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ABSTRACT
Given a (large) set of objects and a query, similarity search
aims to find all objects similar to the query. A frequent
approach is to define a set of base similarity measures for
the different aspects of the objects, and to build light-weight
similarity indexes on these measures. To determine the over-
all similarity of two objects, the results of these base mea-
sures are composed, e. g., using simple aggregates or more
involved machine learning techniques. We propose the first
solution to this search problem that does not place any re-
strictions on the similarity measures, the composition tech-
nique, or the data set size.

We define the query plan optimization problem to deter-
mine the best query plan using the similarity indexes. A
query plan must choose which individual indexes to access
and which thresholds to apply. The plan result should be as
complete as possible within some cost threshold. We pro-
pose the approximative top neighborhood algorithm, which
determines a near-optimal plan while significantly reduc-
ing the amount of candidate plans to be considered. An
exact version of the algorithm determines the optimal so-
lution. Evaluation on real-world data indicates that both
versions clearly outperform a complete search of the query
plan space.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

1. INTRODUCTION
Many commercial applications maintain a person/customer

data set that typically contains information such as the
name, the date of birth, and the address of individuals that
are somehow related to the company. Often, queries against

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

this data set have to be answered extremely fast, e. g., to
process online orders or to support call centers. In many
cases queries may contain information that differs from the
information stored in the data set. For example, there may
be typos, outdated values, or sloppy data or query entries.
A good search application needs to handle these errors ef-
fectively while returning results as fast as possible.

For these and similar problem settings, a common ap-
proach is to define several similarity measures for different
aspects of the problem. These customized similarity mea-
sures focus on calculating the similarity of an aspect as ef-
fectively as possible. For example, in the person data use
case, we have different similarity measures for the name of a
person, for the address, and for the birth date. In the case
of image similarity search, one could have different similar-
ity measures for the color, the structure, and the textures of
images [11].

To combine such similarity measures, there exist differ-
ent approaches, such as the weighted sum or the minu-
mum/maximum. Recent approaches employ machine learn-
ing techniques to learn an optimal combination of similarity
measures [2, 18]. In our person data use case, we compared
SVMs, decision trees, and logistic regression as combination
techniques and decided for logistic regression after thorough
evaluation.

Our goal is now to perform efficient search based on a set
of similarity measures and an arbitrary composition tech-
nique. We assume that we can create a set of similarity
indexes that provide efficient access to the set of records
based on the defined similarity measures above a parame-
terizable threshold (e. g., simFirstName ≥ φ for an arbitrary,
but fixed φ ∈ [0, 1]). There are many approaches to cre-
ate indexes for specific similarity measures, such as different
string similarity measures [15, 16, 21]. For the general case,
Christen et al. propose a blocking approach to precompute
similarities [6]. (We later sketch how our query plan opti-
mization approach can be exploited to optimize the required
blocking criterion.)

Apart from the similarity indexes, we do not place any
restrictions on the similarity measures or the composition
technique. Thus, we cannot apply any of the excellent tech-
niques for similarity search in specific data spaces, such as
metric space [20] or vector space [3]. Instead, we consider
our similarity measures as black boxes and want to find an
efficient method for searching with them.

In this paper, we focus on range queries: Given an overall
similarity measure simOverall, a fixed similarity threshold



φOverall (the range), a query q, and a record set R, the task
is to find all records r ∈ R with simOverall(q, r) ≥ φOverall.

1.1 Filter-and-Refine Search
To perform efficient similarity search with an arbitrarily

composed similarity measure, we apply a filter-and-refine ap-
proach. Given a query, we first filter the entire set of records
to derive a set of probably relevant records. For this step,
we need one similarity index for each base similarity mea-
sure in the filter. We apply filter criteria on these indexes
(e. g., all records with simFirstName ≥ 0.9 as well as all records
with simLastName ≥ 0.8) and then combine the filtered sets
(e. g., the intersection of records with similar FirstName and
LastName).

In the refine phase, we calculate the exact similarity (with
the combined similarity measure) of the query to each of the
records that survived the filtering. The result then contains
the set of records above the predetermined threshold for
overall similarity (φOverall).

The filter criterion (which operates on the base similarity
measures) is an approximation of the overall similarity mea-
sure (which composes the base similarity measures). The
key to success is to optimize the filter criterion – it should
be as concise, but as complete as possible. For as many cases
as possible, the filtered list of records should contain the cor-
rect similar records; the number of missing similar records
should be as low as possible. Additionally, this list should
be as short as possible, i. e., the number of incorrect matches
that are unnecessarily compared to the query record should
be as low as possible. In this paper, we define metrics to
evaluate filter criteria and algorithms to derive a good fil-
ter criterion in a general setting. In the following, we refer
to the filter criterion as query plan (to access the similarity
indexes) in analogy to query plans in database systems (to
access tables and indexes).

In Fig. 1, we illustrate the analogy between our approach
and query processing in DBMS. In contrast to database sys-
tems, we only support one kind of query: similarity range
queries with a fixed range. Thus, we only need to determine
a single optimal plan for these queries. Similar to database
systems, we first gather statistics about the data and gen-
erate a set of possible query plans. We optimize each query
plan thresholds and need to handle the trade-off between
costs and completeness (while a DBMS is only interested in
the cheapest plan as every computed plan yields complete
results). We select the overall best query plan based on these
criteria and then create the appropriate index structures for
efficient access.

