Creating voiD Descriptions for Web-scale Data

Christoph Bohm', Johannes Lorey', Dandy Fenz?, Eyk Kny?, Matthias Pohl?,
Felix Naumann'!

Hasso-Plattner-Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
! firstname.lastname@hpi.uni-potsdam.de
2 firstname.lastname@student.hpi.uni-potsdam.de

Abstract. When working with large amounts of automatically-crawled
semantic data as presented in the Billion Triple Challenge (BTC), it is
desirable to present the data in a manner best suited for end users. The
Vocabulary of Interlinked Data (voiD) has been proposed as a means to
annotate sets of RDF resources in order to facilitate human understand-
ing. In this work, we introduce automatic generation of voiD descriptions
which comprises different approaches for identifying (sub)datasets and
annotating the derived subsets according to the voiD definition. Due to
the complexity of the BTC dataset, the algorithms used for partition-
ing and augmenting the data are implemented in a Cloud environment
utilizing the MapReduce paradigm.

1 Introduction

These days open data emerges from a variety of sources, e.g., government agen-
cies, bio-science institutes, social networks, or community-driven knowledge bases.
Often, such data is published as linked open data (LOD) — data that adheres to
a set of guidelines to allow for easy reuse and semantic integration [5]. However,
due to the wealth of information available, descriptive metadata is essential for
every open dataset. Furthermore, we think that metainformation between dis-
tinct datasets represents valuable inter-domain knowledge and therefore provides
additional insight.

Metadata is useful in a multitude of scenarios: The most obvious case is when
a data engineer searches for information about a specific topic. How does she
know what a dataset at hand is about and how can she quickly discover connec-
tions to other sources she already works with? A data source should provide this
information in a standardized way. Crawling the LOD cloud is a second applica-
tion. Here, raw statistics (e.g., the number of triples, resources, links, etc.) are
of interest for scheduling crawling tasks and provisioning resources. Query an-
swering for linked data is another scenario where statistics and metainformation
can support decision making and help achieve better results. We believe that a
wide availability of well-defined metadata will facilitate the causes of data inter-
connectivity and semantic integration. The Vocabulary of Interlinked Datasets
(voiD) addresses this need.



VoiD. The Vocabulary of Interlinked Datasets is an RDF-based schema to de-
scribe linked datasets [4, 6]. By providing a standardized vocabulary, it aims at
facilitating the discovery of linked datasets as well as their usage. VoiD offers
two main classes: a void:Dataset describes collections of data published and
maintained by a single provider. A void:Linkset on the other hand is a subclass
of void:Dataset that describes entities linking to other sources. For linksets,
interlinking predicates or link directions can be stored. Additionally, a number of
properties defined in voiD are aimed at describing technical or statistical features
of datasets.

VoiD has been introduced in 2009 and is already utilized by a number of
projects. For instance, the authors of [9] plan to leverage voiD dataset statistics
for query optimization. The voiD browser [3] allows to use URIs to search for
datasets. These projects require voiD annotations which have been created for
a number of sources, e.g., data.gov.uk [2] or the OECD Glossary [1]. Though
it is considered to be fairly simple to produce voiD descriptions by hand, there
are numerous sources in today’s LOD cloud that do not provide them®. In our
opinion, this is due to the manual effort required to create them. Also, we find
that often that provided metadata is either incomplete or does not reflect the
entire contents of a dataset. That’s why we feature a set of algorithms and
heuristics to create voiD descriptions automatically.

Structure of this paper. First, we introduce a basic clustering algorithm that
outputs dataset information according to the voiD definition (Sec. 2.1). We then
illustrate the computation of linksets, using both the original approach and a new
fuzzy version (Sec. 2.2), followed by a description of dataset metadata generation
(Sec. 2.3). Lastly, we propose three new types of datasets and the according
clustering algorithms (Sec. 3) before concluding this work (Sec. 4) and discussing
the evaluation criteria in the Appendix.

