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ABSTRACT
Duplicate detection is the problem of identifying pairs of
records that represent the same real world object, and could
thus be merged into a single record. To avoid a prohibitively
expensive comparison of all pairs of records, a common tech-
nique is to carefully partition the records into smaller sub-
sets. If duplicate records appear in the same partition, only
all pairs within each partition must be compared.

Two competing approaches are often cited: Blocking
methods strictly partition records into disjoint subsets, for
instance using zip-codes as partitioning key. Windowing
methods, in particular the Sorted-Neighborhood method,
sort the data according to some key, such as zip-code, and
then slide a window of fixed size across the sorted data and
compare pairs only within the window.

Herein we compare both approaches qualitatively and ex-
perimentally. Further, we present a new generalized algo-
rithm, the Sorted Blocks method, with the competing meth-
ods as extreme cases. Experiments show that the windowing
algorithm is better than blocking and that the generalized
algorithm slightly improves upon it in terms of efficiency
(detected duplicates vs. overall number of comparisons).

1. DUPLICATE DETECTION
Duplicate detection is the problem of determining that

two different database entries in fact represent the same real-
world object, and performing this detection for all objects
represented in the database. “Duplicate detection” is also
known as record linkage, object identification, record match-
ing, and many other terms. It is a much researched problem
with high relevance in the areas of master data management,
data warehousing and ETL, customer relationship manage-
ment, and data integration [4]. Duplicate detection must
solve two inherent difficulties: Speedy discovery of all dupli-
cates in large data sets (efficiency) and correct identification
of duplicates and non-duplicates (effectiveness).
Efficiency. The first difficulty is the quadratic nature of the
problem: Conceptually, each candidate must be compared
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with every other candidate. To approach this problem and
thus improve efficiency of duplicate detection, many solu-
tions have been proposed to reduce the number of compar-
isons. The general idea is to avoid comparisons of vastly
different objects and to concentrate on comparisons of ob-
jects that have at least some quickly detectable similarity.
Two of the most popular solutions are the focus of this pa-
per.
Effectiveness. The second difficulty of duplicate detec-
tion is the definition of an appropriate similarity measure
to decide whether a pair is in fact a duplicate. Typi-
cal approaches employ combinations of edit-distance, tf-idf
weighting and other text-based similarity measures. In addi-
tion, a similarity-threshold must be chosen to classify pairs
as duplicates (similarity greater than or equal to threshold)
or as non-duplicates (similarity lower than threshold). This
paper ignores this difficulty; we use only a simple similarity
measure and threshold and assume that they yield correct
results.
Contributions. We present a comparison and general-
ized model of the well-known blocking and windowing meth-
ods and propose a generalized algorithm, the Sorted Blocks
method, with a parameter whose extreme settings yield the
two methods, respectively. An experimental evaluation for
precision and recall compares the two methods and find an
optimal setting for the generalized method. These contri-
butions roughly correspond to the structure of the following
sections

2. PARTITIONING METHODS
In this paper we analyze two popular families of methods

for duplicate detection. Blocking methods partition data
into multiple blocks or partitions and compare only tuples
within a partition. Windowing methods on the other hand
sort the data, slide a window across the sorted data and
compare only within the window. In the following sections
we briefly introduce both methods and then compare them.

2.1 Blocking
Blocking methods pursue the simple idea of partitioning

the set of tuples into disjoint partitions (blocks) and then
comparing all pairs of tuples only within each block [1, 3,
2]. Thus, the overall number of comparisons is greatly re-
duced; see Tab. 1 for an overview of the computational com-
plexity of the different methods compared to the exhaustive
approach of comparing all pairs of tuples.

An important decision for the blocking method is the
choice of a good partitioning predicate, which determines



the number and size of the partitions. They should be cho-
sen in a manner that potential duplicates appear in the same
partition. E.g., for CRM applications a typical partitioning
is by zip-code or by the first few digits of zip-codes. If two
duplicate tuples have retained the same zip code, they ap-
pear in the same partition and thus can be recognized as du-
plicates. Other partitionings might be by last name or some
fixed-sized prefix of them, by street name, by employer, etc.
In general, partitions of roughly same size are preferable.
For simplicity we assume in the following that partitions are
of equal size. Finally, a transitive closure is formed over all
detected duplicates, because duplicity is inherently a tran-
sitive relation and thus more correct duplicate pairs can be
reported.

