
Posr: A Comprehensive System for Aggregating and Using Web Services

Mohammed AbuJarour∗, Mircea Craculeac�, Falko Menge�, Tobias Vogel�, Jan-Felix Schwarz�

Hasso-Plattner-Institute for IT Systems Engineering
Potsdam, Germany

∗ firstname.lastname@hpi.uni-potsdam.de
� firstname.lastname@student.hpi.uni-potsdam.de

Abstract—Recently, the number of public Web Services
has been constantly increasing. Nevertheless, consuming Web
Services as an end-user is not straightforward, because creating
a suitable user interface for consuming a Web Service requires
much effort. In this work, we introduce a novel approach
where user interface fragments for consuming Web Services
are generated automatically, and aggregated and customized by
end-users to match their preferences. Users can collaboratively
improve the auto-generated user interfaces and share them
among each other. Our three main sources of Web Services
are explicit registration, automatic identification and collecting
over the Web, as well as extraction and generation from existing
web applications. We validated our approach by implementing
it as a comprehensive system coined “Posr”.

Keywords-Web Service; Service Repository; Composite; UI
Fragments;

I. GETTING THE MOST OF SOA

Service-Oriented Architecture (SOA) has changed the way

services are delivered in private (closed) environments, such

as organizations, as well as public environments, such as the

WWW. The number of public Web Services offered over

the Web has been increasing all the time. For example, the

Service-Finder project [1], was able to find more than 27,000

Web Services over the Web.

This wealth of Web Services is utilized by aggregating and

combining multiple Web Services together to achieve new

or user-defined tasks. As user-defined tasks can be created

arbitrarily, the challenge is to create a proper user interface

(UI) for consuming such a composite service. In this work,

we propose a novel approach to deal with this challenge and

several associated issues.

A. Example: The EU Services Directive

One particular example for the service markets emerging

is the European Union (EU). Until 28th of December 2009

all EU Member States have to implement the “Directive

2006/123/EC on services in the internal market” [2], which

has been introduced by the European Parliament and Council

and aims to create a genuine internal market for services.

Therefore, the directive seeks to remove legal and adminis-

trative barriers in order to make it easier for businesses to

set up in other Member States of the EU and to provide

services cross-borders or on a temporary basis.

The Internet is going to play an important role in the

implementation of this directive. On the one hand, it will be

the marketplace for trading services across country borders.

On the other hand, governmental organizations will have to

open their services to be used over the Web. Furthermore,

private sector service providers may add value to these Web-

based public sector services by combining them with other

services, which may also be of use when performing certain

formalities.

One example for such a value-chain containing public and

private sector service providers has already evolved in the

United Kingdom (UK). In particular, the UK limited com-

pany has become quite popular across the European Union,

because it is a company structure with limited liability but

without the need to pay up capital. Recently, third-party

service providers emerged, which handle all formalities of

registering a new company with the authorities and offer a

broad range of additional services, e.g., a bank account, a

registered office, or a company secretary.

The current implementations for this example contain

either lots of media breaks, if the government services are

used directly, or are hand wired compositions with custom-

developed software by third-party providers. Throughout

this paper, it is shown how these services can be extracted

(wrapped), discovered, and composed, and how a media-

break-free user interface can be created.

Figure 1: Example process of a value-added service for the

formation of a UK limited company.

Figure 1 shows a process model using the Business

Process Management Notation (BPMN) [3] of a value-added

service for the formation of a private company limited by

shares in the United Kingdom. The first six activities of

the process are services of the UK Companies House [4],

which are required for every new limited company. In the

2009 Congress on Services - I

978-0-7695-3708-5/09 $25.00 © 2009 IEEE

DOI 10.1109/SERVICES-I.2009.111

139

beginning, it has to be checked whether the desired company

name is not already in use and the directors are not dis-

qualified from leading a company. The according registries

can already be queried online through the website of the

UK Companies House. Section III-A shows how these Web

forms can be transformed into SOAP-based Web Services.

For the remaining steps, electronic forms are provided in

the Portable Document Format (PDF). We implemented

these activities as Web Services manually, to show examples

illustrating the challenges of user interface generation and

editing in Section III-C. The last two activities in the model

are Web Services by private sector service providers, which

have been discovered on the Web as shown in Section III-B.

In Section III-D, the process model depicted in Figure 1

serves as a blueprint for aggregating a media-break-free user

interface for the entire service composition.

