
Dep2 ⊆ Ref2. Let all cursors point to the first item of each
attribute. To testDep2 ⊆ Ref1 the cursor inRef1 has to
be moved, because2 > 1. But before this movement the
current value ofRef1 is needed to testDep1 ⊆ Ref1. Vice
versa, the cursor inDep1 can be moved only after the com-
parison withRef1. But before,Dep1 has to be compared
with Ref2 too.

Despite this mutual dependency, it is possible to syn-
chronize the cursor movements without running into dead-
locks or missing some IND candidate tests, because we use
sorteddata sets. We represent each attribute as anattribute
object providing the attribute’s sorted values and a cursor
to the current value. An attribute can be covered in mul-
tiple IND candidates as referenced attribute and / or as de-
pendent attribute. Thus, each attribute object potentially has
two roles.

IND candidates can be divided into distinct sets by their
dependent attribute, i. e., all IND candidates covering a de-
pendent attribute define a set. IND candidates are repre-
sented in the dependent role of attribute objects as set of

3

referenced attributes. These referenced attributes are held in
two sets distinguishing referenced attributes that are known
to contain the currently viewed dependent value (satis-
fiedRefs) and referenced attributes that are not (yet) known
to contain this value (unsatisfiedRefs).

Given these attribute objects we can apply the following
algorithm (see Alg. 1). Hold all attribute objects in a min-
heap sorted by their currently viewed value. Note that this
heap contains one value from each attribute. The follow-
ing procedure has to be repeated until the heap is empty:
Remove all attribute objects with minimal but equal val-
ues from the heap and store them in a setMin. Notify
each dependent attribute object inMin about each refer-
enced attribute object inMin. This way, the dependent at-
tribute object tracks which referenced attribute includesits
currently viewed value and which does not, using the lists
satisfiedRefs andunsatisfiedRefs.

After this step, test for all attribute objects inMin if a
next value exists. If not, output all INDs that have the at-
tribute object as dependent attribute and all referenced at-
tribute objects insatisfiedRefs as referenced attribute. Oth-
erwise read the next value and update the listssatisfiedRefs
andunsatisfiedRefs: Discard all attribute objects inunsat-
isfiedRefs, because they did not contain the previous de-
pendent value; and move all attribute objects fromsatis-
fiedRefs to unsatisfiedRefs as we have not yet seen the
currently viewed dependent value in them.

The complexity of the SPIDER algorithm in terms of
comparisons is as follows: To sort all data we need
O(nt log t) comparisons. We needO(log n) comparisons
to insert one attribute object into the heap depending on
its currently viewed value, and thusO(nt log n) to in-
sert all attributes. To pop attributes from the heap we
needO(nt log n) comparisons for the heap operations and
O(nt) comparisons for identifying the attributes in the min-
imum value (setMin). Thus, the complexity of SPIDER
is O(nt log n) without sorting each attribute’s values and
O(nt log t) with sorting, assumingt > n. The number of
values read from disk isO(n · t), i. e., each value is read at
most once. The considerably reduced number of necessary
comparisons and the decreased number of read operations
are the main improvements over the Brute Force algorithm.

Note that the quadratic number of IND candidates causes
no quadratic number of comparisons inn in SPIDER. But it
may cause a quadratic number of (inexpensive) movements
of attribute objects fromunsatisfiedRefs to satisfiedRefs
and back. We cannot eliminate this quadratic operations,
because in some way we need to represent all IND candi-
dates – potentially, they are all satisfied, which means that
the result set must have(n−1)2 elements. This complexity
is hidden in all possible algorithms. But on average only a
minor fraction of IND candidates is satisfied, and SPIDER
find those with only a small number of comparisons.