To detect duplicates that differ in the partitioning attri-
bute, a multi-pass method is employed. Blocking methods
perform multiple runs, each time with a different partition-
ing predicate.

2.2 Windowing
Windowing methods are slightly more elaborate than

blocking methods. In [5, 6] the authors describe the Sorted
Neighborhood Method (SNM), which is divided into three
phases. In the first phase, a sorting key is assigned to
each tuple. The key does not have be unique and can be
generated by concatenating values (or substrings of values)
from different attributes. In the second phase, all tuples are
sorted according to that key. As in the blocking method,
the assumption is that duplicates have similar keys and are
thus close to each other after sorting. The first two phases
are comparable to the selection of a partitioning predicate
in the blocking method.

The final phase of SNM slides a window of fixed size across
the sorted list of tuples. All pairs of tuples that appear in the
same window are compared. The size of the window (typ-
ically between 10 and 20) represents the trade-off between
efficiency and effectiveness; larger windows yield longer run-
times but detect more duplicates.

To avoid mis-sorts due to errors in the attributes that are
used to generate the key, multi-pass variants of SNM pro-
duce multiple keys and and perform the sorting and win-
dowing multiple times. As with the blocking method, the
transitive closure is finally calculated. Research has pro-
duced many variants of SNM, including one that avoids the
choice of keys [8] and a variant for nested XML data [9].

2.3 Comparison
The two presented methods have much in common. Both

aim at reducing the number of comparisons by making in-
telligent guesses as to which pairs of tuples have a chance
of being duplicates. Both rely on some intrinsic orderings
of the data and the assumption that tuples that are close to
each other with respect to that order have a higher chance
of being duplicates than other pairs of tuples. Their close-
ness is maybe best characterized by the work of Yan et al.
in which they present an “adaptive sorted neighborhood”
method, which in fact (and inadvertently?) turns out to be
a blocking method [10].

Figure 1 is a schematic representation of both methods
under a common model. It shows a matrix in which each
field represent a comparison of two tuples. A trivial method
might compare each tuple with each other tuple, thus per-
forming a comparison for each field of the matrix. An im-

mediate improvement is to avoid comparing a pair of tuples
twice, i.e., to only perform comparisons corresponding to
fields above the center diagonal. For presentation purposes
we ignore this improvement in the figure, but of course use
it for our implementation. Without loss of generality, the
model is further simplified, because it assumes all partitions
to be of same size, which is typically not the case in real-
world scenarios.

Figure 1(a) shows the windowing and blocking methods
“as-is”. Both methods perform approximately the same to-
tal number of comparisons but it is clearly shown that the
sets of actual comparisons differ. For instance, Tuples 2
and 5 are compared only by the blocking method, because
they lie in the same first partition. On the other hand Tu-
ples 5 and 6 are compared only by the windowing method.
Figure 1(b) shows a variant in which the window size of the
windowing method was increased so that all comparisons
within partitions are encompassed. Figure 1(c) adapts the
definition of partitions of the blocking method so as to en-
compass all comparisons made by the windowing method.
To this end, we allow partitions to overlap, which is the
basis for the generalized method presented in the following
section.

Table 1 shows the computational complexities of the dif-
ferent methods and compares them to the full enumeration
of all pairs of tuples.

Blocking Windowing Full enum.
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Table 1: Complexity analysis with number of parti-
tions b, window size w and number of tuples n.