B. Contributions of this Work

The main contributions of this work are:

• Extraction and generation of Web Services to wrap

existing web applications.

• Automatic identification and gathering of Web Services

over the Web.

• Automatic generation of user interface fragments that

are able to consume Web Services.

• Aggregation of user interface fragments for service

compositions.

The remainder of this paper is organized like this: a general

overview of our approach is given in Section II. Further

details about each component of the system are introduced

in Section III. In Section IV, we point to our online system.

We close with a conclusion and outlook in Section V.

II. OVERVIEW

A composite application, such as the formation of a UK

limited company, requires an appropriate user interface to

collect inputs from the user and pass them to the service.

The structure of a user interface to consume a Web Service is

highly-coupled with the data structures being exchanged dur-

ing the consumption of the Web Service. This causes much

effort during the creation of UIs for consuming applications,

which effectively limits reusability of such Web Services,

whereas reusability is one of the main advantages of the

SOA. This contradiction motivates the automatic generation

of user interfaces for consuming Web Services.

Constructing valuable composite services needs a rich

collection of Web Services, where vast alternatives are avail-

able. To meet this requirement, we rely on a service registry

and repository component, which we call the “Depot”.

This component manages all considered Web Services and

provides lookup and retrieval features for Web Services.

An important feature of our service Depot is the automatic

identification and gathering of public Web Services over the

Web. To increase flexibility, feeding individual Web Services

into the Depot is also possible. A special case of such

feeds is the outcome of the “Faster” component, which

is used to extract and generate Web Services from web

applications (forms). For more details about Faster, please,

refer to Subsection III-A.

Figure 2: Constitutes of Posr System (FMC Block Diagram).

The architecture of our system, Posr, is depicted in

Figure 2, which illustrates its main constituents and the

interactions between them. Application scenarios are split

into two sets: The first set is the discovery and provision of

Web Services, and the second set includes composition and

consumption of Web Services.

Figure 3: BPMN process model showing the discovery and

provision of services.

Figure 3 depicts the scenario of discovery and provision

of Web Services. It has two starting points: an extracted

Web Service from a web application using Faster or a URL

where public Web Services are published. In the latter case,

the Depot crawls the provided URL and gathers public Web

Services published there. Registering a Web Service in the

Depot involves automatic generation of UI fragments for

each operation in the Web Service. This scenario ends with

an optional step where the end-user can customize the auto-

matically generated UI fragments to match his preferences

and increase their reusability.
The second scenario is depicted in Figure 4 and starts

with a search for suitable Web Services in the Depot, which

returns a list of service operations associated with their pre-

generated UI fragments. Optionally, these UI fragments can

be customized to suit individual needs. After that, the user

could either choose to consume the individual Web Services

separately or combine them to a composite application. The

latter case involves aggregating UI fragments to make up

a new UI for the composite service, which can then be

consumed by the user.

140

Figure 4: BPMN process model showing the composition

and consumption of services.

III. POSR: LOCATE AND AGGREGATE WEB SERVICES

After introducing the main constituents of Posr in Fig-

ure 2, this section details each of them and explains how

they interact with each other to complete the entire mission.

A. Faster: Providing Web Services for Web Applications

The Web provides an huge number of valuable and

interesting services in form of web applications using HTML

forms. Nevertheless, the vast majority of these applications

is intended to be used solely by humans, but not by software

programs, i.e., they are human-oriented services. While

the number of websites offering Web Service interfaces is

gradually increasing, there are still many websites, which

do not offer such interfaces. Thus, their functionality re-

mains inaccessible for computer programs. Unveiling this

functionality through Web Service interfaces allows to use

it in service compositions and mashups.

The goal of this component is the automatic extraction

and generation of wrappers for plain, human-oriented ap-

plications offered on web pages, which are then accessible

via Web Service APIs. For brevity, we will refer to this as

creating Web Services, which in turn is necessary to realize

the vision of Semantic Web Services [5].

1) Deriving Web Application Wrappers from HTML
Forms: HTML forms are the common way of collecting

user’s input data on websites or – more precisely – for

the applications offered on those websites. In contrast to

plain text content, HTML forms follow a rather system-

atic style. Therefore, HTML forms are the ideal starting

point to “bridge the gap” between human- and machine-

accessible applications. Some applications require the user to

fill in several forms on consecutive web pages. These forms

usually differ in number and kind of the form elements,

they contain. It is common that some form elements occur
multiple times, e.g., to correct or confirm previous inputs.