1.2 Contributions
The contributions of this paper are:

• Definition of the novel optimization problem for effi-
cient similarity search with arbitrarily composed sim-
ilarity measures using similarity indexes. In contrast
to earlier work, we do not place any restrictions on the
similarity measures, the composition technique, or the
data set size.

• Definition of performance metrics to evaluate query
plans for accessing similarity indexes

• Exact and approximative algorithms for optimization
of query plans based on the specified metrics. The
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Figure 1: Comparison of our approach with a DBMS
architecture

approximate version evaluates only a small fraction of
the valid query plans and still determines near-optimal
plans. Both versions clearly outperform a complete
search of the query plan space.

• An evaluation on a large real-world person data set
from Schufa, the largest German credit agency (66m
records, 2m queries)

The remainder of this paper is structured as follows: In
Sec. 2 we describe related work in the area of similarity
search. A description of the problem setting can be found
in Sec. 3. We propose evaluation metrics for query plans
in Sec. 4. Section 5 contains a description of our proposed
query plan optimization algorithms. We apply an optimized
query plan to a large real-world data set and present results
in Sec. 6. The paper concludes in Sec. 7 with an outline of
future work.

2. RELATED WORK
In the field of similarity search there is a variety of ap-

proaches for specific cases of similarity measures and data.
If the data can be transformed into a vector space (feature
space), the search of similar objects can be reduced to the
search of close vectors. A popular similarity measure is the
Euclidean distance. For an overview on approaches to this
setting, we refer the reader to the excellent survey [3]. For
another well-explored space, the metric space, the similarity
measure needs to fulfill the metric requirements, while the
data can have arbitrary form. In this setting, the triangular
inequality can be exploited to efficiently reduce the search
space [5, 20].

Another relevant similarity search approach has been sug-
gested by Fagin [9]. The presented algorithm retrieves the
top k elements by accessing the list of elements in order of
their similarity to the query object regarding different as-
pects (e. g., order all pictures by their similarity to blue and
round). The approach only works for a very limited set of
basic composition techniques for the overall similarity mea-
sure; thus, Fagin’s algorithm cannot be applied in our setting
with arbitrarily composed similarity measures.



Deshpande et al. suggest an index structure for non-metric
similarity measures that exploits inverted indexes (similarity
lists) for all values [7]. As stated by the authors, their index
structure AL-Tree is only suitable for attributes with very
small numbers of distinct values. In our setting with possibly
millions of distinct values per attribute, this approach is
infeasible. As none of the aforementioned approaches are
applicable to our problem, we cannot empirically compare
with them.

An area related to similarity search is duplicate detec-
tion [8, 14, 19]. For a given set of records, the task is to
determine all duplicate entries, i. e., all sets of records that
refer to the same real-world entity. For similarity search,
too, the problem is to find similar entries, but only for one
query object. Duplicate detection is often run in a batch
processing job, while similarity search usually requires an
answer very fast for a satisfying user experience.

Christen et al. [6] propose to determine similar records be-
fore inserting a new record into a database, thus preventing
the insertion of duplicate records beforehand. Similar to our
approach, they exploit a set of similarity indexes. To deter-
mine the overall similarity, the authors propose to calculate
the sum of the base similarity values, while our approach
allows to use any combination technique as the composite
similarity measure. Our approach tackles the main question
that remains unanswered: Which similarity indexes should
be created and queried with which thresholds?

A common approach to duplicate detection is blocking,
i. e., similar records are grouped into blocks, and then all
records within each block are compared to each other [17].
The problem of finding the best blocking criterion is simi-
lar to that of finding the best query plan for similarity in-
dexes. In our setting, the blocking predicates are similar to
the attribute predicates for which we optimize the thresh-
olds. Michelson and Knoblock suggest a machine learning
approach to learn blocking schemes, i. e., selected attributes
for blocking as well as similarity measures [13]. Bilenko et
al. determine an optimal blocking criterion by modeling the
problem as red-blue set cover problem [1]. Both approaches
can only decide whether the predefined blocking attribute
candidates are contained in the optimal blocking criterion or
not. In contrast to these approaches, our proposed algorithm
supports the optimization of thresholds involved in similar-
ity predicates (not only boolean contained/not-contained de-
cisions). By exploiting the monotonicity property of these
thresholds and defining neighborhoods of query plans, we
can quite efficiently traverse the threshold space. Chaud-
huri et al. determine duplicates by calculating the union
of similarity joins [4]. They reduce the problem of finding
the best similarity join predicate to the maximum rectan-
gle problem. In a second step, they union the optimal join
predicates. We handle both aspects in a unified approach
of finding the best disjunction of conjunctions of similarity
predicates. Their approach requires the specification of neg-
ative points (in their case: non-duplicates) as training data,
which is not helpful in the similarity search setting (where
for a given query almost all records are irrelevant and thus
negative examples). As we cannot rely on these negative
examples in our setting, we need a more sophisticated cost
estimation. With a more expensive evaluation function for
query plans, we also need a suitable algorithm for efficiently
traversing the solution space (and saving the evaluation of
unpromising query plans).

