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Abstract

Challenges in answering queries over \Web-accessible sources
are selecting the sources that must be accessed and computing
answers efficiently. Both tasks become more difficult when
there is overlap among sources and when sources may return
answers of varying quality. The objective is to obtain the best
answers while minimizing the costs or delay in computing
these answers and is similar to solving a Top K problem ef-
ficiently. We motivate these problems and discuss solution
approaches.

Introduction

When querying Web sources, there are often multiple
sources that can answer a query. A challenge in answer-
ing queries over Web-accessible sources is the appropriate
selection of those sources to provide sufficient query results
in an efficient manner. Selecting a subset of sources may be
difficult because a characteristic of Web sources is that they
overlap in the content they provide. In the simple case, in-
formation about some object may be available from multiple
sources. Ina more complex case, answering queries requires
following navigational paths (labeled source paths) through
multiple sources. Both the data objects and the edges be-
tween the objects in these source paths may overlap. This
is similar to the overlap of multiple graphs as will be dis-
cussed. A further characteristic is that answers from Web
sources vary in their quality or relevance, and efficient query
answering requires choosing sources so that the best answers
will be retrieved.

Suppose that there is a cost metric associated with access-
ing each source or source path, and a benefit metric asso-
ciated with each target object that answers the query and
that can be reached by a source or source path. Choosing
less sources may retrieve objects in the set of target objects
(TO) with lower benefit while choosing more sources will
increase execution cost and delay in returning answers. We
define an optimization problem to obtain the Top K answers
(based on the benefit metric) while minimizing the cost of
accessing the sources or source paths. There is a related
problem of accurately estimating the benefit associated with
each target object in TO so as to efficiently identify the Top
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K answers. We use two examples to motivate the research
and then address these two problems.

Motivating Examples

Consider a set of bibliographic sources. Typically a query
can be answered by accessing multiple sources and there
may be an overlap of the target objects (TO) for the query in
these sources. Visiting a source will retrieve all (or some) of
the objects in TO. There typically is an access cost or delay
associated with visiting each source and collecting the TOs.
For simplicity, we assume that when there is overlap, then
retrieving the object from any one source is sufficient. There
can be a more general case where the information about the
object varies across sources, so additional information can
be obtained from visiting multiple sources. Another pos-
sibility is that information is updated over time and some
sources may contain more accurate information.

In (Bleiholder et al. 2006; Raschid et al. 2006), we de-
scribed an example of navigational queries traversing source
paths in the life science domain. Consider the following
query: “Return all publications of PuBMED that are linked
to a gene entry or an OMIM entry about diseases related to
the keyword (gene name) t nf > A set of source paths that
can answer this query is shown in Figure 1. Figure 2 lists
these source paths, e.g., a path (OMIM — NCBI_Protein —
PuBMED) that goes from OmiM through NCBI_Protein to
reach objects in PUBMED.

Each of these source paths corresponds to a result graph
(RG) of objects and edges between the objects. There is
overlap of objects and edges in the different RGs. There is
also overlap of the target objects (TO) of the query; in this
case the TO are publications in PUBMED.

A navigational query is answered by evaluating one or
more source paths to reach the set of target objects TO. Eval-
uating a source path may require visiting multiple sources.
Intermediate objects may have to be downloaded (to vali-
date search criteria). An object in TO may also be reached
by different source paths. These issues complicate the task
of choosing a subset of source paths to answer the query ef-
ficiently.

Each object in TO is associated with a benefit score
(rank). The exact value of the score depends on the met-
ric. For a document, this score can be an IR style/word
based score reflecting relevance. Other options are a qual-
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NCBI Protein

PubMed

Figure 1: An example of multiple source paths and overlap
of TO

(P1) Omim — NCBI_Protein —+ PUBMED

(P2) OMImM — SwissProt —+ PUBMED

(P3) OmIM — NCBI_Nucleotide — PuBMED

(P4) EntrezGene — SwissProt — PUBMED

(P5) EntrezGene — NCBI_Nucleotide —+ PUBMED

Figure 2: Several paths from OMIM or EntrezGene to
PuBMED

ity score provided by users or a score reflecting importance
such as PageRank or ObjectRank (Balmin, Hristidis, & Pa-
pakonstantinou 2004; Page et al. 1998). We make the as-
sumption the score is known a priori. If the score is local
to each source, and the object appears in multiple sources,
then one may need to compute some aggregate score. For
simplicity, we assume that the score (rank) is global and not
query-dependent.

