
Advancing the Discovery of Unique Column Combinations∗

Ziawasch Abedjan
Hasso-Plattner-Institut

Potsdam, Germany
ziawasch.abedjan@hpi.uni-potsdam.de

Felix Naumann
Hasso-Plattner-Institut

Potsdam, Germany
naumann@hpi.uni-potsdam.de

ABSTRACT
Unique column combinations of a relational database table
are sets of columns that contain only unique values. Discov-
ering such combinations is a fundamental research problem
and has many different data management and knowledge
discovery applications. Existing discovery algorithms are ei-
ther brute force or have a high memory load and can thus
be applied only to small datasets or samples. In this pa-
per, the well-known Gordian algorithm [9] and “Apriori-
based” algorithms [4] are compared and analyzed for further
optimization. We greatly improve the Apriori algorithms
through efficient candidate generation and statistics-based
pruning methods. A hybrid solution HCA-Gordian com-
bines the advantages of Gordian and our new algorithm
HCA, and it outperforms all previous work in many situa-
tions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications

General Terms
Algorithms

Keywords
unique, apriori, functional dependency, key discovery

1. UNIQUE COLUMN COMBINATIONS
Unique column combinations are sets of columns of a re-

lational database table that fulfill the uniqueness constraint.
Uniqueness of a column combination K within a table can
be defined as follows:

Definition 1. Given a relational database schema R =
{C1, C2, . . . , Cm} with columns Ci and an instance r ⊆ C1×
. . .× Cm, a column combination K ⊆ R is a unique, iff

∀t1, t2 ∈ r : (t1 �= t2) ⇒ (t1[K] �= t2[K])

Unique discovery has high significance in several data man-
agement applications, such as data modeling, anomaly de-
tection, query optimization, and indexing. Discovered uniques
are good candidates for primary keys of a table. Therefore
some literature refers to them as “candidate keys” [8]. The

∗A full version of this paper is available at [1]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

term “composite key” is also used to highlight the fact that
they comprise multiple columns [9]. We want to stress that
the detection of uniques is a problem that can be solved ex-
actly, while the detection of keys can only be solved heuris-
tically. Uniqueness is a necessary precondition for a key, but
only a human expert can “promote” a unique to a key, be-
cause uniques can appear by coincidence for a certain state
of the data. In contrast, keys are consciously specified and
denote a schema constraint.

An important property of uniques and keys is their mini-
mality. Minimal uniques are uniques of which no strict sub-
sets hold the uniqueness property:

Definition 2. A unique K ⊆ R is minimal, iff
∀K′ ⊂ K : (∃t1, t2 ∈ r : (t1[K

′] = t2[K
′]) ∧ (t1 �= t2))

In principle, to identify a column combination K of fixed
size as a unique, all tuples ti must be scanned. A scan
has a runtime of O(n) in the number n of rows. To detect
duplicate values, one needs either a sort in O(n log n) or a
hashing algorithm that needs O(n) space. Non-uniques are
defined as follows:

Definition 3. A column combination K that is not a
unique is called a non-unique.

Discovering all uniques of a table or relational instance can
be reduced to the problem of discovering all minimal uniques.
Every superset of a minimal unique is also a unique. Hence,
in the rest of this paper the discovery of all uniques is syn-
onymously used for discovering all minimal uniques. The
exponential complexity is caused by the fact that for a rela-
tional schema R = {C1, . . . , Cm}, there are 2m − 1 subsets
K ⊆ R that can be uniques. Actually, even the result size
of the problem can be exponential. In the worst case, there
can be

(
m
m
2

)
minimal uniques, each consisting of m

2
columns.

The contributions of this paper toward efficient unique
detection are:

1. We analyze, discuss, and categorize existing algorithms
and their strengths and weaknesses.

2. We introduce the new algorithm HCA and show how
a bottom-up algorithm can be optimized by applying
the concept of apriori candidate generation, statistics-
driven pruning, and ad-hoc inference of FDs.

3. Furthermore, we present an elegant combination of
HCA with the well-knownGordian algorithm [9], named
HCA-Gordian, gaining even more efficiency.