3. PROBLEM DEFINITION
In this section, we define basic notations for composed

similarity measures and the problem to optimize a query
plan for efficient search with them (during the filter phase).

3.1 Composed Similarity Measures
We follow the common and proven notion of defining in-

dividual similarity measures for different attributes and at-
tribute types; for instance, dates are compared differently
than names or addresses. These individual similarities are
subsequently combined to define the global similarity of two
records.

We first split the problem of measuring the similarity of
two records into smaller subproblems. We define a set of
base similarity measures simp(r1, r2), each responsible
for calculating the similarity of a specific attribute p of the
compared records r1 and r2 from a set R of records that is
a subset of a universe U of possible records. In our use case,
we have the functions simFirstName, simLastName, simBirthDate,
simCity, and simZip. All base similarity measures can be cho-
sen independently. For example, we could use Jaro-Winkler
distance for simFirstName [19], the relative distance between
dates for simBirthDate, and numeric difference for simZip. We
assume the domain of the similarity measures to be between
0 and 1, with 1 representing identity and 0 dissimilarity of
the compared record parts:

simp : (U × U)→ [0, 1] ⊂ R (1)

A composed similarity measure uses the base similar-
ity measure to derive an overall similarity judgement. For
example, a weighted sum of the base similarity measures is
one composition technique. Other techniques involve ma-
chine learning approaches, such as logistic regression, deci-
sion trees, and support vector machines. Learnable similar-
ity measures have been addressed by several researchers [2,
18]. We make no assumptions whatsoever on the composed
similarity measure other that it is composed of base similar-
ity measures.

3.2 Query Plan Optimization
A base similarity measure predicate simp(q, r) ≥ φp cov-

ers all records r ∈ R for which the similarity to the query
record q ∈ U calculated with the base measure simp is at
least φp. In the following, we abbreviate this predicate to
p ≥ φp and refer to base similarity measure predicates as
attribute predicates (due to our running example, in which
each base similarity measure covers one attribute).

A query plan template is a combination of attribute
predicates (with yet unassigned threshold variables) with
the logical operators conjunction and disjunction. We re-
quire query plan templates to be in disjunctive normal form
(DNF), since this form is popular [1, 4] and easy to un-
derstand and modify. Note that all logical combinations of
attributes can be expressed in DNF. A query plan template
combines N attribute predicates and has the form:∨∧

pi ≥ φpi (2)

with 1 ≤ i ≤ N,∀i : 0 ≤ φpi ≤ 1.
Once all threshold variables in a query plan template are

assigned a value, we call this a query plan. An example for
a query plan that covers all records with similar FirstName



and Zip or LastName and BirthDate is the following:

(FirstName ≥ 0.9 ∧ Zip ≥ 1.0)

∨ (LastName ≥ 0.8 ∧ BirthDate ≥ 0.85)

To evaluate query plans, we define different performance
metrics. Given a set of positive training examples for query/
result record pairs, the completeness comp(qp) of a query
plan qp is the expected proportion of correct query/result
record pairs that are covered by qp. The costs costs(qp) of
a query plan qp is the expected average number of records
in R that are covered by qp. Completeness and costs are
described and analyzed in detail in Sec. 4.

Given a set R of records and a cost threshold C, the query
plan optimization problem is to find the query plan qp
that maximizes comp(qp) with costs(qp) < C. We analyze
problem properties and describe our approach to solve the
problem in Sec. 5.

4. EVALUATING QUERY PLANS
In this section, we discuss how we evaluate a query plan.

We evaluate based on two dimensions: (1) Completeness:
How many matches can be found with this query plan?
(2) Cost: How large is the cardinality of an average query
result with this query plan? In general, we want to maxi-
mize completeness within an upper bound for cost. How to
find such best plans is topic of the following Sec. 5.

4.1 Completeness Estimation
For a given query plan, we want to estimate how complete

the results will be. We express completeness of a query plan
as the proportion of query/result record pairs from a set of
positive training record pairs that are covered by the plan
(i. e., for which the similarity of query and result records are
above the query plan thresholds). Completeness is thus the
probability that a correct result to a query will be found
with the query plan. In the following, we describe how to
gather training data and estimate completeness with it.

4.1.1 Gathering Training Data
To estimate the completeness a query plan, we need a set

T ⊆ U × U of positive training examples for query/result
record pairs. There are two main options to gather training
data: (1) We have a (preferably large) set of queries with
correct answers. (2) We use virtual training data.

(1) Real training data: In our use case, we have a set
of 2m queries, most of them with results manually labeled
as correct. This is the ideal situation, where we can rely on
a manually labeled set of query/result record pairs.

(2) Virtual training data: The first case relies on man-
ually determining sets of query/result record pairs. Since
this is often a costly task, one can also create virtual training
data. For one training instance, our only concern is whether
the overall similarity measure judges that the instance is rel-
evant based on its base similarity values. Thus, we can make
up base similarity values (without creating a real query/re-
sult pair). We can determine whether these base similarity
values would lead to a correct match (if the composed sim-
ilarity measure computes an overall similarity value above
φOverall). If yes, we have created a positive training instance
without the need for real training data. We leave for future
work the definition of an algorithm that efficiently traverses
the space of possible base similarity values. Inspiring work

comes from the domain of learning logical expressions in
DNF with membership-query algorithms [12].