Multiple occurrences of the same form elements share the

same semantic and usually the same value and therefore

represent the same piece of information.

The challenge is to wrap and expose all these forms and

their input elements in a way that the underlying application

is accessible in a single service invocation. Therefore, the

generator has to build an internal model including the

occurring forms, their form elements and the sequence of

the web pages, on which they occur. To build up this model,

the entire process that a user normally passes through has to

be analyzed. Such an analysis produces much better results

if a human-assisted approach [6] is used.

In our approach called Faster we monitor user inputs

and track them over the entire process. In each step, form

elements are analyzed and matched against the current

model. If they cannot be matched, they are treated as new

form elements and examined regarding their descriptive text

labels and whether they are writable. Afterwards, they are

added to the model as well.

Thorough investigation of such web pages revealed that

they are often not created manually, but rather using auto-

matic software tools. We observed that corresponding form

elements usually have the same internal names, i.e., attribute

names. If this is not the case, more or less fuzzy hints for

correspondences have to be considered for the matching,

e.g., surrounding descriptions [7] or <label> elements.

As form elements can be associated with each other, a

chain of corresponding form elements is manifested in a

so-called model element, as illustrated in the example in

Subsection III-A2. These model elements are also contained

in the internal model of the generator. When a Web Service

is generated, the internal model is used to derive inputs of the

created Web Service. The generator also defines mandatory,

optional and unspecifiable model elements for the actual

service invocations. Only mandatory and optional model

elements become input parameters of the Web Services.

Besides form elements, also meta-data, such as labels and

length limitations, are recorded in order to annotate the input

parameters.

The results that such web applications produce can have a

wide range of data types, generally classified into simple or

complex types. The class of simple types includes strings,

numbers, URIs, etc, whereas, the class of complex types

include files or structured fragments of data, e.g., tabular or

object information. Simple types include strings, numbers, or

URIs, In most cases, the result of the entire web application

service is presented in HTML on the final page. Therefore,

the output of the created Web Service is defined by an XPath

expression that extracts one fragment of the HTML docu-

ment in case of simple types or multiple HTML segments,

in case of complex types. We implemented an algorithm,

which parses a common type of simple tables into lists of

objects, whose attributes are inferred from the table header.

2) Faster by Example: Journey Planner: In this scenario,

the user needs to find an appropriate journey from London to

Cardiff on the 1st of February. On the first page (Figure 5a),

departure and destination names are requested. Both fields

are new to the internal model and filled by the user with

“London” and “Cardiff”, respectively. These fields are added

to a list of input parameters and thus, become mandatory

query parameters for the Web Service to be generated.

On the second page (Figure 5b), both values are presented

again. However, the departure has already been recognized

141

(a) Entry page querying for departure
and destination.

(b) Second page having recognized the
station “London”, corrected the sta-
tion “Cardiff” and presenting the date
chooser.

(c) Result page presenting the entered
information and the journeys found ac-
cording the query.

Figure 5: Possible process of using a timetable website.

and thus, is not editable at this stage. Instead, it is shown

as a static string. The destination value has been filled with

an automatically suggested value by the web application to

meet the correct station name. It is included in the form

again to enable the user to change it, if necessary. The

form element, whose value is “Cardiff/Wales”, has the same

internal name as the departure field on the first page, i.e.,

it is recognized as reoccurring. Therefore, it is not added

again to the list of input parameters, but the new value is

noticed. Additionally, a new field was added to collect the

desired date of the journey. It is pre-filled automatically with

the current date. Hence, this field becomes an optional input

parameter for the generated Web Service.

On the third page shown in Figure 5c, no further forms

can be found and so the execution stops here. The result is

a table with available journeys.

This table can be parsed into a list of journey objects

containing the journey description and the journey time with

the help of an XPath expression. The internal model of

the generator after tracking the user’s input is depicted in

Figure 6.

Figure 6: Illustration of the internal model of the generator

at the end of the monitoring process with mandatory (A and

B) and optional (C) input parameters.

For the registration of a UK limited company as described

in Subsection I-A, the Companies House website [4] can

be used to get information about availability and present

ownership of company names by entering the company name

or number in an HTML form. Furthermore, certain filter

criteria can be specified. After passing through the gener-

ation process, the company name and number input fields

have been recognized as mandatory parameters. The filter

checkboxes became optional parameters, since even leaving

the filter unchanged yields a valid result. There is also a

hidden input field, which results in a static, unspecifiable

parameter. Similar to the journey planner, the result is a

table, which can be parsed with an XPath expression.