Input : attributes: set of attribute objects; sets
unsatisfiedRefs in the dependent role of each
attribute object represent the IND candidates

Output : Set of satisfied INDs.
Min-Heap heap := new Min-Heap(attributes) ;
while heap !=∅ do

/* get attributes with minimum value */
min := heap.removeMinAttributes() ;
/* notify dependent attribute */
foreachdep∈ min & dep in dependent roledo

foreach ref∈ min & ref in referenced roledo
/* move ref from unsatisfiedRefs to

satisfiedRefs */
if ref∈ dep.unsatisfiedRefsthen

dep.unsatisfiedRefs :=
dep.unsatisfiedRefs\ {ref} ;

dep.satisfiedRefs :=
dep.satisfiedRefs∪ {ref} ;

/* process next value */
foreachatt∈ mindo

if att has next valuethen
/* Only sets still satisfied remain */
if att in dependent rolethen

att.unsatisfiedRefs := att.satisfiedRefs ;
att.satisfiedRefs :=∅ ;

att.movePointer ;
heap.add(att) ;

else
if att in dependent rolethen

foreach ref∈ att.satisfiedRefsdo
INDs := INDs∪ { att⊆ ref } ;

return INDs

Algorithm 1 : Algorithm SPIDER.

The experiments in Section 4 will back the statement that
the complexity of SPIDER depends only on the number of
attributes and the number of their values, but not on the
number of tested IND candidates.

3. Heuristics for Pruning IND candidates

As the complexity of SPIDER depends on the number of
attributes, we want to prune IND candidates or, even bet-
ter, exclude entire attributes. This section describes sev-
eral pruning heuristics and evaluates their selectivity onthe
test data sets. These pruning strategies are also applicable
to other algorithms for IND detection in the literature (see
Sections 4 and 7).

4

3.1. Simple properties

A simple pruning strategy is to compare the number of
distinct values of each IND candidate (calleddistinct in Ta-
ble 1): Letv(A) be the set of (distinct) values of attribute
A. If v(dependent) > v(referenced) then there is at least
one value in the dependent attribute that is not included in
the referenced attribute. Thus, this IND candidate can be
excluded.

An equally simple test is to compare the maximum and
minimum values of attributes. An IND candidate can be ex-
cluded (i) if the maximum dependent value is greater than
the maximum referenced value (calledmax) or (ii) if the
minimum dependent value is lower than the minimum ref-
erenced value (calledmin).

The selectivity of these filters on our test databases is
given in Table 1. The top section of the table gives the num-
ber of attributes in the schemas, the number of IND candi-
dates, the actual number of satisfied INDs, and the number
of attributes covered by at least one satisfied IND. These
last two numbers provide a lower bound for the filters. The
combination of all filters provides – as expected – the best
selectivity on both, IND candidates and the number of at-
tributes. For the full PDB data set the number of relevant
attributes is reduced from1, 290 to 949 and the number of
IND candidates is reduced by∼ 75%. In all cases, the num-
ber of IND candidates is reduced by at least a factor of4.

UniProt TPC-H PDB
2.7 GB 21 GB

attributes 68 61 1, 208 1, 290
IND cand. 1, 393 877 216, 659 242, 970
INDs 36 33 30, 753 34, 988
attr. in INDs 31 20 593 661
distinct
IND cand. 910 477 139, 356 158, 432
attr. in IND cand. 68 58 1, 208 1, 290

distinct & max
IND cand. 541 295 74, 588 85, 901
attr. in IND cand. 59 54 1, 003 1, 073

distinct & min
IND cand. 345 275 91, 998 101, 640
attr. in IND cand. 54 57 1, 082 1, 149

dist. & max & min
IND cand. 174 137 45, 957 51, 393
attr. in IND cand. 49 52 891 949

Table 1. Number of remaining IND candidates
and attributes after pruning using distinct, max,
and min.

3.2. Bloom filter

The simple filters described use only very little informa-
tion about the attributes. In particular, these filters are in-
sensitive to the distribution of values between the minimum
and maximum values. We used Bloom filter to better adapt
the filter to the data [5]. Therefore, we hash each attribute’s
values into a bit array, such that each bit represents several
values. To filter IND candidates we compare the bit arrays
of an IND candidate looking for bits that are set in the de-
pendent bit array, but not set in the referenced bit array. If
one such bit is found the candidate is not satisfied; other-
wise, we still need to test all values. The test can be per-
formed efficiently by a bitwisedep ∧ ¬ref operation, such
that in the resulting bit array a bit is set iff the IND candidate
can be excluded.

