Scaling up Duplicate Detection in Graph Data

Melanie Herschel Felix Naumann
Hasso-Plattner-Institut Hasso-Plattner-Institut
Prof.-Dr.-Helmert-Str. 2-3 Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany 14482 Potsdam, Germany

melanie.herschel@hpi.uni-potsdam.de felix.naumann@hpi.uni-potsdam.de
ABSTRACT by developing sophisticated similarity measures [2] or bysid-

ering relationships [6]. Research on efficiency assumewengi
similarity measure and develops algorithms that avoidyapglthe
measure t@ll pairs of objects [4]. To apply methods to very large
data sets, it is essential to scale not only in time but alszade in
space, for which relational databases are commonly used [4]

We observe that for duplicate detection in graph data, ndvmet
ods for scalable iterative duplicate detection have beepgsed, a
shortcoming we address in this paper.

Duplicate detection determineadfferent representations of real-
world objects in a database. Recent research has consitered
use of relationships among object representations to wepdol-
plicate detection. In the general case where relationdoips a
graph, research has mainly focused on duplicate detectiaf q
ity/effectiveness. Scalability has been neglected s&fam though

it is crucial for large real-world duplicate detection task

We scale up duplicate detection in graph data (DDG) to large

amounts of data using the support of a relational databasteray

We first generalize the process of DDG and then present how to2,. DDG AS SEEN FROM OUTER SPACE

scale DDG in space (amount of data processed with limitesh mai All iterative DDG algorithms proposed so far adhere to tHe fo

memory) anq in time. Finally, we ex.pllore how °°’T“p'ex similar lowing framework: Duringinitialization, a graph representation
ity computation can be performed efficiently. Experimemsiata of the considered data is created, precomputations arerpetl

e g " 10 prony Qe ofpas o candiais (obec repasons
y 9) among which duplicates should be detected) is set up. Dtineg

iterative phase, pairs of candidates are retrieved from a priority

Categories and Subject Descriptors queue, are then classified as duplicates or non-duplicatespo-
H.4 [Information Systems Applicationg: Miscellaneous tentially trigger some update in the priority queue. The sig-
nificant update is to sort the priority queue when a dupliceds
General Terms classified. This is done to reduce the number of classificatper-
. formed for a candidate pair (which can be more than one in DDG)
Algorithms, Performance Scaling up initialization is discussed in the extendediversf this
paper [8] and we only summarize scaling up the iterative @has
Keywords here, which is summarized in Fig. 1. We show how a pair of actor
Data quality, duplicate detection, entity resolution,|abity candidatesd1,al’) is retrieved from the priority queue residing in
main memory. As itis classified as a duplicate, the movie ickatel
1. INTRODUCTION pair (m1,m1’) rises in the order of the priority queue, because its

similarity increases based on the fact that aatbplaying inm1 is

Duplicate detection has been addressed in a large body fthe same as actarl’ playing inm1'.

work [3]. We classify duplicate detection research alormgéhdi-

mensions, namelgata, approach, andalgorithm focus. For data, Retfieyve

we distinguish (i) data in a singleble, without multi-valued at- % (a1, at’) El——'—“> (at,a1)
tributes, (ii)tree data, such as data warehouse hierarchies or XML Classify

data, and (iii) data represented agraph, e.g., data for personal

information management. The second dimension discermshat A(m1, m1°)x (a1, a1*) duplicates
three approaches used for duplicate detection: (i) madeare- in-memory Update
ing, where models and similarity measures are learned, (iijisiee PQ

of clustering techniques, and (iiijterative algorithms, which clas-
sify one pair of candidates at every iteration. Considettregalgo-
rithm focus dimension, we observe that most articles focusio
ther effectiveness, efficiency, or scalability. Researntlefective-
ness is concerned with improving precision and recall,rietance

Figure 1: Sample iteration for DDG

3. SCALING UP ITERATIVE PHASE

To scale up the iterative phase of DDG, we scale up the individ
Copyright is held by the author/owner(s). ual steps. To this end, we assume that all necessary dattuses,

CIKM'08, October 26-30, 2008, Napa Valley, California, USA. in particular the graph and the priority queue are stored riela
ACM 978-1-59593-991-3/08/10. tional database. Scalable DDG is summarized in Fig. 2.

*A full version of this paper is available. See [8] for details

Retrieve
T

in-memory buffer

a1, al') duplicates

(a1, at’)

in-database
PQ

-~

Update

Figure 2: Sample REcus/BUFF iteration

3.1 Scaling up Retrieval and Update

To scale up retrieval and update, we propose oaC &/BUFF
algorithm. It uses an in-memory buffé, of fixed size to avoid
sorting the priority queue each time a duplicate is founde Th
tuition behind REcuYBUFF is that although ranks of several pairs
may change after a duplicate has been found, sorting theitprio
queue immediately after finding the duplicate is not alwagses-
sary and may actually occur several times before an affquaéd
is retrieved. For instance, wherl andal’ are detected to be du-
plicates, the pair consisting of the movies they respéegtpiay in,
i.e., (m1,m21’) rises in the priority queue, e.g., from position 7 to
position 5. Although it is now closer to the head of the ptiori
queue, any pair at position 4 or less will be compared firshdde
sorting the priority queue does not immediately affect thepar-
ison order and should therefore be avoided. To this end, e&us
to temporarily store candidate pairs whose position in tharipy
queue decreased. At each retrieval step, we check if thegaiing
from the in-database priority queue has a lower or equatiposio
the pair in the buffer. Depending on the result, either thefpam
the database or the pair from the buffer is compared first.\the
buffer overflows, we update the in-database priority queksart
it again. Until this happens, using the internal buffer @g@orting
the potentially large priority queue, which significantmproves
runtime while scaling DDG to large amounts of data.