2. RELATED WORK
Although the topic of finding or inferring composite keys

and functional dependencies appeared ever since there are

relational databases, there are only a few known approaches
to the problem of discovering all minimal uniques of a ta-
ble. These are discussed in detail in Sec. 3. In the broader
area of meta data discovery however, there is much work
related to the discovery of functional dependencies (FD). In
fact, the discovery of FDs is very similar to the problem of
discovering uniques, as uniques functionally determine all
other individual columns within a table. There are several
approaches for FD discovery [3, 6]; some include approxi-
mative solutions [5, 7]. Most new ideas in this research field
follow either an Apriori or level-wise partitioning approach
and require exponential runtime.

On the other hand, knowledge of FDs can be exploited
for runtime-efficient unique discovery. Saeidian and Spencer
present an FD-based approach that supports unique discov-
ery [8]. They showed that given a minimal set of FDs , any
column that appears only on the left side of the given FDs
must be part of all keys and columns that appear only on
the right side of the FDs cannot be part of any key. This
insight cannot be used in the context of our work, as we
assume no prior knowledge of functional dependencies, in-
dexes, or semantic correlations. However, in Sec. 4 we show
that our new algorithm HCA is able to infer some FDs on
the fly and use them for apriori classification of some column
combinations.

3. ALGORITHMIC FOUNDATIONS
In this section, the most important approaches to unique

discovery are introduced, distinguishing two different classes:
Row-based algorithms are based on a row-by-row scan of the
database for all column combinations. The second class,
column-based algorithms, contains algorithms that check
the uniqueness of a column combination on all rows at once.
Such column combinations are generated iteratively and each
of them is checked only once.
Gordian: A Row-based Approach. Row-based process-
ing of a table for discovering uniques requires multiple runs
over all column combinations as more and more rows are
considered. It benefits from the intuition that non-uniques
can be detected without considering all rows of a table. A
recursive unique discovery algorithm that works this way is
Gordian [9]. The algorithm consists of three parts: (i) Pre-
organize table data in form of a prefix tree. (ii) Find maxi-
mal non-uniques by traversing the prefix tree. (iii) Compute
minimal uniques from maximal non-uniques. The prefix tree
has to be stored in main memory. Each level of the tree rep-
resents one column of the table whereas each branch stands
for one distinct tuple. Non-unique discovery is performed by
a depth-first traversal of the tree for discovering maximum
repeated branches, which constitute maximal non-uniques.
Maximal non-uniques can be defined as follows:

Definition 4. A non-unique K ⊆ R is maximal, iff all
of its strict supersets K′ ⊃ K are unique.

After the discovery of all maximal non-uniques, Gordian
computes all minimal uniques by generating minimal com-
binations that are not covered by any of the maximal non-
uniques. In [9] it is stated that this step needs only quadratic
time in the number of minimal uniques, but the presented
algorithm implies cubic runtime. The generation of minimal
uniques from maximal non-uniques marks a serious bottle-
neck of the algorithm in case of large numbers of maximal
non-uniques. Indeed, our experiments showed that in most
cases the unique generation dominates the entire algorithm.

Furthermore, the approach is limited by the available main
memory and must be used on samples for approximate so-
lutions when dealing with large data sets.
Apriori: A Column-based Approaches. The problem
of finding minimal uniques is comparable to the problem of
finding frequent itemsets [2]. The well-known Apriori ap-
proach is applicable for minimal unique discovery, working
bottom-up as well as top-down. With regard to the powerset
lattice of a relational schema the Apriori algorithms gener-
ate all relevant column combinations of a certain size and
verify those at once. Figure 1 illustrates the powerset lat-
tice for the running example in Tab. 1. The effectiveness and
theoretical background of those algorithms is discussed by
Giannela and Wyss [4]. They call their family of algorithms
“Apriori-based”, while in fact they make only minimal use
of the Apriori idea.

first last age phone
Max Payne 32 1234
Eve Smith 24 5432
Eve Payne 24 3333
Max Payne 24 3333

Table 1: Example data set
},,,{ phoneagelastfirst

},,{ agelastfirst },,{ phoneagelast},,{ phoneagefirst

}{phone

},{ agefirst},{ lastfirst },{ phonefirst

}{ first }{age

},{ phoneage

}{last

},{ phonelast

},,{ phonelastfirst

},{ agelast

Figure 1: Powerset lattice for the example table

Bottom-up unique discovery indicates here that the pow-
erset lattice of the schema R is traversed beginning with
all 1-combinations to the top of the lattice, which is the
|R|-combination. The prefixed number k of k-combination
indicates the size of the combination. The same notation is
used for the more specific terms k-unique and k-non-unique.
The algorithm begins with checking the uniqueness of all in-
dividual columns. If a column is a unique, it will be added
to the set of uniques, and if not it will be added to the list
of 1-non-uniques. The next iteration steps are based on the
so-called candidate generation. A k-candidate is a potential
k-unique. In principle, all possible k-candidates need to be
checked for uniqueness. Effective candidate generation leads
to the reduction of the number of uniqueness verifications by
excluding apriori known uniques and non-uniques.