However, the above assumption that the local (or global)
score is known a priori is probably not realistic since this
is an expensive computation that has to be evaluated for all
possible queries. Consider the situation of multiple source
paths and the corresponding result graphs (RGs) for some
query. Suppose the objects and links of all the RGs are
stored locally. Computing the exact ranking for objects in
TO may require visiting all source paths (RGs) and it may
be computationally expensive. This becomes even more ex-
pensive if the objects and edges of the RGs are not locally
stored. One solution to this problem is to estimate an ap-
proximate benefit score and compute an approximate rank-
ing. However, we must guarantee a high correlation between
the exact and approximate ranking.

Problem Definition

Based on our motivating examples and discussion, we
present two related problems as follows:

Problem Cover(TopK): Find a minimal set of sources or
source paths that must be visited so that the K objects with
the highest benefit score in TO are reached. The minimal
set of sources or source paths can either be based on the
cardinality of selected sources (paths) or based on the least
cost.

Consider a collection of sources or source paths S =
{s1,82,...,8m}, and a world of target objects Z =
{21, Z2yenny zn}.

There is a mapping to indicate if element z; occurs as a TO
of Si.

There is an associated cost ¢(s;) for each s;.

Further, there is a benefit metric that determines a score b;

for object z;.
For each TO there is a set of K objects with the highest ben-
efitscore TOx = 01, 04,...,0K that answers query Q.

The goal of Cover(TopK) is to find a subset S’ of S to cover
all objects in T'O i while minimizing the cost of visiting S’.

We note that in Cover(TopK), the identity of the top K
target objects TOg is known a priori. This allows us to
model the Top K problem as a set cover problem as will be
discussed. This is in contrast to most versions of the Top
K problem where some mechanism is used to probe sources
and compute the aggregate score of each object and to deter-
mine the Top K.

Determining the identity of the top K target objects TO g

a priori may be expensive as discussed earlier. This leads us
to the definition of the next problem:
Problem EstimateRank: Efficiently estimate the benefit
score for some object in TO so that the relative error of esti-
mating the benefit score, for some metric M, is within some
confidence level.

Consider a result graph RG, a metric M, a benefit score
b; for object z;, and a sampled graph RG which is a sam-
pled subset of nodes and edges of RG.

The estimated benefit of z; in RG is est_ben(z;, RG, M).
The objective of EstimateRank is to determine the mini-
mum sampling cost of constructing RG or an upper bound
on the sample size, so that the confidence level in the relative
error of estimating the benefit metric, est_ben(z;, RG, M),
is at least .

Related Research

There is a rich body of research on efficient Top K tech-
niques (Bruno, Chaudhuri, & Gravano 2002; Chang & won
Hwang 2002; Das et al. 2006; Fagin, Lotem, & Naor 2001).
Given a monotonic rank aggregation function (on several at-
tributes), the Top K problem computes the K objects with
the highest combined score. Two classical algorithms TA
and NRA are proposed in (Fagin, Lotem, & Naor 2001) to
achieve early termination of query processing. By exploiting
statistics, (Bruno, Chaudhuri, & Gravano 2002) proposes a
way to determine a range query to evaluate a Top K query.
(Chang & won Hwang 2002) explores the problem when
some predicates in the query are expensive to evaluate; their



solution will minimize the number of expensive probes by
identifying a set of necessary probes. (Das et al. 2006) ad-
dresses the problem using materialized views to reduce the
number of retrieved tuples. The view selection problem is
solved for two attribute relations and then extended to multi-
attribute relations. We note that Cover(TopK) identifies a
novel variation of Top K since it assumes that the K target
objects with the highest benefit 7O g are known. Thus, it
addresses a set cover problem in selecting sources or source
paths. There is some related research in (Bender et al. 2005;
Michel et al. 2006), where a quality estimation method is
presented for selecting and adding a new peer in a P2P sys-
tem. Cover(TopK) takes a different approach since we first
estimate the benefit for each object and then solve an opti-
mization problem. In prior work (Bleiholder et al. 2006),
we considered query evaluation for navigational queries, but
we did not consider the quality of the answers returned or
try to estimate the benefit of the target objects or try to solve
a Top K problem; hence this paper is a significant extension
of our prior research.