To achieve an optimal impact on filtering complete at-
tributes, we experimented with the size of the bit array and
the hash function. Further, we examined how hashing only
prefixes of certain length instead of hashing complete at-
tribute values affects filtering, because thus the hash value
can be computed much faster and we already expected high
selectivity in the first few characters. The results of our ex-
periments are shown in Figure 1.

The results confirm the intuition that increasing the size
of the bit array leads to a higher amount of pruned IND
candidates and attributes due to improved spreading of the
values over the longer bit array. On the other hand, large
arrays require large amount of memory and more time for
their comparison. The experiments show that a length of
217 bit (which requires about 20MB memory for 1000 at-
tributes) already is optimal for the PDB with respect to
pruned attributes and also has very good effects on UniProt.
Longer arrays improve pruning on UniProt only marginally.
Although these figures are highly data set dependent, they
show that reasonable reductions can be achieved with mod-
est memory consumption.

We tested the PJW, DJB, and SDBM hash func-
tions5. The DJB shows worst filtering impact on all tested
databases. SDBM and PJW are comparable on UniProt, but
PJW prunes clearly better on PDB data.

To reduce filter creation costs we tested the idea not to
hash entire values into the bit array but just prefixes of a
certain length. We tested on prefix lengths between1 and
10. Interestingly, hashing prefixes of fixed length already
leads to impressive results in pruning on even very small bit
arrays. Larger hashed prefixes result in larger numbers of
pruned IND candidates and attributes – as one would ex-
pect. However, we found that hashing prefixes of length
10 already behaves nearly identical to hashing the complete
values with regard to filtering attributes; in UniProt data it

5See General Purpose Hash Function Algorithms,www.partow.net

5

(a) UniProt

30

35

40

45

50

55

60

65

70

16 64 128 1024 8192 131072 1048576

bit array length

n
u

m
b

e
r

o
f

c
o

v
e

re
d

 a
tt

ri
b

u
te

s

DJB, complete value

DJB, |prefix|=10

SDBM, complete value

SDBM, |prefix|=10

PJW, complete value

PJW, |prefix|=10

all attributes (68)

attributes covered by INDs (31)

2
10

2
13

2
17

2
202

4
2

6
2

7

(b) PDB2.7 GB

500

600

700

800

900

1000

1100

1200

1300

16 64 128 1024 8192 131072 1048576

bit array length

n
u

m
b

e
r

o
f

c
o

v
e

re
d

 a
tt

ri
b

u
te

s

DJB, complete values

DJB, |prefix|=10

SDBM, complete values

SDBM, |prefix|=10

PJW, complete values

PJW, |prefix|=10

2
10

2
13

2
17

2
20

2
4

2
6

2
7

all attributes (1208)

attributes covered by INDs (593)

Figure 1. Impact of varying Bloom filter pa-
rameters on number of filtered attributes for
(a) UniProt and (b) PDB.

is even slightly better than hashing complete values. Addi-
tionally, hashing only prefixes is more efficient.

In the context of information integration of unknown
data sources one cannot determine “the” optimal setting of
parameters without a detailed (and costly) analysis. Nev-
ertheless, hashing prefixes of length10 into a 217 bit ar-
ray with the PJW hash function seems to be the combi-
nation that covers all tested databases best. Because we
chose these databases representatively for the life sciences
domain, we expect good performance at least on other bio-
logical data sources.

The effects of combining Bloom filter (parameters as
above) with the simple pruning strategies are shown in Ta-
ble 2. The Bloom filter is in almost all cases more selective
than the filter on number of distinct items, maximum, and
minimum. But the simple filters exclude IND candidates

that are not pruned by the Bloom filter. Therefore, all filters
together reach the best performance.