B. The Depot

The Depot represents the heart of Posr, because all Web

Services, their associated UI fragments and composite Web

Services are managed by this component. The maintained

wealth of Web Services in the Depot comes from end users

who wish to incorporate their favorite Web Services in the

Posr to benefit from its novel features. The remainder of this

Subsection details this constituent and explains its role.

Starting with the direct association between Faster (Sec-

tion III-A) and the Depot, the user employs Faster to extract

and generate a Web Service from a web form. The extracted

Web Service is then registered automatically in the Depot.
Similarly, the user can trigger a registration request for a

single Web Service to the Depot. Registering a Web Service

in the Depot, regardless of its source, involves generating UI

fragments for each operation in the registered Web Service.

For further details on generating these UI fragments, please,

refer to Subsection III-C.

The Depot can automatically identify Web Services over

the Web, collect them, and register them.

1) Automatic Identification and Gathering of Web Ser-
vices Over the Web: Our approach of automatic identifica-

tion and gathering of Web Services over the Web employs

web crawling techniques. In [8], the authors introduce sev-

eral crawling strategies and types. In this stage, we focus on

SOAP-based Web Services only, which means that it is not

necessary to visit a URL more than once; thus, a snapshot

crawling strategy fits our needs. This kind of strategy visits

each URL only once; rediscovered URLs are rejected as

duplicates. This strategy is augmented with focused crawling

techniques, which limit the crawling scope by gathering only

websites that conform to a predefined set of deciding rules.

142

All in all, a focused crawling type combined with a snapshot

strategy fits our needs.

To identify a SOAP-based Web Service, we consider

the following three criteria and configure our crawler ac-

cordingly. First, we focus on links ending with the term

“wsdl”, which indicates that the link may point to a WSDL

file. Second, we issue a request to the link and investigate

the MIME type in its response. The MIME type should

be one of these types: “text/xml”, “application/xml”, or

“application/wsdl+xml”, because a valid WSDL file should

have one of these content-types. Finally, the document

should contain at least the WSDL and SOAP namespaces.

The aforementioned three criteria govern our crawler and

help identify WSDL files on a specified URL, but do not

guarantee that the found documents are valid WSDL files.

To overcome this limitation, a WSDL validation step is

deployed by the Depot whenever a Web Service registration

request is triggered.

2) The Depot as an Integration Environment: All con-

stituents of Posr communicate with the Depot to perform

their tasks. Some communication channels are not visible to

the end user, e.g., the interaction between the UI generation

component and the Depot, whereas other communication

channels are visible, e.g., the interaction between the Depot
and the service composer part. In this part, we explain each

type of communication between system constituents and the

Depot.

The Depot has an implicit communication channel with

any service provider on the Web. This communication

channel allows the Depot to identify public Web Services

over the Web, gather and validate them, and register valid

services in the system. The Depot maintains a similar, but

explicit, communication channel with Faster to register the

automatically extracted Web Services from existing web

applications in the Depot.

Registering a Web Service in the Depot involves issuing a

request to the UI generation component to generate UI frag-

ments for all operations in the Web Service. The generated

UI fragments can be customized by the user by rearranging

components or changing their layout for easier and more

convenient consumption of the service. The updated UI

fragments are also stored and managed by the Depot. Users

can share their UI fragments and collaborate on creating or

reusing UI components.

Composing Web Services is done through the service

composition component, which relies on the Depot to pro-

vide all the necessary information, e.g., the URLs of the

Web Services, and UI fragments of their operations. The

composite service and its aggregated UI is stored back in

the Depot and managed as a new service.

C. Generating and Editing Graphical User Interfaces for
Web Services

One of the main claimed advantages of SOA is service

composition and reuse. Service compositions can be mod-

eled using a business process diagram and executed via an

orchestration engine. However, the graphical user interfaces

of consuming applications have to be implemented manually.

If the effort of building a client application and adapting it

to the existing services is almost as high as creating a client

application and new services from scratch, the latter option

is likely to be chosen and existing services are not reused

anymore.

In this Subsection, we introduce an approach to create

user interfaces for single operations of Web Services using

as much automatic generation as possible. These user inter-

faces serve as building blocks for user interfaces of service

compositions.