2 Generating voiD annotations

As mentioned above, voiD is centered around the concepts of data- and linksets.
Therefore, we first provide a way to compute them in their original form before
we discuss metadata generation and possible voiD extensions. Note that while in
the next sections we will assume the semantic data at hand to be in a triple for-
mat (subject, predicate, object), our approaches also apply to quadruple format
(with additional context information) as presented in the BTC 2010 dump.

2.1 Basic Dataset Clustering

The voiD standard associates a dataset with a single publisher, e.g., through a
dereferencable HTTP URI or a SPARQL endpoint [6]. Thus, our basic dataset

! For example, at the time of writing the prominent DBpedia did not provide a voiD
description.



clustering partitions a data corpus using the individual subject’s uniform re-
source identifier if present. According to the W3C RDF format specification, a
subject has to be either referenced by a URI or a blank node [8]. In the lat-
ter case, the associated triples are ignored for dataset clustering, as there is no
publisher associated with them. Malformed URIs are disregarded as well. As
the majority of subject URIs adhere to the HTTP scheme, all other schemes
each form one individual cluster, such as the cluster of phone numbers (with its
schema identifier tel). However, for non-HTTP schemes it is also possible to
use domain-specific properties to differentiate subsets, e.g., the country code.

For subjects identified by a HTTP URI, two triples belong to the same
dataset, iff the subjects’” URL start with the same pattern. Here, the length
of the pattern is determined by the longest common prefix of all sub-
jects in a dataset ending in one of the characters :, /, or #. For exam-
ple, the two subjects http://dbpedia.org/resource/Category:Germany and
http://dbpedia.org/resource/Tim Berners-Lee belong to the same dataset
http://dbpedia.org/resource/. We will therefore identify a dataset by its
URI endpoint, i.e., the void:uriLookupEndpoint. The generation of the re-
maining void:Dataset attributes is described in Subsec. 2.3.

Discovering datasets based on the longest common URI prefix requires
two MapReduces runs. The first one determines all possible prefixes for every
subject. For example, for http://dbpedia.org/resource/Category:Germany
the prefixes http://dbpedia.org/, http://dbpedia.org/resource/ and
http://dbpedia.org/resource/Category: are discovered. In the final step,
the most suitable prefix for a dataset is determined, i.e., the longest one com-
mon to all subjects in the dataset. In the example structure of Fig. 1, datasets
identified by this basic clustering approach are identified by the color of the
subjects that belong to them. In the BTC 2010 dump, we were able to detect
2,486 void:Dataset entities using this approach.

To avoid ambiguity, for the remainder of this paper the original, unparti-
tioned BTC 2010 dump will also be referred to as ‘corpus’, whereas a ‘dataset’
describes any logical subset of the corpus determined by one of the introduced
partitioning approaches.

After clustering the data corpus, we calculate different voiD statis-
tics of the newly discovered datasets, such as void:numberOfPredicates,
void:numberOfSubjects, etc. Notice that these attributes each refer to unique
entities within a dataset only. These voiD concepts already provide interest-
ing insight into the structure of the datasets: For example, a low number for
void:numberOfPredicates relative to void:numberOfSubjects could hint that
the included entities all belong to the same type and thus share most of their
attributes. For a heterogeneous dataset, like DBpedia, on the other hand, this
relation is very different.

2.2 Linksets

Crisp Linksets. Besides datasets, the voiD standard also introduces the notion
of linksets. A void:Linkset contains the links from one dataset to another



7
Commeoren X
\

ontology:capital

rdfs:subClassOf

livesin

worksIn

_— e m— o = o= >

owl:sameAs

example.com/Munich L JE R
example.com/Berlin
\
}/
foo.org/place#Lyon - .
~

/
/
K
\

foo.org/place#Berlin
e
®
. 4 ’
foo.org/place#Paris

bar.net/entity:Bob

example.com/Alice

example.com/Bob

- foo.org/person#Alice
foo.org/person#Bob

bar.net/entity:Alice

Fig. 1. Running example; filled ellipses indicate resources, arrows represent predicates.