4.1.2 Estimation
With positive training instances T ⊆ U × U at hand, we

can estimate completeness of a query plan qp. The function
coversqp(q, r) evaluates to true iff the pair (q, r) ∈ U ×U is
covered by qp (i. e., if the query plan predicates are fulfilled).

comp(qp) =
|{(q, r) ∈ T | coversqp(q, r)}|

|T | (3)

Our basic algorithm to calculate comp(qp) for given qp
and T is very simple: We iterate over the list T and count
all query/result record pairs that are covered by qp. Since
there is a potentially large amount of base similarity value
combinations that are checked multiple times, we speed up
the basic algorithm with a more efficient data structure: For
each distinct base similarity value combination, we save its
count, thus eliminating all “duplicate” combinations. In ad-
dition, we further reduce the number of value combinations
by rounding to two decimal places. Distinct combinations
with the same rounded combinations are accumulated. In
our use case, we can reduce the amount of value combina-
tions to be checked from 2.0m to 4.4k (a reduction rate of
99.8 %).

4.2 Cost Estimation
The second evaluation criterion for query plans is the in-

volved costs. We need to estimate how many result records
we can expect on average when applying a query plan to the
entire data set.

For cost estimation we do not require training data, be-
cause we only exploit information from the distribution of
attribute values in the complete record set R. A naive ap-
proach to estimate query plan costs would be to sample a
set S ⊆ R of records, exactly determine the costs for this
sample by comparing each record in S to each record in R,
and then average the determined costs. In our use case,
exactly determining costs for one record would take several
hours. As we need to analyze a large set of query plans
during the query plan optimization phase, we need a more
efficient procedure. Thus, we precalculate attribute similar-
ity histograms with which we can quickly estimate costs of
complete query plans.

In the following, we first describe how we derive similar-
ity histograms for determining the amount of similar records
regarding one attribute. After that, we explain how to com-
bine attribute costs to estimate costs for query plans involv-
ing multiple attributes.

4.2.1 Similarity Histograms
We want to estimate the cardinality of the predicate p ≥ φp,

i. e., how many records in our database have at least a simi-
larity of φp regarding the attribute p with respect to a ran-
dom query? To derive a generic query plan, this estimation
needs to be independent of specific values. We rather want
a general estimation for each attribute.

To achieve this, we first create a similarity histogram for
several values of the attribute. For each analyzed value,
we calculate the similarity to all other values of the at-
tribute. Figure 2 shows a distance histogram for the last
name “Lange”. A reading example is: For LastName ≥ 0.9,
there are 172,000 records with a last name with minimum



similarity 0.9 to “Lange”. The solid line is the cumulated
number of similar values up to a total of 66m records with
a similarity of at least zero.
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Figure 2: Similarity histogram for attribute LastName
for value “Lange”

We then calculate the average of the created similarity his-
tograms. For each possible similarity, we average the mea-
sured numbers of records with similar values. The resulting
similarity histograms for our attributes are shown in Fig. 3.
For the attributes FirstName, LastName, and City, we can
see rather smooth curves. The curves for BirthDate and Zip
are stepped, because all values have an equal length, and
only few errors can occur. These curves allow estimations
such as “for FirstName ≥ 0.7, we can expect 500k records
with similar values, on average”.
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Figure 3: Average similarity histograms for all at-
tributes

An open question is how to choose appropriate sample val-
ues to create these histograms. In general, we recommend
using a set of randomly chosen values. For a worst case es-
timation of the costs, it may make sense to include more
frequent values in the sample set. More frequent values will
themselves lead to higher costs and also have more similar
values (as we empirically validated). Regarding the sample
size, we empirically determined that a set of 100 randomly
chosen elements is sufficient in our use case (for a popula-
tion of 66m elements, a confidence interval of ±10%, and a
probability of 95%, 96 elements are necessary).

4.2.2 Combining Attribute Estimations
Using the similarity histograms, we are able to estimate

the cardinality of a complete query plan. In a nutshell, we
estimate the costs of a query plan qp for a random query

q ∈ U by estimating the probability that a randomly chosen
element r ∈ R is covered by qp. We multiply the probability
with the cardinality of the complete record set to determine
expected average costs:

costs(qp) = |R| ∗ P (coversqp(q, r) | q ∈ U, r ∈ R) (4)

By calculating costs using probabilities, we are able to easily
handle conjunctions and disjunctions in the query plans with
probability theory.

In the following, we abbreviate the probability that a ran-
domly chosen element r ∈ R is covered by an attribute
predicate p ≥ φp in P (coversp≥φp(q, r) | q ∈ U, r ∈ R)
as P (p ≥ φp) and any conjunctions and disjunctions accord-
ingly.