UniProt TPC-H PDB
2.7 GB 21 GB

attributes 68 61 1, 208 1, 290
IND cand. 1, 393 877 216, 659 242, 970
INDs 36 33 30, 753 34, 988
attr. in INDs 31 20 593 661
distinct & bloom

IND cand. 245 43 35, 044 40, 307
attr. in IND cand. 42 26 600 798

dist., max, min, bloom
IND cand. 125 40 34, 673 39, 399
attr. in IND cand. 35 25 595 665

Table 2. Number of remaining IND candidates
and attributes using Bloom filter and simple
pruning.

As previously mentioned, the overall runtime of our al-
gorithms is composed of the costs of sorting data, reading it
from the database, writing it to disk, and reading it again for
the IND tests. Therefore, filters are most useful if they can
be applied within the database, thus reducing the amount of
data to be shipped to and considered by the client. However,
applying the filters in advance in the database is also costly,
because the database must perform additional sort opera-
tions. For instance, to obtain the minimum and maximum
value and the number of different values for an attribute the
database must sort the entire bag of values of this attribute–
a sort that will be repeated later for all attributes that cannot
be excluded completely. For Bloom filters, expensive com-
putations must take place that might overweight the sim-
ple read-and-compare style of the SPIDER algorithm. On
the other hand, applying the filters while we read the sorted
columns from the database comes at almost no additional
cost, but by then data shipping has already taken place.
Thus, it is not at all clear where filters should be applied.
We analyze this trade-off in the next section.

4. Experimental Results for Unary INDs

We tested all algorithms on the databases presented in
Sec. 1.2 on a Linux system with2 Intel Xeon processors
(2.60 GHz) and12 GB RAM. We use a commercial object-
relational database management system.

We only create IND candidates with an unique refer-
enced attribute, such that we can infer foreign keys. Sec-
ond, we exclude intra-table references. Third, we always
used thedistinct filter. The runtime effects of the other fil-
ters were tested individually.

Results can be seen in Table 3. Both algorithms out-
perform the fastest SQL approach (join). The difference

6

mostly depends on the number of attributes and thus IND
candidates and not so much on the size of the database, as
expected from our complexity analysis in Section 2. For
large schemas all SQL approaches are inapplicable.

For low numbers of IND candidates, i. e., UniProt and
TPC-H, there is just a small difference between the Brute
Force and the SPIDER algorithm. For large schemas with
high numbers of IND candidates the improvement of SPI-
DER over Brute Force is considerable.

UniProt TPC-H PDB
DB size 667 MB 1.3 GB 2.7 GB 21 GB
IND cand. 910 477 139, 356 158, 432
INDs 36 33 30, 753 34, 988
join 15m03 s 29m22 s > 7 days –
Brute Force 2m01 s 6m56 s 3 h 13m 20 h 21m
SPIDER 1m38 s 6m40 s 19m06 s 3 h 52m

Table 3. Run-time performance of the different
algorithms.

4.1. Comparison to other approaches

We also compared our algorithms with the approaches
of Bell and Brockhausen [3] and Marchi et al. [11] using
our own implementation. Those approaches only test can-
didates of same data type. In our life sciences setting, we
often find schemas with onlystring attributes and thus
must test all pairs of attributes (note that most parsers are
written in Perl). For a fair comparison we assigned the same
data types to all attributes. The algorithm of Bell and Brock-
hausen leverages filters on maxima and minima to prune the
IND candidates and utilizes already finished IND tests for
further pruning exploiting transitivity of IND. IND candi-
dates are tested by SQLjoin statements. It runs4m39 s on
UniProt data which is three times slower than SPIDER. On
the2.7 GB fraction of PDB it did not finish within24 hours.

The approach of Marchi et al. preprocesses all data as-
signing to each value in the database all attribute’s names
that include this value. The results are stored in tables. Af-
terwards all IND candidates are tested in parallel exploit-
ing the sets of attribute names. However, the preprocessing
on UniProt already takes9 h 45m (the actual IND test only
2m10 s).

4.2. Effects of pruning

Table 4 shows run times when we apply filtering before
running SPIDER. For the experiment, we read all data out
of the database and wrote it to disk. After this step we fil-
tered the IND candidates and applied SPIDER to the re-
maining IND candidates. In Table 4, we differentiate be-
tween two components: (i) the time to sort and read (inside

the RDBMS), ship (to the client) and write the data (SRSW),
and (ii) the time to read and test the data at the client (test).
The third component of the overall runtime consists of writ-
ing the satisified INDs to the DBMS. As these runtimes are
equal for both versions they are not given in Tab. 4.