To further compare blocking and windowing we analyze
the relationship between number of blocks b and window
size w. To achieve the same number of comparisons for
both methods we calculate:

n(
n− b

2b
) = (w − 1)(n− w

2
)⇔ b =

n2

2wn− n− w2 + w

For the example of Fig. 1 with n = 20 and w = 3 we
confirm that the partitioning into 4 partitions approximately
achieves the same number of comparisons as the windowing
method with window size 3:

b =
202

2 ∗ 3 ∗ 20− 20− 32 + 3
=

400

94
≈ 4, 26

3. GENERALIZATION:
THE SORTED BLOCKS METHOD

Windowing methods and blocking are two extreme exam-
ples concerning the overlap of the partitions. Let U be the
intersection between two partitions P1 and P2, which we call
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Figure 1: Schematic comparison between blocking
and windowing methods. Each field in matrix cor-
responds to a comparison of two tuples.

overlap in this paper:

UP1,P2 = P1 ∩ P2 and u = ∣UP1,P2 ∣

Then we have u = 0 for Blocking and u = w−1 for Sorted
Neighborhood with window size w. Figure 2 shows the ef-
fect of an increasing overlap. Parameter u is the number
of tuples from one partition that are additionally compared
with tuples from the adjacent partition. If the partition
size is fixed, an increase of the overlap results in additional
partitions and hence additional record comparisons.
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Sorted Tuples

Figure 2: Partition overlap for partition size m = 8

In the best case when using partitioning methods, tuples
that are indeed true duplicates are assigned to the same
partition. The ideal overlap between two partitions should
be big enough, so that real duplicates that for any reason
are not in the same partition, are identified. On the other
hand, the overlap should not be too high, thus resulting in
a large increase of record comparisons. The ideal overlap
depends on the data set and has to be determined manually
for each use case.

The basic idea of the new Sorted Blocks method is to
first sort all tuples so that duplicates are close in the sort
sequence, then partition the records into disjoint sorted sub-
sets, and finally to overlap the partitions. The size of the
overlap can be defined using u, e.g., u = 3 means that three
tuples of each neighboring partition are part of the overlap,
which hence has a total size of 2u. Within the overlap, a
fixed size window with size u + 1 is slid across the sorted
data and all records within the window are compared. In
this way, the additional complexity of the overlap is lin-
ear. Note that this windowing technique is used only in the
overlapping part; within a partition all pairs of tuples are
compared.

Figure 3 shows the Sorted Blocks method for partitions
with variable size and an overlap u = 2. Within a parti-
tion, each record is compared with all other records. The
overlap between the partitions results in several windows,
which have to be checked for duplicates. For instance, over-
lap between partitions P1 and P2 has windows F(P1,P2).1 and



F(P1,P2).2. A special case arises, if a partition is smaller than
the overlap. In this case, the windows can comprise more
than two partitions, as illustrated for partition P3. The only
impact on the Sorted Blocks method is, that in this case
there are identical windows (e.g., F(P2,P3).2 and F(P3,P4).1),
which are folded in the implementation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P1
P2 P3 P4

Complete comparison within partitions

F(P1,P2).1

F(P1,P2).2

|UP1,P2
| = 2u

F(P2,P3).1

F(P2,P3).2

F(P3,P4).1

F(P3,P4).2

|UP2,P3
| = 2u

|UP3,P4
| = 2u

Comparisons within overlap

Figure 3: Conceptual illustration of the Sorted
Blocks method

Figure 4 shows the program flow chart for the Sorted
Blocks method. The tuples are read in a sorted sequence.
All tuples that are required for duplicate detection are stored
in a linked list. If the current tuple is the first element of
a new partition, all elements that are not used anymore are
removed from the list. Otherwise, the algorithm checks if it
is between two partitions in a window that has to be moved
with step size one. Finally, the current tuple is compared
with all tuples in the list and then also appended to the list.

The complexity of key generation and sorting is the same
as for blocking or windowing methods (see Tab. 1). The
number of record comparisons is the sum of comparisons
within the partitions and those within the windows. Let p
be the number of partitions, then p − 1 is the number of
overlaps, and Pi the set of records within partition i:

number comparisons = (p− 1)
u2 + u

2
+

p∑
i=1

∣Pi∣2 − ∣Pi∣
2

This calculation does not include the special case of identical
overlapping windows, which yields a slight reduction of the
number of comparisons. For partitions of fixed size m (m =
n
p

with n as the number of tuples), the number of record
comparisons is:

(p− 1)
u2 + u

2
+ p

m2 −m

2

Because u is a constant, the complexity for comparisons is

in O( pm2

2
) = O(nm

2
), which results in an overall complexity

for the Sorted Blocks method of O(n(m
2

+ logn)).