We first estimate the probability that an element is in
the set of records determined with a conjunction, such as
LastName ≥ 0.9 ∧ City ≥ 0.95. For two attributes a and b
with thresholds φa and φb we want to estimate the proba-
bility P (a ≥ φa ∧ b ≥ φb). To resolve the joint probability,
we distinguish between attributes that are statistically de-
pendent or independent, for ease of calculation. (Although
we would theoretically be able to calculate all joint distri-
butions, this would consume a significant amount of time
and space.) In our case, we observe that City and Zip are
dependent and that each attribute is dependent on itself
(this is relevant if a conjunction contains several predicates
on the same attribute); all other attributes are independent
from each other. If dependent attributes are not known in
advance, these can be determined with statistical indepen-
dence tests such as the χ2-test. To estimate joint proba-
bilities of dependent attributes, we assume the worst case:
the two predicates completely overlap, i. e., the records cov-
ered by one predicate are completely covered by the second
predicate. Thus, we estimate the probability of the pred-
icates’ conjunction as the minimum of the probabilities of
two predicates (and accordingly for three or more overlap-
ping predicates). For statistically independent attributes,
we simply calculate the product of the predicate probabili-
ties. Thus, for two predicates we have:

P (a ≥ φa∧b ≥ φb) =


P (a ≥ φa)P (b ≥ φb),

if a and b are independent,

min(P (a ≥ φa), P (b ≥ φb)),
else

(5)
For more than two attributes, we accordingly resolve joint

probabilities of statistically dependent attributes and then
calculate the product of the remaining predicate probabili-
ties of independent attributes.

With the similarity histograms, we can estimate the indi-
vidual predicate probabilities as:

P (p ≥ φp) =
|{r ∈ R|p ≥ φp})|

|R| (6)

Note that the randomness regarding queries is already cov-
ered by the attribute costs estimations. As described above,
for each attribute we selected several values from R as ex-
ample queries and averaged their real costs.

In a final step, we estimate the probability of a disjunction
of conjunctions. For the union of two sets, we can calculate
the cardinality as the sum of the cardinalities of the two sets
less the intersection of them. The same applies for probabil-
ities. For example, we want to estimate P (a ≥ φa ∨ b ≥ φb)



and have:

P (a ≥ φa ∨ b ≥ φb) = P (a ≥ φa) + P (b ≥ φb) (7)

−P (a ≥ φa ∧ b ≥ φb)

The remaining probabilities contain only conjunctions and
can be estimated as described above. For the general case
of n conjunctions ci in the disjunction

∨n
i=1 ci, the principle

of inclusion and exclusion gives us:

P

(
n∨
i=1

ci

)
=

n∑
k=1

(−1)k−1
∑

T⊂{1,...,n},
|T |=k

P

(∧
t∈T

ct

)
(8)

With these estimations, we can accurately and efficiently
estimate the costs of any query plan in DNF.

4.3 Evaluation of Cost Estimation
To analyze the quality of our cost estimation model, we

compare estimated and observed costs for a set of query
plans templates. We generated all query plan templates
with one or two disjunctions of conjunctions that involve
two or three attributes each. We required the conjunctions
to contain different sets of attribute, while overlapping of
attributes in the conjunctions was allowed. Overall, we an-
alyzed 210 query plan templates.

We randomly selected 100 queries as test objects for which
we can quickly count the exact number of records with the
values given in the query using an inverted index. With
this method, we can count exact matches (i. e., all similarity
thresholds in the query plans are set to 1.00). This allows
the evaluation of the quality of the probability model. (For
the quality of the similarity histograms, we rely on statis-
tical guarantees that we have enough training examples for
calculating average frequencies.)

In Fig. 4, we show estimated and average observed costs
for the analyzed query plans. Optimal estimations would re-
sult in points arranged at a diagonal line with y = x (shown
as model line in the graph). We observe that our estimations
are quite close to the observed frequencies for all considered
plans. Our cost model, albeit not perfectly accurate, seems
to be a good estimator for average costs of different query
plans.

5. QUERY PLAN OPTIMIZATION
Based on the performance metrics defined in the previous

section, we want to find the best query plan, i. e., the plan
with highest completeness below a cost threshold. We it-
erate over the set of all possible query templates and then
optimize thresholds for each query plan template. We thus
have one optimal query plan per query plan template. From
these query plans, we can simply select the overall best query
plan.

In the remainder of this section, we discuss the problem of
optimizing the thresholds of one query plan template. For a
given query template containing n attribute predicates, each
attribute predicate’s threshold can be set to one of v values.
Thus, the complexity of a complete search is O(vn), i. e.,
exponential in terms of attribute predicates. For example,
for 6 attribute predicates, each with 101 possible threshold
values (0.00 to 1.00), there are 1016 ≈ 1 trillion possible
query plans. As we need to calculate both completeness and
costs for each plan to be analyzed, this large set of possible
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Figure 4: Comparison of observed and estimated
frequencies for the 210 generated query plans. Ex-
ample: For the query plan BirthDate ≥ 1∧City ≥ 1, our
estimation is 22 records, and the observed average
frequency is 25 records.

plans is infeasible to be analyzed completely; thus, more
efficient algorithms are required.

We begin this section with observations regarding the dis-
tributions of completeness and costs and then discuss algo-
rithms for exact and approximative optimization of query
plans.

5.1 Observations
To better understand the problem space, we first analyze

the distribution of completeness and costs. For the exem-
plary query plan template

FirstName ≥ φFirstName ∧ LastName ≥ φLastName

we evaluated all possible query plans, i. e., all possible thresh-
old values for φFirstName and φLastName. We show the resulting
comparison distribution in Fig. 5 and the cost distribution
in Fig. 6.