UniProt TPC-H PDB
DB size 667 MB 1.3 GB 2.7 GB 21 GB
distinct 1m38 s 6m40 s 19m06 s 3 h 52m

SRSW 1m22 s 6m31 s 14m29 s 3 h 41m
test 15 s 8 s 2m48 s 9m30 s

distinct & max
& min & bloom

1m40 s 6m50 s 19m23 s 3 h 58m

SRSW 1m26 s 6m41 s 14m44 s 3 h 47m
test 12 s 8 s 2m45 s 8m56 s

Table 4. SPIDER with and without filtering of
IND candidates.

The runtime for reading the data and writing them to disk
increases slightly when applying the filters, because the bit
array for the Bloom filter has to be computed. On the other
side, the runtime for testing decreases only slightly. This
shows that the runtime is almost independent on the number
of IND candidates, i. e., representing and tracking the IND
candidates incurs almost no cost as stated by the complexity
estimation in Section 2. It also shows that the exclusion of
entire attributes (not just candidates) also did not yield much
speed up. The reason is that the number of satisfied INDs is
the same in all cases, which means the number of processed
items does not decrease as much as the number of attributes.

Thus, saving unsatisfied INDs by filtering in the end does
not save much time for testing – but costs time for comput-
ing the filters.

4.3. Further ideas

To find other ways of further improving SPIDER
we analyzed the time consumption in more detail. Of
the 19 minutes to test the2.7 GB part of the PDB, ap-
prox.15 minutes are spent in the SRSW phase and less than
3 minutes in the test phase (see Tab. 4). As the SRSW phase
dominates the overall time, it is a natural idea to reduce the
amount of data to be shipped to the client by applying filter-
ing already inside the RDBMS.

However, this idea is not as straight-forward as one
might think. The15 minutes of the SRSW phase split
up into 10 minutes for reading and sorting the data inside
the database,4 minutes to read and ship them out of the
database, and1 minute to write them to disk. Thus, any
filtering which requires to scan or sort the data in first
place (such as min, max or distinct) will very likely not im-
prove the overall performance, because the time saved dur-
ing shipping and testing will probably be dominated by the

7

time required to scan/sort the data. Reading those values
from the database catalogue opens the door to wrong re-
sults due to outdated statistics. We also experimented with
a database-internal implementation of the Bloom filter but
could not obtain any improvements for the same reasons.

5. Detecting Composite INDs

Composite INDs can be identified by creating and testing
IND candidates levelwise based on satisfied INDs on the
previous level, because satisfied INDs of lower levels are a
precondition for a composite IND. For instance, ifA 6⊆ C,
then there exists noB, D such thatAB ⊆ CD or BA ⊆
DC.

All IND candidates of higher levels can be created by
an adapted AprioriGen algorithm using an order on at-
tributes [11]. The IND candidates of levell are generated
by sorting all satisfied INDs of levell − 1 by the firstl − 2
attribute pairs. An IND candidate is generated from two
level l − 1 INDs with the same firstl − 2 corresponding
attributes and different attributes at positionl − 1. The
generated IND candidate is the combination of these two
INDs. Only if all INDs of level l − 1 that are implied by
the generated IND candidate are satisfied the IND candi-
date must be tested. For example, if we verified the INDs
AB ⊆ DE andAC ⊆ DF , we will generate the IND can-
didateABC ⊆ DEF on the next level. We must test this
IND candidate if the implied INDsAB ⊆ DE, AC ⊆ DF ,
andBC ⊆ EF are satisfied. In [11] the authors show that
this algorithm enumerates all possible composite INDs.

We apply our SPIDER algorithm with minor modifica-
tions to test the IND candidates of each level. The entire
algorithm leverages the advantage of SPIDER – the inde-
pendence of the number of IND candidates. Therefore, the
possibly large number of created IND candidates is accept-
able.