4. THE HCA APPROACH
In the following, we introduce the Histogram-Count-based

Apriori Algorithm (HCA), an optimized bottom-up algo-
rithm, which outperforms Gordian given a threshold of
minimum average distinctness. The algorithm is based on
the bottom-up algorithm presented in 3. We improve the al-
gorithm by applying an efficient candidate generation, con-
sideration of column statistics as well as ad-hoc inference
and use of FDs. Finally, we describe how the advantages of
our approach can be combined with advantages provided by
Gordian for a hybrid solution.

4.1 Efficient Candidate Generation
Candidate generation is a crucial point for both bottom-

up and top-down approaches. The more candidates can be

pruned apriori, the fewer uniqueness checks have to be per-
formed and the better runtime will be achieved. Given a set
of k-non-uniques, the näıve approach for generating (k+1)-
candidates is to add non-contained 1-non-uniques to a k-
non-unique [4]. The disadvantage of this approach is that
repeated candidates may be generated: Given the example
in Tab. 1, the combination {first,phone} would be identified
as unique after the second pass of the algorithm. In the same
pass, the combinations {first,last}, { first,age}, {last,age},
{last,phone}, and {age,phone} would be identified as non-
uniques. In the third pass, the naive candidate generation
would generate the 3-candidates including {first,last,age} by
adding age to {first,last} , {first,age,last} by adding last to
{first,age}, and {last,age,first} by adding first to {last,age}.
These candidates are equal sets and their generation leads
to unnecessary runtime overhead.

Furthermore, candidate generation faces another signifi-
cant problem. Considering the running example, the gener-
ated 3-candidates would include {first,last,phone} by adding
phone to { first,last} and {first,age,phone} by adding phone
to {first,age}. Knowing that {first,phone} is a minimal unique,
{first,last,phone} and {first,age,phone} are redundant uniques
and their verification is futile.

Our candidate generation (Alg. 1) benefits from all opti-
mizations of the classical apriori candidate generation in the
context of mining association rules [2], so that repeated and
redundant candidates are indeed pruned apriori.

The intuition behind our candidate generation is that a
(k+1)-unique can only be a minimal iff all of its strict sub-
sets are non-uniques. In other words, a (k + 1)-unique can
only be a minimal if the set of k-non-uniques contains all
of the candidate’s k-subsets. Because a minimality check is
much cheaper than a verification step, we perform this step
already within candidate generation. This is done by creat-
ing the union of every two k-non-uniques that are equal in
the first k − 1 columns (line 5). For the correctness of this
operation, it is necessary that the columns are sorted lexico-
graphically. We illustrate sorted sets using square brackets:
[C1, C2 . . .]. The sorting can be achieved by considering the
order during the generation. 2-candidates are generated by
cross-combination of all 1-non-uniques. Each new combina-
tion is sorted by a less-equal comparison of its two members.
In candidate generations of later passes, the sorting is main-
tained by retaining the first k−1 columns in the preexisting
order and a single comparison of the non-equal kth column
of the two combined k-non-uniques (line 8).
A (k + 1)-combination is not generated if there are no

two k-non-uniques that conform exactly in the first k − 1
columns. This is correct because it indicates that one k-
subset is not a non-unique. Regarding our example from
before, the redundant candidate [first,last,phone] would not
be generated because it requires the occurrence of the sorted
subsets [first,last] and [first,phone] as k-non-uniques that
equal in the first column. However, [first,phone] as a previ-
ously discovered unique is missing.

A final minimality check on all remaining candidates prunes
all redundant (k+ 1)uniques. Due to the inherent sortation
of the non-uniques, the second important benefit of our can-
didate generation is the avoidance of repeated candidates.