1) Services with Complex Data Structures: Creating an

appropriate UI to consume a Web Service has to reflect all

data types exchanged by the service. This task incorporates

many challenges if the service operates on complex data

types, which require domain experts to create the appropriate

UI for consuming them, e.g., services provided by large en-

terprise applications may expect to receive input documents

consisting of hundreds of data fields. In such cases it is even

hard for service providers to come up with a user-friendly

graphical user interface. Not only should service consumers

supply services with correct data types, but also the output

of a service’s response may be hard to interpret.

To overcome this drawback, user interfaces could be

designed collaboratively if a service provider is not willing

to provide an appropriate one. This goal is achieved in

the best way in an open, web-based environment where

folksonomy effects could lead to publicly available UIs of

high quality, as experiences of multiple users are combined

to interpret complex data structures.

To enable reusability and multi-modality of UIs, we need

a UI specification language that separates data, logic, and

presentation layers. As we do not assume any previous

user knowledge of such a language and Web Service tech-

nologies, automatic generation and graphical tooling are

necessary to make building UIs for services as easy and

convenient as possible.

2) Transforming WSDL documents to XForms and Editing
Generated XForms: User interfaces for consuming Web Ser-

vices can be generated automatically from WSDL descrip-

tions. In this context XForms is the UI specification format

of choice. The XForms standard addresses the limitations

of classic HTML forms and introduces form descriptions

with a clean Model-View-Controller separation using XML

mark-up. Moreover, the data collected and processed by

an XForm is represented as XML, which enables seamless

interoperation between UIs and Web Services. XForms can

143

directly invoke services using the submission element and

process service responses.

Due to the match of concepts the transformation of

WSDL documents to XForms has been subject of past work

and research activities [9], [10]. The main problem is the

generation of appropriate form controls based on the backing

schema. There are also several tools available that realize

XML Schema to XForms transformations [11]–[13], and

therefore could be applied as a foundation to build upon.

Evaluating existing approaches revealed that they neither

leverage all the information available inside WSDL doc-

uments nor use all features of the XForms specification.

Furthermore, most of the available XSL transformations are

only byproducts of other projects and no longer actively

maintained. WSDL2XForms [14] turned out to be the most

advanced implementation. Hence, we decided to enhance it

with lessons learned from evaluating other approaches in

order to utilize it in our application.

A generated form consists of two views: one for gath-

ering service’s input data, and the other one to display the

response. Labels of form controls are derived from schema

element names. If any annotation that documents a schema

element is available, it can be used to provide a hint for the

correlative input field.

The UI generation is initiated by the Depot when a new

service is registered. The generator produces technically

fully functional forms for each operation of each port type

and stores them in the Depot. The forms can be used to test

the service, and as a starting point for manual customization.

Automatic generation of UI for Web Service consumption

is only limited to technical aspects, but semantic information

of services play an important role for the interface design,

e.g., predefining some demanded input values, providing

hints and constraints on inputs, and convenient arrangement

of form controls to make a form usable for end-users.

Therefore, the user is able to adjust the generated form to

fit usability needs. This is achieved using the XForms Editor
which enables visual editing of forms and runs directly in a

web browser.

The XForms Editor is based on the Oryx modeling

platform [15]. The editor is a WYSIWYG (What-You-See-Is-
What-You-Get) tool for creating and adjusting XForms by

users, who do not have deep knowledge about the standard.

Modified forms are stored back in the Depot and can be

used and improved by any user, which results in a situation,

where several alternative user interfaces are available for

each service.

D. Aggregation of User Interfaces for Service Compositions

Having a way to create graphical user interfaces for single

service operations is already a big step towards end-user

enablement, since it allows for easy testing of services.

However, the key idea of SOA is not to use a service just

on its own, but rather to create composite applications by

combining multiple services into service compositions. This

leads to the question whether it is possible to combine the

graphical user interfaces in a similar way than the services

themselves.
1) Concepts of User Interface Aggregation: Considering

the example described in Subsection I-A we could now start

combining services of the UK Companies House with some

private sector services. As shown in Figure 1, this kind of

service composition can be described with a process model,

e.g., using the Business Process Modeling Notation (BPMN)

[3]. The activities in this kind of process models are the

operations of one or more services and the control flow

describes the order, in which they are invoked. A novelty

in our approach is to model service compositions with the

help of a Web-based process modeling tool as shown in

[15], rather than employing a fat client application, which

would have to be installed on the user’s machine. Expecting

users of a service composition tool to be experts in business

process modeling would be unrealistic. Therefore, only a

basic subset of BPMN 1.2 is used, which comprises Tasks,

Sequence Flows, Exclusive and Parallel Gateways, as well as

Start and End Events. This common subset has been selected

based on the study presented in [16]. At this stage automatic

or semi-automatic service composition techniques can be

applied. However, this is out of scope for our current work.