To obtain all necessary satisfied unary INDs we cannot
restrict the IND candidates to unique referenced attributes
as we did before, because we would miss attributes that
might be part of a larger IND. The results of testing ex-
haustively all IND candidates using SPIDER are given in
Table 5. In comparison to Table 3 the runtime increases
slightly, because more INDs are tested and satisfied. This
implies that more attribute values have to be handled, be-
cause attributes cannot be excluded from the SPIDER heap
as early. For PDB there is the additional effect that the much
larger number of INDs has to be saved.

To test composite IND candidates we modified the SPI-
DER algorithm in several aspects. We hold attribute tuples
and their values in the min-heap, instead of single attributes.
For each level, we query the sorted composite data sets from
the database and write them to disk. This is necessary, be-
cause we need the correct associations of the attribute val-

UniProt TPC-H PDB
DB size 667 MB 1.3 GB 2.7 GB 21 GB
IND cand. 2, 235 1, 616 729, 674 831, 984
INDs 116 86 84, 232 99, 669
exhaustiveSPIDER 1m45 s 6m55 s 23m27 s 4 h 05m

Table 5. Experimental results of testing unre-
stricted IND candidates using SPIDER.

ues in tuples, which cannot be recovered from the single
attribute value files.

The results of our experiments are shown in Table 6. No
composite IND with more than two attributes was found.
The runtime increases mostly because of the requirement to
read and write tuples for each level.

UniProt TPC-H
composite SPIDER 5m25 s 27m29 s
level 1
IND cand. 2, 235 1, 616
attribute tuples 68 61
INDs 116 86
SRSW 1m24 s 6m31 s
test 19 s 23 s
level 2
IND cand. 20 59
attribute tuples 14 36
INDs 13 21
SRSW 3m20 s 19m33 s
test 19 s 2m00 s

Table 6. Experimental results for detecting
composite INDs.

We did not test this algorithm on PDB, because of the
large number of satisfied unary INDs. These INDs are
mostly based on inclusions of surrogate keys among each
other and are therefore unreasonable candidates for be-
ing part of an actual composite foreign key. We currently
work on methods to filter these INDs before using them for
higher-level INDs.

6. Detecting Partial INDs on Dirty Data

In most real world databases one finds dirty data. Of-
ten foreign keys are not defined or not checked for perfor-
mance reasons. Another reason are faulty parsers for im-
porting data into a RDBMS that do not maintain existing
constraints correctly. We call such “foreign keys” with ex-
ceptions “dirty foreign keys”.

We cannot find all dirty foreign keys by testing the IND
candidates as before. The SPIDER algorithm – with some
minor modifications – is able to detect partial INDs, i. e.,
INDs that allow a certain number of dependent values that

8

are not included in the referenced attribute’s values. There
are two possible ways of counting these dependent values:
(i) the number of alldistinct, not included values expressed
as a percentage or (ii) theabsolutenumber of not included
values. Both values are helpful to rate a partial IND.

To collect the number of all distinct, not included values,
we add a counter to the references in each dependent at-
tribute object in the listssatisfiedRefs andunsatisfiedRefs.
These counters represent the number of values of this de-
pendent attribute object that are not included in the refer-
enced attribute. This modification applies only to the part of
processing the next value (see Algorithm 2): Instead of dis-
carding all referenced attribute objects inunsatisfiedRefs
we increase the counter of these objects. Only if a given
threshold of allowed violating values is exceeded, the ref-
erenced attribute object will be removed. The INDs result
from all referenced attributes insatisfiedRefs andunsatis-
fiedRefs.

/* process next value */
foreachatt ∈ min do

if att in dependent rolethen
/* Only sets still satisfied remain. */
foreach ref∈ att.unsatisfiedRefsdo

ref.counter++ ;
if ref.counter> thresholdthen

att.unsatisfiedRefs :=
att.unsatisfiedRefs\ {ref} ;

if att has next valuethen
if att in dependent rolethen

att.unsatisfiedRefs :=
att.unsatisfiedRefs∪ att.satisfiedRefs ;

att.satisfiedRefs :=∅ ;
att.movePointer ;
heap.add(att) ;

else
if att in dependent rolethen

foreach ref∈ (att.satisfiedRefs∪
att.unsatisfiedRefs)do

INDs := INDs∪ { att⊆ ref } ;

Algorithm 2 : Modification in algorithm SPIDER to
test partial IND candidates.