4. EVALUATION AND COMPARISON
In this section we evaluate the presented methods by de-

termining precision (proportion of correctly identified du-
plicates), recall (proportion of identified real-world dupli-
cates), and F-Measure (harmonic mean of precision and re-
call), based on a real-world data set.

End

Start

Variable initialisation:
List ListComparisonTuples = Null
Integer WindowNr = u + 1

Build sorting key and sort all tuples

Read new tuple while
new tuples exist

Tuple is 1st element of a
new partition, but not the 1st

element of all tuples

WindowNr <= u?

Remove all elements except 
the last u elements from 

ListComparisonTuples and set 
WindowNr= 1

Remove 1st element from 
ListComparisonTuples and set 
WindowNr = WindowNr + 1

true

true

false

false

No new 
tuple

Compare current tuple with all elements 
from ListComparisonTuples and append the 

current tuple to ListComparisonTuples

Calculate 
transitive closure

Read overlap parameter u

Figure 4: Program flow chart of the Sorted Blocks
method

4.1 Data sets and similarity measure
The test data set comprises 9,763 records with audio CD

information, such as artist, title, and tracks, which were se-
lected randomly from freeDB1 [7]. In an arduous manual
process a list of 298 real duplicates was generated2. Each
record has 111 attributes due to multiple occurrences of
tracks and artists in the XML sources. Obviously, only a
few of the attributes were useful.

The sorting key was built from the three attributes artist1,
title1, and track01, using the concatenation of the first three
letters of each attribute (using upper-case letters without
spaces). This sorting key was used for all three partitioning
methods (Blocking, Sorted Neighborhood, Sorted Blocks).

To define our similarity measure we used the same three
attributes artist1, title1, and track01. Let t1 and t2 be two
records, then is their similarity defined as:

f(t1, t2) = 1
3
× (s(t1[Artist1], t2[Artist1])

+s(t1[Title1], t2[Title1])

+s(t1[Track01], t2[Track01]))

1http://www.freedb.org
2Data sets available at http://www.hpi.uni-potsdam.de/
naumann/projekte/repeatability/datasets/.



with:

s(x, y) =

⎧⎨⎩

= 1, if x=SubstringOf(y) or y=SubstringOf(x)

= threshold, if IsNull(x) or IsNull(y)

= 1− edit distance(x, y)

max{∣x∣, ∣y∣} otherwise

The similarity measure calculates the average similarity
of all participating attributes. The result is then compared
with a threshold, which results in a classification as dupli-
cate or non-duplicate. The similarity measure is not very
complex, but it delivers satisfactory results and is sufficient
for a comparison of the partition methods.

4.2 Experiments
To compare Sorted Blocks with windowing and block-

ing, all three methods have been implemented in a Java
and MySQL environment. The similarity threshold was set
to 0.78, which delivers good results for both precision and
recall. The three different methods were executed several
times with different partition/window sizes. To obtain com-
parable results, the partition sizes for blocking were selected
in such a way that there was always a corresponding win-
dow size with nearly the same total number of comparisons.
This was achieved by sorting the tuples and cutting them
in fixed size partitions. Additionally, an exhaustive compar-
ison of all tuples was processed without any partitioning.
This is especially interesting to see the impact of partition-
ing methods on the recall.

The most efficient overlap-setting of u = 2 between the
partitions was selected experimentally. Figure 5 compares
the results of different overlaps with u = 2 as a baseline.
For each F-Measure-value the graphs show the minimum
number of additional comparisons necessary to achieve that
value.

A first observation is that the graphs are always above
zero, so Sorted Blocks with overlap u > 2 needs more record
comparisons than Sorted Blocks with u = 2 to achieve the
same F-Measure and is hence less efficient. Another effect
we observe is that with an increasing F-Measure, the num-
ber of additional comparisons generally decreases. Because
the F-Measure depends on the recall and therefore on the
number of record comparisons, it can be increased with an
increasing partition size, but this reduces the effect of the
overlap between the partitions.