Know, the idea is to leverage the information of the process

model to not only generate an executable composite service,

but also to aggregate the user interfaces of the involved

service operations into a user interface for the composite

service.

Figure 7: UML diagram showing the artifacts of service

composition and user interface aggregation.

To get an overview of what has to be done by such an

aggregation one should have a look at the involved artifacts.

Figure 7 shows the dependencies among service and user

interface artifacts. First of all, a service composition uses

multiple atomic services and thus acts as a service consumer

to them. The same accounts for UI fragments, since each of

them is capable of invoking a single operation of a single

atomic service. This means that both the composite service

and the according group of UI fragments can be leveraged

to access the services involved in a composition. This

observation leads to two approaches on how UI aggregations

can be performed.
On the one hand, one can aggregate the UIs of all the

service operations involved in the process and eventually

144

do the service composition directly on the user interface

level, i.e., performing service orchestration with the elements

of the user interface description language. This approach

has the advantage of a relatively low overhead, but it also

means that the service composition is only usable through

the UI and not as a standalone Web Service. Furthermore,

this approach requires data transformations between service

invocations to be handled within the UI, which may be not

very efficient depending on the UI technology used and

would also violate the separation of concerns paradigm. On

the other hand, the more advanced way is to generate a new

user interface for a composite service by combining parts

of the operation UIs and reconfigure them to invoke a new

service, namely a Web Service created out of the process

model orchestrating the services underling the composition.

This composite Web Service would also be usable without

the graphical user interface and data transformations can be

handled with the appropriate technologies. The penalty of

using this approach is the need for additional infrastructure,

e.g., an orchestration engine.

2) User Interfaces for Service Compositions: The key for

being able to perform the aggregations described above is

to employ an abstract user interface description language

(UIDL). “Abstract” in this case means that it only defines

the semantics of a user interface, i.e., the intention behind the

UI controls. An abstract UIDL does not restrict the graphical

layout, the concrete UI elements employed by the client, and

the client technology in general. It was one of the rationales

for choosing XForms in Subsection III-C2 that it provides

an abstraction level perfectly suitable for tools decomposing

and reassembling user interfaces.

In detail, certain patterns are applied when performing

the aggregation. First, the XForms models of all UI frag-

ments are integrated into the combined UI. XForms cases
represent the actual user interface screens, through which

the user navigates using triggers. BPMN Sequence Flows
are implemented by merging the XForms cases from the

UI fragments into one switch within the aggregated UI.

Exclusive Splits are decided through the user at runtime or

by an XPath query configured at design time in the process

model. Parallel Splits are realized by nesting the XForms

switches from the UI fragments into a switch that can be

controlled by the user. Due to the nature of XForms, it is

possible to virtually perform the activities in parallel, e.g.,

by entering data in one case while another one is waiting

for the response of its service operation. Since the process

of the UK example contains a Parallel Split and Sequence
Flows, the UI fragments of the public and private sector

services are combined into an XForms switch that acts like

a tabbed browsing interface at the beginning and continues

as a wizard. This aggregated user interface provides a media-

break-free, guided interview experience to the user.

As in the case of generating user interfaces for single

operations, the automatically aggregated user interface may

not be perfect. However, it is a perfect starting point for

further editing with the XForms editor presented in Sec-

tion III-C2, since the setup for communicating with the

underlying services is already done. Finally, the XForms can

be executed using different types of clients, e.g., browser

plug-ins, JavaScript-based clients, server-side XForms im-

plementations, or native clients for mobile devices. The

abstractness of the language also allows for multi-modality,

e.g., controlling the user interface using audio output and

speech recognition.

IV. DEMONSTRATION

We managed to fulfill the above formalisms in a running

system, coined “Posr”. Figure 8 shows the home page of

Posr, which is available at:

http://posr.no-ip.org/

Figure 8: The homepage of Posr.