In the cost distribution diagram, we can see that query
plans with lower thresholds have higher costs. This is not
surprising, as lower thresholds result in at least as many or
more covered records as a higher threshold. For decreasing
thresholds, we observe that costs grow exponentially. We
can especially see that only few query plans in the upper
right corner have acceptable costs; as we will see later, more
complex plans with disjunctions of conjunctions in the query
plan templates achieve better results (i. e., higher complete-
ness with lower costs).

The distribution of completeness shows that lower thresh-
olds result in higher completeness. While this insight is also
not surprising, the growth of completeness is quite different
from the cost distribution. Already with the highest thresh-
olds (i. e., only exact matches are found), we can cover the
vast majority of the 2m training query/result record pairs.
The increase in found matches is high for higher thresholds,
but for lower thresholds, the increase dwindles. This con-
firms our intuition: The last percentages of completeness
(recall) are the most difficult to resolve.

The monotonicity observations can be generalized for any
combination of similarity measures. Any query plan with
thresholds (φx, φy) has at least the costs and the complete-
ness of any query plan with thresholds (φx′ , φy′) with φx′ <
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Figure 5: Distribution of costs for query plan tem-
plate FirstName ≥ φFirstName ∧ LastName ≥ φLastName
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Figure 6: Distribution of completeness for query
plan template FirstName ≥ φFirstName ∧ LastName ≥
φLastName

φx or φy′ < φy. Note that Chaudhuri et al. make similar
observations and also exploit the monotonicity property in
their algorithm [4]. In our case we do not know complete-
ness and cost of the query plans in advance, so we solve a
different problem with an entirely different approach.

From the cardinality distribution diagram, we can derive
the space of all valid query plans, i. e., all plans with costs
at most as high as the predefined cost threshold C. For the
two-dimensional case, we can think of a line that separates
all valid query plans from the invalid ones. From the mono-
tonicity observations, we can infer that such a line always
exists and that we can ignore any combinations below this
line. Thus, we consider only the combinations above this
line without discarding valid combinations. In our following
algorithms, reaching this line will be regarded as stopping
criterion.

5.2 Top Neighborhood Algorithm
An described above, an algorithm that analyzes all possi-

ble query plans for a query plan template is infeasible. Keep
in mind that we do not know completeness and cost for any
query plan in advance. We need an algorithm that efficiently
navigates through the solution space: The algorithm should
only evaluate as few query plans as possible and determine
an overall good solution.

The general idea of the top neighborhood algorithm is

to start with the plan with highest thresholds (in our case,
all thresholds are set to 1, which corresponds to the top-
right corner of Figs. 5 and 6), then follow promising plans
in its neighborhood (the top plans), until we reach the valid
query plan separation line. The result is then the plan with
highest completeness (and lowest cost, respectively) found
so far. In the following, we describe the algorithm in greater
detail.

The start plan must be the one with highest thresholds,
since any other plan for starting could make it impossible to
find the best solution due to our downwards search approach.

We define the neighborhood of a plan to help us navigate
the threshold space. A query plan qp has a neighborhood
N(qp) that contains all query plans that can be constructed
by lowering one thresholds of qp by one step (e. g., by 0.01).
For example, the neighborhood of a plan with two thresholds
φa and φb has two elements:

N(a ≥ φa ∧ b ≥ φb) = {a ≥ φa − 0.01 ∧ b ≥ φb,
a ≥ φa ∧ b ≥ φb − 0.01}

The neighborhood thus defines all possible directions to tra-
verse the solution space given one query plan. We define
the neighborhood only for lower thresholds and thus higher
completeness (and also higher costs), since we traverse the
threshold space from higher to lower thresholds.

In each iteration of our algorithm, we have a window
W = {q1 . . . qn} of n query plans that are currently regarded.
We extend the neighborhood concept to windows by defin-
ing the set of all neighborhood plans for the plans in W as
N(W ) =

⋃
qp∈W N(qp). We then select a subset of these

plans: the t plans with highest completeness (and lowest
costs, if there are several plans with equal completeness; if
there are more than t eligible plans, a random selection is
made). We call this set the top t neighborhood Tt(W ).
Only plans with costs below the cost threshold C are con-
tained in this set.

The cost threshold C also determines the stopping cri-
terion of our algorithm. If the top t neighborhood contains
only plans with costs above C, then the algorithm terminates
and returns the best plan found so far. Otherwise, the algo-
rithm continues with a new iteration by setting W := Tt(W )
(t is thus also the maximum window size).

Note that the algorithm is optimal regarding the number
of times a query plan is evaluated. In each iteration, the
window contains only plans with the same amount of ap-
plied threshold lowering steps (compared to the initial plan).
Since the union of the generated plans is calculated before
evaluating them, no query plans are evaluated more than
once.

In Fig. 7, we illustrate one iteration of the algorithm by
means of an exemplary query plan template with two thresh-
olds. Note that the illustration is similar to the measured
completeness distribution in Fig. 6. The diagram shows the
search space of all valid plans, i. e., all plans with accept-
able costs (which we do not know in advance). The current
window consists of two plans. The neighborhood of the win-
dow contains three plans, two of which (with comp=38 ) are
selected as the top 2 neighborhood and thus form the new
window for the next iteration.