4.2 Statistics-based Pruning
Real-world data contains semantic relations between col-

umn entries, such as correlations and functional dependen-
cies (FDs). Knowledge of such relations and dependencies

Algorithm 1 candidateGen

Require: nonUniques of size k
Ensure: candidates of size k + 1
1: for i ← 0 to |nonUniques| − 1 do
2: for j ← i+ 1 to |nonUniques| − 1 do
3: non-unique1 ← nonUniques[i]
4: non-unique2 ← nonUniques[j]
5: if non-unique1 [0 . . . k−2] = non-unique2 [0 . . . k−2]

then
6: candidate ← new k + 1-sized list
7: candidate ← non-unique1 [0 . . . k − 2]
8: if non-unique1 [k−1] <non-unique2 [k−1] then
9: candidate[k − 1] ← non-unique1 [k − 1]
10: candidate[k] ← non-unique2 [k − 1]
11: else
12: candidate[k − 1] ← non-unique2 [k − 1]
13: candidate[k] ← non-unique1 [k − 1]
14: end if
15: if isNotMinimal(candidate) then
16: continue
17: end if
18: candidates.add(candidate)
19: end if
20: end for
21: end for
22: return candidates

can be used to reduce the number of uniqueness checks.
Unfortunately, these dependencies are usually not known.
Based on retrieved count-distinct values and value frequen-
cies, HCA is able to discover some FDs on the fly. In ad-
dition, knowledge of the number of distinct values of col-
umn combination and their value distribution allows further
pruning by apriori non-unique detection.

HCA is based on a hybrid verification scan that retrieves
either the number of distinct values and the histogram of
value frequencies of a combination or only the number of
distinct values. A candidate is a unique if it contains as
many distinct values as there are tuples in the table or if
all value frequencies are 1. Regarding our example, column
last contains the frequencies 1 and 3 for“Smith”and“Payne”
respectively. It is a non-unique, because one value frequency
is above 1. The retrieval of the histogram is still in O(n ·
log(n)), because retrieving distinct count values and value
frequencies need only a sort and a followup scan as it is
needed by the duplicate detection approach.
Ad-Hoc Inference of Functional Dependencies. The
first benefit of the count-based approach is that FDs can
be identified. A functional dependency X → A allows us to
conclude uniqueness statements: Given combinationsX,Y ⊆
R and a column A ∈ R, {X,Y } is a unique if {A, Y } is a
unique and X → A. In addition, if {A,X} is a non-unique
and A → B, then {B,X} is also a non-unique. These state-
ments hold because the dependent side of an FD contains at
most as many distinct values as the determinant side. For
a column combination X and a column A, it holds X → A
iff the number of distinct values of X equals the number of
distinct values in the combination {A,X}.
HCA, illustrated in Alg. 2, retrieves those dependencies

for all 1-non-uniques that are contained by the verified 2-
non-uniques(line 35). In later iterations, for each member
of a k-candidate it is scanned whether the column is part

of a discovered FD and if so which of the previously de-
fined conclusions can be applied for the combination with
the substituted member. So, it is possible to skip scans of
k-candidates that were apriori classified through FDs.

The FD-based pruning takes place after each verification
of a current candidate by looking for all substitutions that
are possible using an existing FD (lines 23 and 28). The
futility check in line 14 is performed to omit candidates that
were already covered by FDs. Regarding our running exam-
ple, it holds phone → age. Thus, knowing that {first,phone}
is a non-unique, {age,first} must be a non-unique, too. On
the other hand knowing that {age, first,last} is a unique
{first,last,phone} must be a unique, too.

Algorithm 2 HCA Algorithm

Require: m columns
Ensure: Uniques
1: for currentColumn in columns do
2: if isUnique(currentColumn) then
3: Uniques.add(currentColumn)
4: else
5: nonUniqueColumns.add(currentColumn)
6: storeHistogramOf(currentColumn)
7: end if
8: end for
9: currentNonUniques ← nonUniqueColumns
10: for k ← 2 to |nonUniqueColumns| do
11: k-candidates ←candidateGen(currentNonUniques)
12: currentNonUniques ← new empty list
13: for candidate in k-candidates do
14: if isFutile(candidate) then
15: continue;
16: end if
17: if prunedByHistogram(candidate) then
18: currentNonUniques.add(candidate)
19: continue;
20: end if
21: if isUnique(candidate) then
22: Uniques.add(candidate)
23: for each FD k-candidate→ candidate do
24: Uniques.add(k-candidate)
25: end for
26: else
27: currentNonUniques.add(candidate)
28: for each FD candidate → k-candidate do
29: currentNonUniques.add(k-candidate)
30: end for
31: storeHistogramOf(candidate)
32: end if
33: end for
34: if k = 2 then
35: retrieveFDs()
36: end if
37: end for
38: return Uniques

Count- and Histogram-based Pruning. Another bene-
fit of the count- and histogram-based approach is the apri-
ori identification of non-uniqueness of a k-candidate by con-
sidering the value frequencies of its combined (k − 1)-non-
unique subsets. The union of two non-unique combinations
cannot be a unique if the product of the count-distinct val-
ues of these combinations is below the instance cardinality.