To obtain the absolute number of not included values we
need the number of occurrences for each value in the depen-
dent attributes, which can be extracted from the database.
Each not included dependent value has then not only to be
counted, but to be multiplied by its number of occurrence.

The results of our experiments are shown in Table 7. We
allowed5% violating items in the dependent value. Interest-
ingly there are indeed a considerable amount of dirty for-

eign keys in three of the four data sets. Again, one can
see in comparison to the results of exact tests (see Table 3)
that the runtime increases only minimally. The difference
is based on the additional costs for counting the number of
not included dependent values and comparing this number
to the given threshold. Furthermore, more values have to
be processed, because attributes are excluded later from all
IND candidates and thus from the SPIDER heap than in the
non-partial version.

UniProt TPC-H PDB
DB size 667 MB 1.3 GB 2.7 GB 21 GB
IND cand. 1, 393 877 216, 659 242, 970
INDs 36 40 35, 245 40, 106
partialSPIDER 1m42 s 6m45 s 23m34 s 4 h 02m

Table 7. Results for finding partial INDs. 5 %
of not included dependent values were al-
lowed.

7. Related Work

Bell and Brockhausen propose to use SQLjoin state-
ments to evaluate unary IND candidates [3] after min/max
filtering (see Section 4.1). Known foreign keys and already
tested IND candidates (satisfied and unsatisfied INDs) are
used for further pruning. SPIDER clearly outperforms this
approach even without any knowledge of existing foreign
keys as shown in Sec. 4.1.

Marchi et al. detect unary INDs among same data types
by preprocessing all data and then testing all IND candi-
dates in parallel [11]. The preprocessing assigns to each
value in the database a list of attributes that include this
value. This step is very costly, because all values in all
attributes must be combined into one data structure. We
showed in Sec. 4.1 that SPIDER outperforms this approach
by orders of magnitude. Further, the authors give a level-
wise approach for detecting composite INDs. We employ
their approach for IND candidate creation but test the can-
didates with our SPIDER algorithm.

Marchi et al. extend the levelwise approach for detect-
ing composite INDs in [12]. The main idea is to reduce
the number of IND candidates by switching between a top-
down and a bottom-up approach using an optimistic pos-
itive border. Koeller and Rundensteiner propose to create
composite IND candidates by finding cliques ink-uniform
hypergraphs [9]. These hypergraphs are built of satisfied
INDs of lower levels. Unary and binary INDs are tested by
an approach similar to [3]. [12] and [9] imply tests for single
IND candidates on diverse levels. The strength of SPIDER
is – opposite to this – its independence of the number of
IND candidates.

Dasu et al. apply data summaries to detect join paths
approximately, i. e., to detect INDs [7]. They use set resem-

9

blance and multiset resemblance to find a join path, its size
and direction. The authors use this approach as a first step
in schema discovery to help a human expert. In our sce-
nario we want to be able to surely detect satisfied INDs and
therefore need an exact algorithm.

Brown and Haas study algebraic constraints between
pairs of attributes to utilize them in query optimization [6].
They create IND candidates by heuristics and data sam-
ples and might therefore miss some INDs. SQLjoin state-
ments are utilized to test the IND candidates. Finally, Petit
et al. extract IND candidates from existing applications ona
database by analyzing a workload searching for frequently
used equi-joins [13]. These joins are then tested against the
database and rated by a human expert.

8. Conclusion

We described the SPIDER algorithm for detecting inclu-
sion dependencies in an RDBMS with no previously known
schema information. It is divided into two phases. The first
phase leverages optimized sort operations of the DBMS but
avoids the constraints of SQL. The second phase tests all
IND candidates in parallel such that all data values are read
only once and tests are stopped early. We showed its su-
periority to other approaches in terms of complexity and
by experiments on different data sets. SPIDER is the only
method that allows a feasible detection of INDs in databases
with large numbers of attributes and data values.