basic

‘ owl:sameAs connected ‘ livesIn connected

|transitive (d = 1)

example.com/Munich
example.com/Berlin
example.com/Alice
example.com/Bob

foo.org/place#Lyon
foo.org/place##Berlin
foo.org/place#Paris

foo.org/person#Alice
foo.org/person#Bob

bar.net/entity:Alice
bar.net/entity:Bob

example.com/Alice
foo.org/person#Alice
bar.net /entity:Alice

example.com/Bob
foo.org/person#Bob
bar.net /entity:Bob

remaining:
example.com/Munich
example.com/Berlin
foo.org/place#Berlin
foo.org/place#Lyon
foo.org/place#Lyon

example.com/Berlin
example.com/Alice
example.com/Bob

foo.org/place##Berlin
foo.org/person#Alice
foo.org/person#Bob

remaining:
example.com/Munich
foo.org/place#Lyon
foo.org/place#Paris
bar.net/entity:Alice
bar.net /entity:Bob

example.com/Munich
example.com/Berlin
foo.org/place#Lyon

example.com/Berlin
foo.org/place#Berlin
foo.org/place#Paris

remaining:
example.com/Alice
example.com/Bob
foo.org/person#Alice
foo.org/person#Bob
bar.net/entity: Alice
bar.net/entity:Bob

Table 1. Different datasets for running example in Fig. 1.

and is identified by triples in which the subject belongs to a different dataset
than the object. In our implementation, a linkset may also be reflexive, i.e., it
describes the connections within an individual dataset. However, linksets are not
symmetric, but rather directed from one dataset to another. For example, we
discovered 4,042 links from DBpedia to GeoNames, but 6,956 links in the other

direction.

Once datasets have been determined, linksets among them can be obtained in
one MapReduce run. In the Map phase, all quadruples in which both subject and
object are members of previously identified datasets are extracted. The emitted



tuple then contains the subject and object dataset identifier as key. The Reduce
phase, counts all tuples identified by the same key. Overall, we discovered 10,896
void:Linkset resources in the BTC 2010 corpus.

Fuzzy Linksets. In addition to these ‘crisp’ linksets, we also examine links be-
tween different datasets that are not explicitly stated. We introduce the notion
of k-similarity, where two subjects are k-similar, iff k of their predicate/object
combinations are exact matches. Def. 1 provides a formal definition. The intu-
ition is that two subjects are to some degree similar if they share a common set
of attributes, and might therefore be relatable, e.g., using one of the methods
introduced in [7]. This in turn helps to identify ‘fuzzy’ linksets among datasets.
These fuzzy linksets connect similar entities (and thereby datasets), which are
not explicitly referenced by one another.

Definition 1. For a fized subject s1, and a number of associated predicates pi ;
with objects 01 ;, i.e., for the triples

S1 P11 01,1

S1 P1,2 01,2

the set {(p1,1,011)s---, (P1,n,01,n)} denotes all of the predicate/object combina-
tions at hand. For k > 0, two subjects s1 and so are k-similar iff

H(p1,1,011)5 -+, P10y 01,0)} N {(P2,1,021), - -, (P2,ms 02,m) }| = K, with

(Pi,j+0i5) = (D1, Okt) € Pij = Phyi N 0ij = Ok

A number of factors influence the ‘interestingness’ of fuzzy links. On the one
hand, a higher value for k indicates that the two subjects have a high number
of predicate/object combinations in common. Here, k (considered absolute or
relative) can indicate similarity of subjects and thus a new relationship between
the associated entities is disclosed. To illustrate this effect, we analyzed a 10%
sample of the BTC 2010 corpus, containing 317 million quadruples. Of these,
around 122 million had one predicate/object combination in common with at
least one other quadruple. By setting k to 2, we were able to drastically decrease
the number of associated quadruples to 25.