In a more general case, it is sufficient to identify a value
within one of the (k− 1)-non-uniques that has a higher fre-
quency than the number of distinct values within the other
(k−1)-non-unique. In our running example, the 2-candidate
{last,age} can be pruned because the value frequency of
“Payne” is 3 and therefore higher than the number of dis-
tinct values in age, which is only 2. In case the value with
the highest frequency equals the number of distinct values of
the other (k − 1)-non-unique, we compare the next highest
value frequency with the count distinct value of a modified
view of the other (k − 1)-non-unique. In the modified view
each frequency is decreased by 1 so that it can be assumed
that each distinct value was combined once with the more
frequent value.

This approach has two drawbacks: (i) Such constellation
of value frequencies appears only in early passes of the algo-
rithm; (ii) histograms must be stored in memory. The rem-
edy for the two drawbacks is to perform histogram retrieval
only for single columns (line 6) and to store only count-
distinct values in later passes. In line 17, for each generated
k-candidate, it is checked whether one of the two combined
(k− 1)-non-uniques has a lower count-distinct value than a
value frequency of the additional kth column. Note, for an
apriori identified non-unique there will be no count-distinct
value that can be used in the next pass. Thus, the pruning
takes place in at most every second pass of the algorithm.

4.3 Combination of GORDIAN and HCA
In Sec. 3, we stated that the unique-generation part of the

Gordian algorithm is inefficient if the number of discovered
non-uniques is high. By profiling the runtime of Gordian
we could identify the unique generation as the bottleneck.
At the same time the non-unique discovery consumed only
a fraction of the runtime. Thus, an intriguing idea is to in-
terlace the non-unique discovery of Gordian with the can-
didate generation of HCA.

We combined Gordian with HCA by performing the non-
unique discovery of Gordian on a smaller sample of the
table and executing HCA on the entire table. Non-uniques
discovered within a sample of a relational instance are also
non-uniques for the complete instance and can be used for
pruning candidates during the HCA part of the algorithm.
It is thus possible to smooth the worst case of the bottom-up
algorithm by skipping non-uniques identified by Gordian,
and simultaneously to avoidGordian’s bottleneck of unique
generation.

5. EVALUATION
We tested HCA and HCA-Gordian against Gordian it-

self and the basic bottom-up, top-down and Hybrid Apriori
approaches introduced in Sec. 3. We implemented two dif-
ferent versions of the bottom-up algorithm: The approach
identified by “BU Apriori” uses the candidate generation in
Alg. 1, and a näıve approach labeled as “Näıve BU” gen-
erates candidates without pruning redundant non-minimal
uniques. The “Näıve BU” is actually the implementation of
the bottom-up algorithm proposed by Giannella andWyss [4].

The algorithms were tested on synthetic data as well as
real-world data. All algorithms are self-implemented in Java
6.0 on top of a commercial relational database. The experi-
ment platform had the following properties:

• Windows Vista (32 Bit) BusinessTM

• Pentium (R) Dual-Core CPU E5200 @2.50 GHz
• JRE limited to 1 GB RAM

5.1 Synthetic Data
We compared the algorithms with regard to increasing

number of rows, columns, average distinctness. Additional
important parameters for the algorithms are the number of
uniques and their average size. Unfortunately, both values
are only available after a successful completion of one algo-
rithm. The generation of random data with specific number
and size of uniques is probably as hard as the problem of
discovering the minimal uniques and is an important chal-
lenge for future work. Nevertheless we also analyze these
values when looking at the runtime of each algorithm.
Influence of Number of Rows. We generated multiple
tables with 20 columns differing in the row-count. Note, the
bigger the table, the lower the average distinctness might
be, because the possibility of repeated values increases with
increasing number of tuples. So, for the table with 10,000
tuples the average distinctness is 47%, while for the table
with 200,000 tuples the value is 3%. Figure 2 illustrates the
runtime of all algorithms with regard to row-counts between
10,000 and 200,000. In addition to the number of tuples, the
number of uniques for each data set is denoted below the
number of rows.