Posr consists of five components: trans.posr, pro.posr,

ex.posr, sup.posr, and com.posr. trans.posr analyzes HTML

forms and transposes their hidden functionalities into Web

Services. Allocating public Web Services over the Web

is the task of pro.posr which crawls a specific URL for

public SOAP-based Web Services and proposes using the

found Web Services by registering them in the system.

ex.posr, in its turn, manages all discovered Web Services and

their associated UI fragments which are pre-generated by

sup.posr. sup.posr supposes that each Web Service will be

invoked by the end-user and pre-generates UI fragments for

all its methods. Finally, com.posr is used to compose Web

Services and aggregate their pre-generated UI fragments to

provide a unified view for the composite Web Service.

145

V. CONCLUSION AND OUTLOOK

In this work, we present a novel approach that handles

some issues, which hinder end-users using or combining

public Web Services. We show how to extractWeb Service-

sout of HTML forms by monitoring users interacting with

them. We demonstrate gathering public Web Services over

the Web using a Web crawler, which employs a focused

crawling type combined with a snapshot strategy. A service

registry and repository stores all service-related artifacts

and allows to search for suitable service operations. We

employ automatic generation of user interface fragments

for consuming Web Services and enable their Web-based,

collaborative editing and sharing. Finally, we introduce an

approach to aggregate such user interface fragments for

service compositions defined through process models, in

order to create entire composite applications. Future work

will be to introduce data mappings and reuse between

service invocations and to extend the approach to support

other types of Web Services, such as RESTful Web Services.

REFERENCES

[1] “Service Finder,” http://www.service-finder.eu. [Online].
Available: www.service-finder.eu

[2] European Parliament and Council, “Directive 2006/123/ec
of the european parliament and of the council of 12
december 2006 on services in the internal market,”
ISSN 1725-2555, pp. 36–68, December 2006. [Online].
Available: http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:32006L0123:DE:NOT

[3] “Business Process Modeling Notation (BPMN) Version
1.2,” http://omg.org/spec/BPMN/1.2/, January 2009. [Online].
Available: http://omg.org/spec/BPMN/

[4] “UK Companies House,” http://companieshouse.gov.uk/.

[5] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web
services,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 46–
53, 2001.

[6] S. Raghavan and H. G. Molina, “Crawling the Hidden Web,”
in Proceedings of the 27th International Conference on Very
Large Databases (VLDB 2001), 2001, pp. 129–138.

[7] J. Wang and F. H. Lochovsky, “Data Extraction and
Label Assignment for Web Databases,” in WWW ’03:
Proceedings of the 12th international conference on World
Wide Web. New York, NY, USA: ACM, 2003, pp. 187–196.
[Online]. Available: http://dx.doi.org/10.1145/775152.775179

[8] K. Sigurdsson, “Adaptive Revisiting with Heritrix,” Master’s
thesis, Universitiy of Iceland, 2005.

[9] “IBM alphaWorks XML Forms Generator,” http://www.
alphaworks.ibm.com/tech/xfg.

[10] K. Song and K.-H. Lee, “An Automated Generation of
XForms Interfaces for Web Services,” in Web Services, 2007.
ICWS 2007. IEEE International Conference on Web Services,
July 2007, pp. 856–863.

[11] “Chiba Project,” http://chiba.sourceforge.net/.

[12] “XRX/XForms Generator,” http://en.wikibooks.org/wiki/
XRX/XForms Generator.

[13] “xsdTransformer,” http://xsdtrans.sf.net/.

[14] “WSDL2XForms,” http://wsdl2xforms.sf.net/.

[15] G. Decker, H. Overdick, and M. Weske, “Oryx - An Open
Modeling Platform for the BPM Community,” in Proceedings
of the 6th Int’l Conference on Business Process Management
(BPM 2008), ser. LNCS, M. Dumas, M. Reichert, and
M. C. Shan, Eds. Milano, Italy: Springer Verlag, 2008,
pp. 382–385. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-85758-7\ 29

[16] M. Muehlen and J. Recker, “How much language is enough?
theoretical and practical use of the business process modeling
notation,” in Proceedings of the 20th Int’l Conference on
Advanced Information Systems Engineering (CAiSE 2008),
Z. Bellahsène and M. Léonard, Eds. Montpellier, France:
Springer Verlag, 2008, pp. 465–479. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-69534-9\ 35

146