Furthermore, we presented and analyzed pruning strate-
gies on IND candidates. We showed and explained in de-
tail that database-external pruning does not speed up the
computation. We also discussed possibilities to perform
database-internal pruning and showed why this is harder
than one might expect. However, we will further investi-
gate this option.

We extended SPIDER to also find composite and partial
INDs. Both tasks can be solved by minor modifications of
the algorithm. The test of partial INDs is very fast, again,
due to the efficient test and the independence of the num-
ber of IND candidates. Testing composite INDs implies
additional sorts on the composite attributes for each level,
which increases the runtime heavily when many IND can-
didates are satisfied. Thus, we believe that prior to higher
level one should apply methods to discern INDs from real
foreign key constraints using heuristics. This is the second
line of research we are following.

Finally, we are working to integrate SPIDER into the
Aladin framework for identifying intra-source and inter-
source relationships. This step also requires heuristics to
discern INDs from foreign keys, and a framework to com-
pute the sensitivity and specificity of foreign key detection
using gold standards.

Acknowledgments. This research was supported by the
German Ministry of Research (BMBF grant no. 0312705B)
and by the German Research Society (DFG grant no. NA
432).

References

[1] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeck-
mann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Ma-
grane, M. Martin, D. Natale, C. O’Donovan, N. Redaschi,
and L. Yeh. The universal protein resource (UniProt).Nu-
cleic Acids Res, 33(Database issue):D154–9, 2005.

[2] J. Bauckmann, U. Leser, and F. Naumann. Efficiently com-
puting inclusion dependencies for schema discovery. InSec-
ond International Workshop on Database Interoperability.
In Workshop-Proceedings of the ICDE 06, 2006.

[3] S. Bell and P. Brockhausen. Discovery of data dependencies
in relational databases. In Y. Kodratoff, G. Nakhaeizadeh,
and C. Taylor, editors,Statistics, Machine Learning and
Knowledge Discovery in Databases, ML–Net Familiariza-
tion Workshop, pages 53–58, 1995.

[4] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat,
H. Weissig, I. Shindyalov, and P. Bourne. The Protein Data
Bank. Nucleic Acids Research, 28:235–242, 2000.

[5] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors.Commun. ACM, 13(7):422–426, 1970.

[6] P. Brown and P. J. Haas. BHUNT: Automatic discovery of
fuzzy algebraic constraints in relational data. In29th Inter-
national Conference on Very Large Data Bases (VLDB ’03),
pages 668–679, 2003.

[7] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining database structure; or, how to build a data quality
browser. In2002 ACM SIGMOD International Conference
on Management of Data, pages 240–251, 2002.

[8] M. Kantola, H. Mannila, K.-J. Rih, and H. Siirtola. Dis-
covering functional and inclusion dependencies in relational
databases. International Journal of Intelligent Systems,
7:591–607, 1992.

[9] A. Koeller and E. A. Rundensteiner. Discovery of high-
dimensional inclusion dependencies. In19th International
Conference on Data Engineering, pages 683–685, 2003.

[10] U. Leser and F. Naumann. (Almost) hands-off information
integration for the life sciences. InConference on Innovative
Data Systems (CIDR 2005), 2005.

[11] F. D. Marchi, S. Lopes, and J.-M. Petit. Efficient algorithms
for mining inclusion dependencies. In8th International
Conference on Extending Database Technology (EDBT ’02),
pages 464–476. Springer-Verlag, 2002.

[12] F. D. Marchi and J.-M. Petit. Zigzag: a new algorithm for
mining large inclusion dependencies in databases. InThird
IEEE International Conference on Data Mining, pages 27–
34, 2003.

[13] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and J. Kouloumd-
jian. Towards the reverse engineering of denormalized rela-
tional databases. In12th International Conference on Data
Engineering (ICDE ’96), pages 218–227, 1996.

10