Figure 2: Runtime with respect to increasing num-
ber of rows on datasets with 20 columns

The Top-Down Algorithm is omitted in the diagram be-
cause its runtime was by magnitudes worse than Gordian.
As all uniques in these experiments are combinations of only
few columns, a bottom-up approach discovers all of them,
earlier. The Hybrid Apriori Algorithm performs worse than
the bottom-up approaches, but still better than the Top-
Down Algorithm. The HCA-Gordian performed clearly
better than Gordian. This is probably due to the fact
that the relatively high number of uniques slows down the
unique generation step of Gordian, which is avoided in
HCA-Gordian. HCA-Gordian performed the preprocess-
ing with Gordian for non-unique discovery always on a
10,000 tuple sample. On the data sets with more than
100,000 tuples, both HCA and HCA-Gordian perform at
least 10% better than BU Apriori, which does not perform
HC-based pruning. Note, the bottom-up approaches with
our efficient candidate generation performed always at least
25% better than the Näıve BU. On the datasets with more
than 100,000 rows, the performance gain was above 60%.
Furthermore, all bottom-up algorithms outperform Gor-
dian on all of these data sets.

Table 2 denotes the maximum memory usage of the algo-
rithms on the table with 100,000 rows. Gordian performs
clearly worse than all other algorithms. The Apriori ap-

proaches perform best and are nearly equal. The memory
usage of the HCA-Gordian algorithm is due to the prefix
tree on sample data higher than HCA.

Algorithm Memory Usage

Gordian 534 MB
HCA-Gordian 71 MB
HCA 20 MB
Bottom-Up Apriori 19 MB
Hybrid Apriori 20 MB

Table 2: Memory usage for 100,000 tuples, 20
columns and 7.5% average distinctness

Influence of Number of Columns. Theoretically, the
runtime of any algorithm is exponential in the number of
columns, in the worst case. The algorithms have been tested
on data sets consisting of 15 to 25 columns. The data sets
each consist of 10,000 tuples and hold an average distinct-
ness of about 5%. The experimental results are presented in
Fig. 3. As expected, the runtime of all algorithms increases
with the number of columns, but the incline of the curves
is far smaller than exponential. Gordian again performs
worse than all bottom-up approaches. The remarkable run-
time decrease on the data set with 20 columns is due to the
decrease of the number of uniques from 1,712 to 1,024. This
is a good example for the unpredictability of the runtime
of Gordian because of its high dependence on the num-
ber of existing uniques. For the datasets with more than 21
columns, the runtime of Gordian exploded.

Figure 3: Runtime with respect to column numbers

Influence of Average Distinctness. The higher the av-
erage distinctness of all columns, the smaller is the size of
minimal uniques – in the extreme case, already individual
columns are unique. Thus, also the number of uniques is
expected to be low. On the other hand, if the average dis-
tinctness is very low, minimal uniques become very large – in
the extreme case only the entire relation is a unique. Again,
the number of uniques is expected to be low. In between,
the number of uniques is expected to be higher. This be-
havior can be observed in the generated data sets: Figure 4
shows the observed average numbers of minimal uniques for
different average distinctnesses (five datasets each) and the
observed average runtimes for data sets with 15 columns and
10,000 tuples.

Considering Fig. 4, all algorithms perform better on data
with high average distinctness. For Gordian, the opposite
case is expected as it is based on discovering non-uniques:
Lower distinctness should result in faster discovery of non-
uniques and better runtime for Gordian. However, low dis-
tinctness is accompanied by higher number of uniques and

Figure 4: Runtime with respect to different values
of average distinctness

non-uniques, which leads to more overhead during unique
generation. This can be observed among the distinctness
values between 0.12% and 2%, where the average unique size
was 7, which is about one half of the number of columns.
In fact, the Bottom-Up Algorithm, HCA, HCA-Gordian,
and even the Näıve BU performed better in this range. Vice
versa, the Hybrid Apriori Algorithm performed worst. Re-
garding the distinctness range below 0.12%, Gordian out-
performs the bottom-up algorithms. The Hybrid Apriori Al-
gorithm outperforms all other algorithms in this range due
to the fact that the average size of uniques is 12 and Hy-
brid Apriori checks uniques of this size earlier than all other
algorithms. That means that the Top-Down Apriori Algo-
rithm would have performed even better. HCA-Gordian
consistently performs better or at least as good as HCA and
Gordian.