An analysis of the real duplicates showed that 86,58%
of the tuples have a distance of 5 or less for our sorting
order, which means that they can be covered with a par-
tition/window size of 6. Another 10,74% have a distance
> 10, so they can only be detected when using large parti-
tions/windows; however, this would result in a large increase
of record comparisons. So when we compare the three differ-
ent partition methods, the range up to a partition/window
size of 10 is especially significant.

Figure 6(a) compares the precision of the different meth-
ods. The results of the exhaustive comparison are split into
a value including the calculation of the transitive closure and
one without. They are plotted as a constant, even though in
reality they yield just a single point in the diagram. The pre-
cision of the three methods is nearly the same, which shows
that the precision does not depend on the partition method.
Due to partitioning the precision value is better than for an
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Figure 5: Additional record comparisons for Sorted
Blocks method with different overlaps in comparison
to Sorted Blocks with u = 2

exhaustive comparison. The reason is that in an exhaustive
comparison many more non-duplicates are compared with
each other and due to an inaccuracy in the similarity func-
tion classified as duplicates. This effect is even amplified by
calculating the transitive closure.

In Figure 6(b) the recall values are compared for which
the exhaustive comparison is the upper bound. For the re-
call of the exhaustive comparison the transitive closure has
no effect, because for the used data set no additional real-
duplicates could be found. A main result of the comparison
is that windowing performs better than blocking, especially
for small partitions. While the recall value for windowing is
continuously at a high level, it is very low for small blocking
partitions and has additionally higher amplitudes.

The recall of the Sorted Blocks method is at first the same
as for the Sorted Neighborhood method. From a partition
size of m = 6 up to m = 11 the recall is slightly higher. The
Sorted Neighborhood method has its next intersection with
Sorted Blocks at window size w = 6, which is the same par-
tition size as Sorted Blocks has at its first increase (m = 6).
This shows the importance of selecting the right partition
sizes for the data sets. The difference between the Sorted
Blocks and the Sorted Neighborhood method is that Sorted
Blocks has less comparisons with m = 6 than the Sorted
Neighborhood method with w = 6 and hence has a higher
efficiency. Sorted Blocks achieves recall values earlier than
Sorted Neighborhood. In the further course of the graph,
Sorted Blocks has several local maxima and minima while
the Sorted Neighborhood method is monotonically increas-
ing. The recall value for Blocking is always less than the
value for the two other partition methods.

The F-Measure plotted in Fig. 7 is particularly interesting
for the assessment of partitioning methods, because it in-
cludes both correctness and completeness of the results. As
for the recall, Sorted Neighborhood and Sorted Blocks are
superior to blocking. The curve shapes are similar to those
for recall. We can see again that for the interval m = 6 up
to m = 10 Sorted Blocks performs better than the Sorted
Neighborhood. As for the recall value, the curve of Sorted
Blocks is not monotonically increasing. The reason is, that
the set of record comparisons for an increasing partition size
is not necessarily a superset of the record comparisons for
smaller partitions.
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5. CONCLUSIONS
This paper presents two main contributions. First a thor-

ough comparison of the common blocking and sorted neigh-
borhood methods. We clearly show that the latter outper-
forms the former. Second, led by the intuition that both
perform some type of partitioning, we present a generalized
algorithm, Sorted Blocks, with the two methods as extreme
cases. This method parameterizes the degree of overlap
from none (Blocking method) to w − 1 (Sorted Neighbor-
hood method). This method in turn outperforms the Sorted
Neighborhood method slightly.

Clearly, the results and observation should and shall be
confirmed by experiments with more and diverse data sets.
As usual, the problem is to obtain pre-classified data. Also,
the Sorted Blocks method can yet be refined, for instance
by allowing variable block sizes and by allowing dynamic
adaptation of the overlap. The former refinement would also
remove the inconvenient behavior of the Sorted Blocks that
increasing overlap does not necessarily result in a superset
of the previous comparisons. Thus, recall-graphs would be

smoothed and we expect results to be more clear-cut.
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