Exact algorithm. The parameter t allows us to turn the
approximative top neighborhood algorithm into an exact
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Figure 7: Application of top neighborhood algo-
rithm to exemplary completeness estimations (in
percent) for two thresholds φX, φY in a query plan
template

algorithm for finding the optimal query plan. By setting
t = ∞, we do not limit the window size and thus evaluate
all valid query plans. Still, we avoid the evaluation of a
number of query plans: those with costs above C. Regard-
ing the search space coverage, this exact algorithm is thus a
better approach than a brute force search over all possible
query plans. A disadvantage is the higher memory require-
ment, since all evaluated query plans of an iteration need to
be kept in memory.

Complexity. The complexity of the top neighborhood al-
gorithm depends on the number of necessary iterations as
well as the number of generated query plans per iteration. A
worst case estimation for the number of necessary iterations
assumes that all thresholds need to be lowered to their low-
est possible value. The number of iterations is thus limited
by the number of all possible thresholds of all predicates of
the query plan template. The number of generated plans per
iteration is determined by the top neighborhood size (and
thus maximum window size) t and the number of predicates
in the query plan template (for which one threshold can be
lowered in an iteration). Thus, the complexity of the top
neighborhood algorithm is linear in the following parame-
ters:

• the number of predicates in the query plan template

• the number of possible thresholds of all predicates

• the top neighborhood size t

5.3 Evaluation
To evaluate the top neighborhood algorithm, we analyzed

the behavior of the algorithm on our data set with 2m (cor-
rect) query/result record pairs. We ran the algorithm for
three randomly chosen query plan templates with different
numbers of predicates and varied the parameter t. Figure 8
shows the results. For comparison, the first line of each ta-
ble shows the results for exact matching (i. e., all thresholds
are set to 1) as baseline, and the last line contains the result
of the exact version of our algorithm (with t = ∞). We re-
fer to the result of the exact algorithm as the optimal plan,

since no better plan can be found with the given query plan
template.

For all analyzed templates, a small value for t is sufficient
to find a plan with near-optimal completeness (only a few of
the 2m records are missing). For all analyzed values of t, we
can see a significant improvement over the baseline results
for exact matching. In general, a larger value for t results
in larger completeness. The numbers of evaluated query
plans also confirm the linearity of the algorithm regarding
t and the query template complexity (i. e., the number of
predicates as well as the number of thresholds per predicate;
this cannot be distinguished in this experiment).

With growing query plan templates (i. e., more predicates),
the results become more complete, since the template is
more expressive. In general, the thresholds of a more com-
plex predicate are higher in order to satisfy the cost con-
straint.

The more complex the query plan, the larger the number
of saved query plan evaluations: For the template with six
predicates, we consider only less than a percent of the valid
query plans. For all templates, we only evaluate a fraction of
all possible plans. Even the exact version of our algorithm
with unlimited t considers only 16% of the possible plans
for the small template and 0.6% for the large template. For
the large template and t = 200, still only less than a ten
thousandth of all possible plans have been evaluated.

To summarize, the results show that the top neighborhood
algorithm determines a near-optimal plan while evaluating
only a fraction of the possible query plans. We have mea-
sured similar results for other query plan templates.

6. REAL-WORLD SIMILARITY SEARCH
In addition to the experiments for individual aspects of

our approach in earlier sections, we also ran an experiment
on the complete data set with the overall optimal query plan.

To determine the overall optimal query plan for our data
set, we used the set of query plan templates from the experi-
ment in Sec. 4.3. This set contains all query plan templates
with one or two disjunctions of conjunctions that involve
two or three attributes each. We required the conjunctions
to contain different sets of attributes, while overlapping of
attributes in the conjunctions was allowed. For each of the
210 query plan templates, we ran our top neighborhood algo-
rithm with t = 100 (a window size that results in acceptable
runtime of our algorithm) and C = 1000 (a cost threshold
that is acceptable for our use case). We selected the overall
best query plan for this experiment.

As test queries, we randomly selected 50,000 queries from
our test data set. We ran these queries with different search
settings and show the results (completeness and cost as de-
fined in Sec. 4) in Table 1.

The first line shows a basic result when searching for only
those records where all attribute values of the query exactly
match the values in the record. This shows that 87 % of the
queries are “easy” to answer, since the corresponding correct
matches in the record set do not contain any differences to
the query. The costs for queries with this search settings are
quite low, since there is usually at most one such exactly
matching record.

We then tried to answer the same set of queries with the
query plan that turned out to be optimal regarding com-
pleteness (according to our top neighborhood algorithm).
We first did an exact search with this plan (line 2 in Ta-



t Evaluated Fraction of Fraction of Completeness
query plans valid plans all plans

Baseline 1 (all thresholds set to 1) 0.310% 0.049% 93.1599%

5 173 53.560% 8.543% 98.7725%
10 276 85.449% 13.630% 99.0643%
20 323 100.000% 15.951% 99.0643%

∞ 323 100.000% 15.951% 99.0643%

(a) Results for query plan template with two predicates (A ∧B). The number of possible query plans is 2,025.

t Evaluated Fraction of Fraction of Completeness
query plans valid plans all plans

Baseline 1 (all thresholds set to 1) 0.004% 0.000% 99.3322%

5 573 2.438% 0.171% 99.9154%
10 818 3.480% 0.245% 99.9619%
20 1,802 7.666% 0.539% 99.9604%
50 5,364 22.819% 1.605% 99.9826%