Solutions to the EstimateRank problem will estimate the
score of the objects in the TO efficiently, so as to avoid vis-
iting a large number of objects in the RG. We summarize
related work. In the context of query optimization, different
sampling-based algorithms have been proposed to estimate
the cardinality of a query efficiently (Haas & Swami 1992;
Hou, Ossoyoglu, & Doglu 1991; Ling & Sun 1992; Lipton
& Naughton 1990; Lipton, Naughton, & Schneider 1990;
Ruckhaus, Ruiz, & Vidal 2006). The challenge of these
methods is to reach estimates that satisfy the required con-
fidence levels while the size of the sample remains small.
A key decision involves when to stop sampling the popula-
tion and this is determined by the mean and variance of the
sample in comparison to the target population. The different
techniques use different methods to reach this decision. In
(Lipton & Naughton 1990; Lipton, Naughton, & Schneider
1990), mean and variance are approximated using some up-
per bounds which are defined in terms of the cardinality con-
straints that characterize the relationships between the ob-
jects in the population to be sampled. (Haas & Swami 1992;
Hou, Ossoyoglu, & Doglu 1991) do not define an upper
bound for these statistics; in contrast, they approximate them
on-the-fly. In (Hou, Ossoyoglu, & Doglu 1991), mean and
variance are computed from a small portion of the data,
which is sampled in the first stage. In (Haas & Swami 1992),
mean and variance are recomputed during each iteration of
the sampling. Thus, the last two techniques are able to reach
better estimates but require, in general, more time for sam-

pling.
Proposed Solution
Solution to Cover (TopK)

We first formalize this problem as an Integer Program-
ming/Linear Programming (IP/LP) as follows:

Let ¢; indicate if z; is in TOk as given.

We set integer variables z; = 1 iff source/source path s; is
chosen in the solution.

We set integer variables y; = 1 iff z; is covered in the

solution.

Minimize Y7 c(si) - =

subject to
Z?:l yi-t; 2 K
Yj < E{uzJ-ES,} z; forall j
z; € {0,1} forall ¢
y; € {0,1} forall j

This IP formulation can be relaxed to obtain an LP for-
mulation for an approximate solution.

Next, we consider a greedy solution to Cover(TopK). We
assume that the exact benefit of each object in each source
or source path is computed a priori. As a result, the Top K
target objects T'O g is known, as well as the source or source
path in which they occur. We can exploit this knowledge to
choose paths efficiently to cover TOg .

Algorithm GREEDY COVER(TOPK)

> Let My be a matrix where a value of 1 at entry M (i, j)
indicates if element z; occurs in source or path s;.

> Let M5 be a vector where a value of 1 at entry M5 (j)
indicates if element z; occurs in the top K objects TOx
for some given metric.

> Let U be a vector where a value of 1 at entry U(j)
indicates if element z; occurs in the subset of sources
picked so far. Initially, U contains all 0s.

1. Rank source or source paths s; based on R; = Count;/c(s;)

in descending order.
Count; is the count of the number of objects in s; that
occur in TOx, and can be determined using M, and M.
Count,- = 27:1 (M1 (7,, l) . M2(l))

2. Pick source or source path s; with the largest ratio R;.

— Update vector U to determine the union of objects covered

sofar. U(4) = U(j) vV My(t, 7).
— Adjust the ratio of the remaining paths sy, to discount
County, by those objects in s; that occur in TOg
and occur in the overlap of s; and sy.
County = Y., (M (k,1) - (1 = U(1)) - M2(1))
3. Continue choosing sources or paths until TOg is covered.

As discussed earlier, computing the exact benefit b; can be
expensive. Suppose we cannot assume that we know 70 g
or Ms(j) a priori. Now the greedy algorithm will not be
able to determine Count; for each source or source path s;.
One solution to this problem is to estimate an approximate
benefit score and this leads us to the related problem Esti-
mateRank. The approximate ranking, however, must guar-
antee a high correlation between the exact and approximate
ranking.

A variant of the greedy algorithm can then rank the
paths using the ratio (Sum_Est_Benefit;/cost;), where
Sum_Est_Benefit; is the sum of estimated benefits and
can be obtained using the estimated value of b; and M (3, j).
Methods to estimate the value of b; are discussed next.

Solution to EstimateRank

Recall that the objective of EstimateRank is to sample the
result graph and estimate the benefit for some object z; in



TO. Consider a result graph RG, a metric M, a benefit score
b; for object z;, and a sampled graph RG which is a sam-
pled subset of nodes and edges of RG. The objective of
EstimateRank is to determine the minimum sampling cost
of constructing RG or an upper bound on the sample size,
so that the confidence level in the relative error of estimating
the benefit metric, est_ben(z;, RG, M), is at least c.