On the other hand, some predicate/object combinations appear very of-
ten, and are therefore not insightful. In the BTC 2010 corpus for exam-
ple, the rdf:type predicate occurs quite frequently in conjunction with the
rdf :Resource object, rendering a small value for £ unsuitable for our approach
and this specific combination. In general, more specific predicates, i.e., predicates
that do not appear very often themselves, provided a better lead for detecting
dataset similarity. Overall, k-similar linksets can be considered an extension
to the void:Linkset class, revealing implicit, fuzzy connections between two
datasets.



2.3 Dataset Metadata

The voiD standard introduces a number of properties that characterize a dataset.
However, some of the properties are meant to be augmented manually by the
data provider and cannot be derived automatically, e.g., the license of a dataset
or the date of its creation. Hence, we limited ourselves to a subset of properties
that can be deduced from the resources within the dataset, but still provide a
data consumer with interesting insight.

The attribute void:exampleResource provides a link to a representative
entity within the dataset. In our approach, we filtered the subject that pro-
vided the most predicate/object combinations as a sample resource. Presum-
ably, this entity is described most thoroughly. The dcterms:description
terms provide a textual, human-readable description of the dataset. We chose
to base the textual description on the most common types of the sub-
jects included in the dataset. More specifically, we filtered all resources de-
scribed by a rdf:type predicate and ranked those according to the respec-
tive number of occurrences. For example, in DBpedia we discovered 12,151
subjects of type http://dbpedia.org/ontology/Place, 11,285 subject of type
http://dbpedia.org/ontology/Person, etc. Thus, we can conclude that this
dataset provides information about places, people, etc. We found that by limit-
ing ourselves to the top ten types discovered, the generated description offers a
good overview of the dataset contents.

3 Extending voiD Content

Detecting individual sub-datasets provides interesting insights into the contents
of large data corpora. In its original voiD definition, a dataset identifies a set of
data provided by a single publisher. We define semantic datasets, i.e., partitions
of resources that share specific features. Specifically, we provide means to identify
connected sets of resources or sets of conceptually similar resources. Given two
such semantic datasets and respective linksets, one could, for instance, observe
the connectivity among concepts.

Connected Datasets. Two resources reside within the same connected dataset,
iff there is a link of a specific type between them. If the type of the link is un-
defined, any two connected resources share the same dataset and there are no
linksets. In contrast, if the links among resources are fixed to a specific type, e.g.,
owl:sameAs or livesIn in Fig. 1, then one can derive meaningful linksets. Tab. 1
lists the datasets for owl:sameAs and the custom-defined 1ivesIn link, respec-
tively. In the first case, linksets contain livesIn and worksAt links whereas in
the second case linksets contain owl:sameAs and worksAt links (for simplicity,
we here disregard the other two link types). For computing connected datasets,
we have implemented a two-phase MapReduce job that first assigns resources
to individual clusters and then merges clusters if connected through specific
relations.



Conceptual Datasets. Two resources are contained in the same conceptual dataset,
iff they are of the same or of similar type. For this, we provide two approaches:
The hierarchical approach assigns any resource to a dataset representing a con-
cept and all its superconcepts (up to a certain level d). Consider Tab. 1 as an
example: for d = 1, the first cluster contains all resources of type ontology:city
whereas the second cluster comprises entities of type ontology:capital. By in-
creasing d to 2, the transitive closure of ontology:capital is determined, and
the aforementioned two clusters are merged into a single one. The number of
MapReduce runs for this clustering approach is variable, depending on the num-
ber of iterations d allocated for detecting transitive links.

The distinct approach selects a single concept type per resource and
assigns the resource to the respective dataset. For example, in Fig. 1
example.com/Berlin is both a city and a capital. The previous transitive
approach assigns it to both respective clusters for d = 1, and forms a single
cluster for d > 1. The distinct approach on the other hand selects exactly one
specific dataset for the assignment. The dataset selection is driven by the con-
cepts’ levels of generality. We use the concepts’ occurrence rates to find out that
level of generality, i.e., we consider frequent concepts to be more general whereas
infrequent concepts have a lower level of generality. This requires two MapRe-
duce runs: the first one gathers statistical information about the concepts within
a corpus, whereas the second determines the best-fitting dataset allocation based
on the desired level of generality.