5.2 Real World Data
Real world data may differ in its nature from domain to

domain. Table 3 lists four real world tables that were down-
loaded from the data collecting website factual.com. Ta-
ble 4 presents the runtime results for these data sets. HCA
and HCA-Gordian outperformed Gordian on all tables
where only one unique was to be discovered, because their
bottom-up approach discovers single column uniques very
fast. Especially the experiment on the “National File” table
shows the disadvantage of Gordian with regard to scalabil-
ity, because the prefix tree did not fit into 1GB main mem-
ory. The NFL Stats data set that contains also multi-column
uniques shows that there are data where Gordian still per-
forms best. However, the hybrid solution HCA-Gordian is
not remarkably worse.

Table tuples columns uniques

US places 195,762 19 1
National file 1,394,725 20 1
NFL Stats 42,589 14 10

Table 3: Real world tables with statistics

Table Gordian HCA-Gordian HCA

US places 64.13 s 15.389 s 9.232 s
National file too large 114.919 s 130.239 s
NFL Stats 79.26 s 86.345 s 263.513 s

Table 4: Real world tables with runtime results

Summary. All algorithms show strengths and weaknesses
for different value distributions, size and number of uniques.
Efficient candidate generation leads to remarkable runtime
improvement of the bottom-up algorithms. The HC-based
pruning methods improve the algorithms on large data sets

with low average distinctness. HCA-Gordian is a signif-
icant improvement of the basic HCA having large tables.
HCA-Gordian performs better than Gordian when the
number of detected non-uniques is high. Gordian performs
best on data with low average distinctness and small number
of uniques. The HCA approaches are much more memory
efficient than Gordian.

6. CONCLUSIONS AND FUTURE WORK
In this paper we elaborated the concepts of uniques and

non-uniques, the effects of their size and numbers, and showed
strengths and weaknesses of existing approaches. We intro-
duced the new bottom-up algorithm HCA, which benefits
from apriori candidate generation and data- and statistic-
oriented pruning possibilities. Furthermore, we showed a
simple way of combining HCA and Gordian for even bet-
ter runtime results. A more detailed analysis of these ap-
proaches and their optimizations is provided as a technical
report [1]. The results of this paper constitute further open
directions. The most important issue for further research is
approximate unique discovery. As HCA is a statistics-based
approach, it allows further optimizations based on statistics-
driven heuristics for approximate solutions.

Another open issue is the need for a flexible and efficient
data generator that should be able to generate a table that
contains a fixed number of uniques of a certain size and
holds specific value distributions for all columns. Thus, it is
possible to evaluate and benchmark algorithms for special
cases that might occur. Finally, the recent proposals for
column stores call for unique discovery solutions that benefit
from features of a column-based DBMS. Here, the column-
based approach HCA is a promising candidate.

7. REFERENCES
[1] Z. Abedjan and F. Naumann. Advancing the discovery of

unique column combinations. Technical Report 51,
Hasso-Plattner-Institute Potsdam, Germany, 2011.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the
International Conference on Very Large Databases (VLDB),
pages 487–499, San Francisco, CA, 1994.

[3] P. A. Flach and I. Savnik. Database dependency discovery: a
machine learning approach. AI Commun., 12:139–160,
August 1999.

[4] C. Giannella and C. Wyss. Finding minimal keys in a
relation instance. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.41.7086, 1999. Last accessed on
2010-09-29.

[5] Y. Huhtala, J. Kaerkkaeinen, P. Porkka, and H. Toivonen.
TANE: an efficient algorithm for discovering functional and
approximate dependencies. The Computer Journal,
42(2):100–111, 1999.

[6] M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola.
Discovering functional and inclusion dependencies in
relational databases. International Journal of Intelligent

Systems, 12:591Ű–607, 1992.
[7] V. Matos and B. Grasser. SQL-based discovery of exact and

approximate functional dependencies. SIGCSE Bull.,
36(4):58–63, 2004.

[8] H. Saiedian and T. Spencer. An efficient algorithm to
compute the candidate keys of a relational database schema.
The Computer Journal, 39(2):124–132, 1996.

[9] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald.
Gordian: efficient and scalable discovery of composite keys.
In Proceedings of the International Conference on Very
Large Databases (VLDB), pages 691–702, 2006.