Consider the case where the benefit associated with a tar-
get object is a quality score that is assigned to the object by a
set of users. Alternately, we may consider a score that is de-
termined by some automated technique based on the content
of the target object, e.g., an IR-style score that is based on
the bag of words in the object. Such a benefit score will be
independent of the link structure or other properties of the
result graph. To model this situation, we first present a met-
ric independent solution to EstimateRank. However, many
search engines on the Web rely on metrics such as PageR-
ank or ObjectRank (Balmin, Hristidis, & Papakonstantinou
2004; Page et al. 1998) where the score reflects importance
of an object and depends on the link structure of the result
graph. To address this situation, we then present a metric de-
pendent solution to EstimateRank that exploits properties
of the metric. For simplicity, we explain the latter case using
a metric PathCount whose computation is simpler compared
to PageRank.

Consider the RG in Figure 3; it is a layered DAG. A lay-
ered DAG can partition its nodes into multiple layers, and
any edge in the layered DAG can only occur between nodes
of adjacent layers. See (Raschid et al. 2006) for details of
navigational queries and how we construct the result graph
RG as a layered DAG. The figure shows a layered graph
with 4 layers and the object paths from objects in the first
layer to the 3 target objects in the fourth layer.

Figure 3: PathCount for an object in TO

Consider a target object z; in layer L, of RG. Let
BL; (n—1) be the set of backlinks from layer L,,_1 to L,
that reach z;. In Figure 3, BLg4 3 is comprised by the back-
links of the object d in the third layer.

Metric Independent Solution to EstimateRank A met-
ric independent solution to the EstimateRank problem is
defined as follows:

Let TO={z1, 73, ..., Zm } be a sample of T'O such that each
Zj,1 < j < m, is randomly chosen from T'O with replace-
ment.

A sampled graph RG corresponds to the minimal sub-graph
of RG that contains only the objects in T'O in the last layer,
i.e., L, is equal to TO. In addition, any layer L; of RG is

only composed of the objects in L; of RG that are backlinks
of the objects in layer L; ;.

To ensure that the estimation of the ranking is between
certain convergence bounds, the size m of the sample is
defined using the Chernoff Bound (Scholkopf & Smola
2001) as follows:

Let X,(z;) be an independent identically distributed
(i.i.d.) binary random variable that has value 1 if the benefit
score of the sample target object Z; is v, and 0 otherwise.
Let S, be another random variable that averages the vari-
ables X, (z;) for the objects in TO, i.e.,

— 1 “
= — Z
j=1
Let p be the probablllty of the benefit score for an ob-
ject z; being v, i.e., Pr(X,(z;) = 1) = p. Since the se-
quence X, (z1), X, (5) X (Zn) represents a sequence
of Bernoulli trials, p corresponds to the probability of suc-
cess of the trials or the expection of S, denoted by E(S,).
Then by using the Chernoff bound, the size m of the sam-
ple has to satisfy the following formula to ensure that the

relative error of the estimation of £ (S, ) is greater than some
given constant e with some probability «:

Pr(|S, — E(Sy)| > €) < 2ezp(~2™)
Sufficient objects in layers L, to L,, ; need to be sampled

in order to reach m target objects in TO, in layer L,, of the
sampled graph RG.

Metric Dependent Solution to EstimateRank Given
very large samples (large result graphs and large cardinality
of the target objects in T0), it is well known that a metric-
independent sampling performs well. However, domain in-
formation, such as the properties of the result graph or target
objects or properties of the metric, can be used to determine
a more precise sample size, and to improve the efficiency of
the estimation method. For illustration, we consider a simple
example metric, Pat hCount or PC, to show how domain
information can be exploited. The path count measure was
introduced in (Katz 1953) in the context of social networks.
The PC benefit score represents the number of object paths
through the RG that reach a target object z; in TO. Thus,
in Figure 3, the value of the benefit score for the metric
Pat hCount (PC) for the target objects d, e, and g, is 6, 2,
and 3, respectively.

Consider a target object z; in layer L, of RG. Let
BL; (n—1) be the set of backlinks from layer L(,,_1) to L,
that reach zj. Then, the benefit b; or the PC score for
z; is the sum of the PC score for each of the objects in
layer L(,,_y) that is reached by each backlink in BL; (,,_1).
Thus,
bj = PC(z) = >

zi:(2i,2;)EBL; (n-1)
where z; is an object in layer L, _1) such that edge (z;, z;)
isin BLj,(n—l)-

Our sampling strategy to estimate the benefit score b; is
as follows:



e Edges in BL;,,—1) are sampled with replacement to es-
timate the PC scores of each object z; using the sampled
links Sample BL; (1)

e The estimated PC for z; is

est_ben(z;, RG, PC) = (s/m) * Card(BLj ,_1))

where s is the sum of the PC values of the sampled
objects in Sample_BL; ,_1y, m is the size of the
sample, i.e., the cardinality of Sample_BL; ,,_1), and
Card(BLj (,_1)) is the cardinality of BL; (,_1).