3.2 Scaling up Classification

To classify pairs as duplicates or non-duplicates, a siihjla
based approach is often used: If the similarity is above aipeé
threshold, the pair is classified as a duplicate, otherwiseclassi-
fied as a non-duplicate. We investigate three variants afieifily
computing the similarity of a pair.

SQL. As the data is stored in a database, we can in principal com- 6,

pute the similarity of a pair using SQL. However, the typeiofs
ilarity function is then limited by the expressive power, ighis
especially a problem when the similarity measures use atljgne-
gate functions to aggregate attribute similarities thars¢hspeci-
fied in SQL.

Hybrid/Complete. To overcome the limit of expressive power of
the SQL variant, we define the Hybrid/Complete variant tsate-
tially retrieves all necessary data for the computatiomefdimilar-
ity from the database, which is then processed outside tabalse
to obtain the final similarity.

Hybrid/Optimized. Having control over the processing of the
data, we can further optimize the similarity computatiorrdtyiev-
ing and processing the data in such a way that we can abaetadtr
and computation as soon as it is mathematically imposdialethe
similarity exceeds the predefined threshold. We call thibrigjue
early classification, because it classifies a pair as notiedtp be-
fore the actual similarity is computed.

4. EVALUATION

Table 1(a) summarizes how the different phases of DDG scale

in time depending on the size of the datahe duplicate ratiair,
and the connectivity, which in total amounts to a linear behavior.
Table 1(b) summarizes resuteported for other DDG algorithms.
Tab. 1(b) reports on the data set size, runtime (withoutligation
time) and the parameters for which the algorithmsdoscale lin-
early (s, dr, andc are considered). We observe tha®SBUFF
takes comparably long, but this comes as no surprise as DB com
munication overhead and network latency add to the runtiioee
interestingly, none of the DDG algorithms except®SBUFF
scales linearly in time with all three parametersir, andc. In-
deed, all algorithms but Reus/BUFF do not scale linearly in time
with the data set size, which compromises scaling up DDG to
large amounts of data. Note that further experiments arerteg
in [8].

Parameter Retrieval & update | Classification
PQT sizes linear linear
duplicate ratiadr < 0.8 linear constant
connectivityc linear constant
Overall linear linear

(a) DDG scalability using RcusBurrFand HYB/O

Approach | # candidates| Runtime (s) [Notlinear in

RC-ER [1] 68,000 890 s, ¢

RelDC [5] 75,000 |180 - 13,000 s, ¢
LinkClus [9] 100,000 900 s
Recus/Burr| 1,000,000 24,433 -

2depending on connectivity
(b) Comparison time for different approaches

Table 1: Comparative evaluation

5. CONCLUSION

This paper is the first to consider scalability of duplicatted-
tion in graphs (DDG). We showed that usinge® YBUFF and
a suited classification strategy such as Hybrid/Optimizesl,can
scale up DDG to large amounts of data not fitting in main memory
Part of the research presented here was successfully dpplan
industry project [7].

REFERENCES

[1] I. Bhattacharya and L. Getoor. Collective entity resioin in relational
data.ACM Transactions on Knowledge Discovery from Data, 1(1),
March 2007.

[2] M. Bilenko and R. J. Mooney. Adaptive duplicate detewtigsing
learnable string similarity measures.KibD Conference, Washington,
DC, 2003.

[3] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Digate record
detection: A surveylEEE Trans. Knowl. Data Eng., 19(1), 2007.

[4] M. A. Hernandez and S. J. Stolfo. The merge/purge probtanarge
databases. I8lGMOD Conference, San Jose, CA, 1995.

[5] D. V. Kalashnikov and S. Mehrotra. Domain-independegitad
cleaning via analysis of entity-relationship grapitM Trans.
Database Syst., 31(2), 2006.

[6] P. Singla and P. Domingos. Object identification with
attribute-mediated dependencesPKDD Conference, Porto,
Portugal, 2005.

[7] M. Weis and F. Naumann. Industry-scale duplicate d&ectn VLDB
Conference, Auckland, New Zealand, 2008.

[8] M. Weis and F. Naumann. Space and time scalability of idaf#
detection in graph data. Technical Report 25, Hasso-Rlaltrstitut,
2008.

[9] X.Yin, J.Han, and P. S. Yu. LinkClus: Efficient clustegiria
heterogeneous semantic links.MhDB Conference, Seoul, Korea.