100 9,399 39.984% 2.813% 99.9861%
200 16,825 71.574% 5.036% 99.9880%

∞ 23,507 100.000% 7.035% 99.9905%

(b) Results for query plan template with four predicates ((A ∧B) ∨ (C ∧D)). The number of possible query plans is 334,125.

t Evaluated Fraction of Fraction of Completeness
query plans valid plans all plans

Baseline 1 (all thresholds set to 1) 0.000% 0.000% 99.3633%

5 1,335 0.033% 0.000% 99.9275%
10 2,657 0.065% 0.000% 99.9786%
20 5,007 0.122% 0.001% 99.9786%
50 11,440 0.280% 0.002% 99.9845%

100 20,672 0.505% 0.003% 99.9892%
200 37,141 0.908% 0.005% 99.9936%

∞ 4,092,574 100.000% 0.605% 99.9994%

(c) Results for query plan template with six predicates ((A ∧B) ∨ (C ∧D) ∨ (E ∧ F )). The number of possible query plans is
676,603,125.

Figure 8: Evaluation results of top neighborhood algorithm for different query plan templates

Search setting Completen. Cost

(1) Exact search with 87.28% 0.8
all attributes

(2) Exact search with 99.47% 37.8
overall best query plan

(3) Optimized similarity 99.98% 551.7
search with overall best
query plan

(4) No filtering 100.00% 66m

Table 1: Search performance of different search set-
tings

ble 1). In comparison to the first search setting where all
attribute values were required to exactly match, this plan
only requires that one of two conjunctions (of two attributes
each) match. The result shows that the majority of the re-
maining records can be found with this setting, but that the
average costs are also higher for this setting (again compared
to search setting (1)).

By applying the top neighborhood algorithm, we opti-

mized the thresholds of the query plan. Line 3 in Table 1
shows that we achieve even better results than for search
setting (2). The completeness is near 100 %. As already
pointed out, the last couple of records are the most difficult
to find. This query plan thus has higher costs, but they are
still below the cost threshold of C = 1000.

For comparison, we also show that comparing the query
to each record in our data set (line 4 in Table 1) would result
in perfect completeness, but also in costs of 66m, which is
clearly infeasible. Our optimized query plan exploits the
cost limit best and is thus an appropriate choice for efficient
similarity search in the given data set.

7. CONCLUSION AND OUTLOOK
We introduced a novel approach to efficient similarity search

for composed similarity measures. We showed how to effi-
ciently compute completeness and costs, two important per-
formance metrics for query plans based on a set of similarity
indexes. The resulting trade-off between completeness and
costs has been solved with the approximative top neighbor-
hood algorithm. We showed that the algorithm efficiently
determines near-optimal query plans for real-world data.
Further applications. Our proposed algorithm for op-
timizing query plans can also be adapted to determine a



good blocking criterion. Blocking is a simple approach to
improve efficiency of duplicate detection [17]. Another ap-
plication scenario is the creation of a similarity index for an
attribute predicate simp ≥ φp: We create blocks of similar
values of the attribute p and then compare only the values
in the blocks with each other. For each attribute value v1,
we store all values v2 with simp(v1, v2) ≥ φp in a sorted list
for efficient access. To optimize this process, a blocking cri-
terion needs to be defined with which as many similar values
and as few dissimilar values as possible are within each block
and are thus compared. The completeness of the blocking
criterion should be high, and the costs should be low, similar
to the formulation of the query plan optimization problem.

Our algorithm can be applied to this setting as follows: In-
stead of query plan templates, our algorithm now optimizes
blocking criterion templates that may also include boolean
blocking predicates. An example for a blocking criterion is:

(CommonPrefix ≥ 3) ∨ (CommonNGrams ≥ 2)

This blocking criterion means that in a first blocking run, all
values with a common prefix of length 3 are compared, and
in a second blocking run, all values with a at least two com-
mon n-grams are compared (this approach is called multi-
pass blocking [10]). Blocking criteria may also contain con-
junctions, similar to query plans.

Costs of a blocking criterion are calculated as the average
number of similar values for a given “query” value (to create
a complete similarity index, all values will be “queried” for
similar values). Similar to the description for query plans
in Sec. 4.2, we can sample some values and calculate the
average number of values covered by the blocking criteria
for an appropriate range of blocking predicate thresholds.
To create training data for completeness estimation, we can
sample some attribute values and then compare these to all
other values. In contrast to the similarity search problem
(where there is usually only a very small set of objects similar
to a query), there is usually a large set of values in the same
block. The top neighborhood algorithm can work with these
estimations; it starts with a very rigorous blocking criterion
(with high thresholds and thus small blocks) and then lowers
the thresholds until a predefined cost threshold is reached.
Future work. We leave for future work the following re-
search directions:

• Frequency-adaptive query plans: We aim to develop
a framework that optimizes query plans at query time
with information about the frequencies of the attribute
values in the query. Based on this information, a good
query plan needs to be selected very fast.

• Virtual training data: To apply our algorithm to data
sets without sufficient training data, we want to de-
velop an algorithm for generating training data based
solely on the composite similarity measures.
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