o Different sampling-based techniques are used to decide
when to stop sampling BL;,(,,—1), i.€., to determine m.
These methods are based on the estimation of mean
(Y) and variance (S) of the PC scores of the objects in
BL; (n—1)- Our objective is to reach (through sampling)
Sample BLj 1) With mean Y such that the probabil-
ity that the relative error of the estimation is greater than
some given constant r is «; « is the confidence level. The
expression is as follows:

Y-Y

P(| |>r)=a

e Recall that the sum of PC scores of the sampled objects
is s. We stop sampling when s exceeds an upper bound
b. We consider the following three methods, based on the
estimation of mean (Y") and variance (.S) of the PC scores
of the objects in BL; (,,_) to determine b:

— Adaptive Sampling (Lipton & Naughton 1990; Lip-
ton, Naughton, & Schneider 1990): The upper bound
b is defined as an approximation of % Following this
approach, we define b as the product of the maximal in-
degree of the nodes (objects) in all layers Ly, Lo, - - -,
L, preceding layer L,,_q, i.e.,

n—2
b= H Maz(Indegree(L;))
i=1

Thus, b corresponds to an upper bound of the PC score
of any object in layer L, _,. The stop condition of the
sampling is as follows:

s>k xbxdx (d+1)

where, k1 and d are values associated with the desired
relative error  and the confidence level of the sampling
a. We refer the reader to (Lipton & Naughton 1990;
Lipton, Naughton, & Schneider 1990) for details.

— Double Sampling (Hou, Ossoyoglu, & Doglu 1991):
This approach involves two phases of sampling. In the
first phase, t% of the objects in BL; (,,_,) are sampled
to estimate S and Y. Then, these estimated values are
used to compute m, the desired cardinality of the sam-
ple Sample_BL; (,,_1), using the following formula:

(S X to)? 8r S? 2
=—-—"(1 — [— J—
mn (TXY)2( +ta+m1Y2)+m1

where, m is the size of the first sample, « is the con-
fidence level, r is the relative error, and ¢, is defined
based on « and an standardized normal random vari-
able. This new equation is considered because some
certain corrections has to be made if S and Y are es-
timated. We refer the reader to (Hou, Ossoyoglu, &
Doglu 1991) for details.

— Sequential Sampling (Haas & Swami 1992): Fol-
lowing this technique, S and Y are estimated at each
sampling step using all the current observations. Let
S; and Y; be the estimators of S and Y after ¢ ob-
jects in BL; (,_1) have been sampled with replace-
ment, and let s be the sum of observed PC scores and let
b be the upper bound defined for the adaptive sampling
method (Lipton & Naughton 1990; Lipton, Naughton,
& Schneider 1990). Then, the stop condition is as fol-
lows:

r x maz(s,b) > to(t x Sp)'/?

Thus, the termination condition is determined at every
sampling step, and sampling will terminate when the
desired accuracy and confidence level are reached.

We plan to extend our current sampling techniques with
additional domain information about the conditional proba-
bility of accessing an object o from an object p that is in the
backlink set for o. This will allow us to estimate the prob-
ability of visiting a node in a subgraph. These estimated
subgraphs can be exploited to solve the EstimateRank prob-
lem for metrics such as ObjectRank (Balmin, Hristidis, &
Papakonstantinou 2004) and IgOR (Raschid et al. 2006),
where the structure of the subgraph (result graph) plays an
important role in the benefit score of a target object.

Proposed Evaluation

We are in the process of implementing and evaluating our
solutions to the two problems Cover(TopK) and Estimat-
eRank. The evaluation will be on a biological database from
NCBI/NIH, the gatekeeper for biological data produced us-
ing federal funds in the US™. We have constructed a graph of
10 data sources and 46 links. We used several hundred key-
words to sample data from these sources (the EFetch utility)
and followed links to the other sources (the ELink utility).
We created a data graph of approximately 28.5 million ob-
jects and 19.4 million links.

For Cover(TopK), we will compare the coverage and
cost trade-off of our greedy solution compared to the op-
timal solution. For EstimateRank, we will experiment
with the Pat hCount metric discussed in this paper as
well as other well known metrics, such as PageRank and
ObjectRank (Balmin, Hristidis, & Papakonstantinou 2004;
Page et al. 1998). We will determine the effectiveness of the
different sampling techniques for these metrics.
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