4 Conclusion

In this work, we have presented a scalable approach for segmenting, annotating,
and enriching large corpora of linked data, as presented in the Billion Triple
Challenge 2010 dataset. For this purpose, we have administered the current
version of the Vocabulary of Interlinked Data as well as introduced a number of
new ideas extending the current scope of voiD. We believe that the techniques
introduced in this paper simplify the annotation process for Web-scale datasets
and therefore encourages providers of such datasets to adopt voiD.

For detailed findings and an analysis of the complete BTC 2010 dataset, we
kindly invite the reader to visit our website: http://www.hpi.uni-potsdam.
de/naumann/sites/btc2010/. There, we also provide the source code for our
approaches.

Acknowledgments

The authors thank Matthias Jacob, Martin Linkhorst, and Stefan Wehrmeyer
for their contributions to this work.



References

[1] OECD Glossary of Statistical Terms. http://stats.oecd.org/glossary and
http://oecd.dataincubator.org, access: 08/2010.

[2] Public Sector Information Catalogues Aggregator. http://bagatelles.ecs.
soton.ac.uk/psi/federator/, access: 08/2010.

[3] K. Alexander. voiD Browser. http://kwijibo.talis.com/voiD/, access: 08/2010.

[4] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing Linked
Datasets: On the Design and Usage of voiD, the “Vocabulary Of Interlinked
Datasets”. In WWW Workshop: Linked Data on the Web, 2009.

[5] T. Berners-Lee. Linked Data Design Issues. http://www.w3.org/DesignIssues/
LinkedData.html, 2006. access: 08/2010.

[6] R. Cyganiak, J. Zhao, K. Alexander, and M. Hausenblas. Vocabulary of interlinked
datasets. http://semanticweb.org/wiki/VoiD, May 2010. access: 08/2010.

[7] H. Halpin and P. J. Hayes. When owl:sameas isn’t the same: An analysis of identity
links on the semantic web. In Workshop on Linked Data on the Web, April 2010.

[8] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/,
February 2004. access: 08/2010.

[9] J. Zemének and S. Schenk. Optimizing sparql queries over disparate rdf data
sources through distributed semi-joins. In International Semantic Web Conference
(Posters & Demos), 2008.

Appendix: Evaluation Criteria we have met

The techniques introduced in this paper allow for scalable profiling of the Billion
Triple Challenge 2010 dataset. The derived information helps users in identifying
the contents of the BTC corpus and also establishes interesting relationships
between individual partitions of the original BTC dump, such as crisp and fuzzy
linksets. One of the goals of our work was to use only resources included in the
provided dataset to derive statistical attributes and other information. Hence,
our approach does not rely on any external service or data, and can therefore be
applied to (amongst other) all BTC datasets, past, present, or future.

We chose to leverage the requirements introduced in the voiD standard as
a base for profiling the resources of the BTC corpus. We believe that the voiD
concepts help consumers of linked open data in evaluating quality and suitability
of such datasets for the respective application. Furthermore, we propose several
extensions to the current voiD standard, all of them targeted at offering new
perspectives on web-scale LOD.

Our implementation is based on the Apache Hadoop framework. As an exe-
cution environment, we chose Amazon’s Elastic Compute Cloud (EC2) platform.
This enabled us to parse the entire BTC 2010 corpus in relatively short time:
Applying basic clustering, finding a suitable sample resource and textual descrip-
tion, and determining linksets for the entire BTC 2010 corpus required less than
one hour on 20 High-CPU Extra Large (cl.zlarge) EC2 instances. The results
and additional documentation can be found at http://www.hpi.uni-potsdam.
de/naumann/sites/btc2010/.



