
Scaling up Duplicate Detection in Graph Data∗

Melanie Herschel
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

melanie.herschel@hpi.uni-potsdam.de

Felix Naumann
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

felix.naumann@hpi.uni-potsdam.de

ABSTRACT
Duplicate detection determinesdifferent representations of real-
world objects in a database. Recent research has consideredthe
use of relationships among object representations to improve du-
plicate detection. In the general case where relationshipsform a
graph, research has mainly focused on duplicate detection qual-
ity/effectiveness. Scalability has been neglected so far,even though
it is crucial for large real-world duplicate detection tasks.

We scale up duplicate detection in graph data (DDG) to large
amounts of data using the support of a relational database system.
We first generalize the process of DDG and then present how to
scale DDG in space (amount of data processed with limited main
memory) and in time. Finally, we explore how complex similar-
ity computation can be performed efficiently. Experiments on data
an order of magnitude larger than data considered so far in DDG
clearly show that our methods scale to large amounts of data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Data quality, duplicate detection, entity resolution, scalability

1. INTRODUCTION
Duplicate detection has been addressed in a large body of

work [3]. We classify duplicate detection research along three di-
mensions, namelydata, approach, andalgorithm focus. For data,
we distinguish (i) data in a singletable, without multi-valued at-
tributes, (ii)tree data, such as data warehouse hierarchies or XML
data, and (iii) data represented as agraph, e.g., data for personal
information management. The second dimension discerns between
three approaches used for duplicate detection: (i) machinelearn-
ing, where models and similarity measures are learned, (ii) theuse
of clustering techniques, and (iii)iterative algorithms, which clas-
sify one pair of candidates at every iteration. Consideringthe algo-
rithm focus dimension, we observe that most articles focus on ei-
ther effectiveness, efficiency, or scalability. Research on effective-
ness is concerned with improving precision and recall, for instance

∗A full version of this paper is available. See [8] for details.

Copyright is held by the author/owner(s).
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
ACM 978-1-59593-991-3/08/10.

by developing sophisticated similarity measures [2] or by consid-
ering relationships [6]. Research on efficiency assumes a given
similarity measure and develops algorithms that avoid applying the
measure toall pairs of objects [4]. To apply methods to very large
data sets, it is essential to scale not only in time but also toscale in
space, for which relational databases are commonly used [4].

We observe that for duplicate detection in graph data, no meth-
ods for scalable iterative duplicate detection have been proposed, a
shortcoming we address in this paper.

2. DDG AS SEEN FROM OUTER SPACE
All iterative DDG algorithms proposed so far adhere to the fol-

lowing framework: Duringinitialization, a graph representation
of the considered data is created, precomputations are performed,
and a priority queue of pairs of candidates (object representations
among which duplicates should be detected) is set up. Duringthe
iterative phase, pairs of candidates are retrieved from a priority
queue, are then classified as duplicates or non-duplicates,and po-
tentially trigger some update in the priority queue. The most sig-
nificant update is to sort the priority queue when a duplicatewas
classified. This is done to reduce the number of classifications per-
formed for a candidate pair (which can be more than one in DDG).
Scaling up initialization is discussed in the extended version of this
paper [8] and we only summarize scaling up the iterative phase
here, which is summarized in Fig. 1. We show how a pair of actor
candidates (a1,a1’) is retrieved from the priority queue residing in
main memory. As it is classified as a duplicate, the movie candidate
pair (m1,m1’) rises in the order of the priority queue, because its
similarity increases based on the fact that actora1 playing inm1 is
the same as actora1’ playing inm1’.

Figure 1: Sample iteration for DDG

3. SCALING UP ITERATIVE PHASE
To scale up the iterative phase of DDG, we scale up the individ-

ual steps. To this end, we assume that all necessary data structures,
in particular the graph and the priority queue are stored in arela-
tional database. Scalable DDG is summarized in Fig. 2.



Figure 2: Sample RECUS/BUFF iteration

3.1 Scaling up Retrieval and Update
To scale up retrieval and update, we propose our RECUS/BUFF

algorithm. It uses an in-memory bufferBs of fixed size to avoid
sorting the priority queue each time a duplicate is found. The in-
tuition behind RECUS/BUFF is that although ranks of several pairs
may change after a duplicate has been found, sorting the priority
queue immediately after finding the duplicate is not always neces-
sary and may actually occur several times before an affectedpair
is retrieved. For instance, whena1 anda1’ are detected to be du-
plicates, the pair consisting of the movies they respectively play in,
i.e., (m1,m1’) rises in the priority queue, e.g., from position 7 to
position 5. Although it is now closer to the head of the priority
queue, any pair at position 4 or less will be compared first. Hence,
sorting the priority queue does not immediately affect the compar-
ison order and should therefore be avoided. To this end, we useBs

to temporarily store candidate pairs whose position in the priority
queue decreased. At each retrieval step, we check if the paircoming
from the in-database priority queue has a lower or equal position to
the pair in the buffer. Depending on the result, either the pair from
the database or the pair from the buffer is compared first. When the
buffer overflows, we update the in-database priority queue and sort
it again. Until this happens, using the internal buffer avoids sorting
the potentially large priority queue, which significantly improves
runtime while scaling DDG to large amounts of data.

3.2 Scaling up Classification
To classify pairs as duplicates or non-duplicates, a similarity-

based approach is often used: If the similarity is above a specified
threshold, the pair is classified as a duplicate, otherwise it is classi-
fied as a non-duplicate. We investigate three variants of efficiently
computing the similarity of a pair.
SQL. As the data is stored in a database, we can in principal com-
pute the similarity of a pair using SQL. However, the type of sim-
ilarity function is then limited by the expressive power, which is
especially a problem when the similarity measures use otheraggre-
gate functions to aggregate attribute similarities than those speci-
fied in SQL.
Hybrid/Complete. To overcome the limit of expressive power of
the SQL variant, we define the Hybrid/Complete variant that essen-
tially retrieves all necessary data for the computation of the similar-
ity from the database, which is then processed outside the database
to obtain the final similarity.
Hybrid/Optimized. Having control over the processing of the
data, we can further optimize the similarity computation byretriev-
ing and processing the data in such a way that we can abort retrieval
and computation as soon as it is mathematically impossible that the
similarity exceeds the predefined threshold. We call this technique
early classification, because it classifies a pair as non-duplicate be-
fore the actual similarity is computed.

4. EVALUATION
Table 1(a) summarizes how the different phases of DDG scale

in time depending on the size of the datas, the duplicate ratiodr,
and the connectivityc, which in total amounts to a linear behavior.
Table 1(b) summarizes resultsreported for other DDG algorithms.
Tab. 1(b) reports on the data set size, runtime (without initialization
time) and the parameters for which the algorithms donot scale lin-
early (s, dr, andc are considered). We observe that RECUS/BUFF

takes comparably long, but this comes as no surprise as DB com-
munication overhead and network latency add to the runtime.More
interestingly, none of the DDG algorithms except RECUS/BUFF

scales linearly in time with all three parameterss, dr, andc. In-
deed, all algorithms but RECUS/BUFF do not scale linearly in time
with the data set sizes, which compromises scaling up DDG to
large amounts of data. Note that further experiments are reported
in [8].

Parameter Retrieval & update Classification
PQT sizes linear linear

duplicate ratiodr < 0.8 linear constant
connectivityc linear constant

Overall linear linear
(a) DDG scalability using RECUS/BUFF and HYB/O

Approach # candidates Runtime (s) Not linear in
RC-ER [1] 68,000 890 s, c

RelDC [5] 75,000 180 - 13,000a
s, c

LinkClus [9] 100,000 900 s

RECUS/BUFF 1,000,000 24,433 -

adepending on connectivity
(b) Comparison time for different approaches

Table 1: Comparative evaluation

5. CONCLUSION
This paper is the first to consider scalability of duplicate detec-

tion in graphs (DDG). We showed that using RECUS/BUFF and
a suited classification strategy such as Hybrid/Optimized,we can
scale up DDG to large amounts of data not fitting in main memory.
Part of the research presented here was successfully applied to an
industry project [7].

6. REFERENCES
[1] I. Bhattacharya and L. Getoor. Collective entity resolution in relational

data.ACM Transactions on Knowledge Discovery from Data, 1(1),
March 2007.

[2] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using
learnable string similarity measures. InKDD Conference, Washington,
DC, 2003.

[3] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey.IEEE Trans. Knowl. Data Eng., 19(1), 2007.

[4] M. A. Hernández and S. J. Stolfo. The merge/purge problemfor large
databases. InSIGMOD Conference, San Jose, CA, 1995.

[5] D. V. Kalashnikov and S. Mehrotra. Domain-independent data
cleaning via analysis of entity-relationship graph.ACM Trans.
Database Syst., 31(2), 2006.

[6] P. Singla and P. Domingos. Object identification with
attribute-mediated dependences. InPKDD Conference, Porto,
Portugal, 2005.

[7] M. Weis and F. Naumann. Industry-scale duplicate detection. In VLDB
Conference, Auckland, New Zealand, 2008.

[8] M. Weis and F. Naumann. Space and time scalability of duplicate
detection in graph data. Technical Report 25, Hasso-Plattner-Institut,
2008.

[9] X. Yin, J. Han, and P. S. Yu. LinkClus: Efficient clustering via
heterogeneous semantic links. InVLDB Conference, Seoul, Korea.


