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Abstract. Extract-Transform-Load (Etl) tools are used for the cre-
ation, maintenance, and evolution of data warehouses, data marts, and
operational data stores. Etl workflows populate those systems with data
from various data sources by specifying and executing a DAG of trans-
formations. Over time, hundreds of individual workflows evolve as new
sources and new requirements are integrated into the system. The main-
tenance and evolution of large-scale Etl systems requires much time and
manual effort. A key problem is to understand the meaning of unfamiliar
attribute labels in source and target databases and Etl transformations.
Hard-to-read attribute labels in schemata lead to frustration and time
spent to develop and understand Etl workflows.

We present a schema decryption technique to support Etl developers
in understanding cryptic schemata of sources, targets, and Etl trans-
formations. For a given Etl system, our recommender-like approach
leverages the large number of mapped attribute labels in existing Etl
workflows to produce good and meaningful decryptions. In this way we
are able to decrypt attribute labels consisting of a number of unfamil-
iar few-letter abbreviations, such as UNP PEN INT, which we decrypt to
UNPAID PENALTY INTEREST. We evaluate our schema decryption approach
on three real-world repositories of Etl workflows and show that our ap-
proach is able to suggest high-quality decryptions for cryptic attribute
labels in a given schema.
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1 Introduction

Etl systems are visual programming tools that allow the definition of complex
workflows to extract, transform, and load heterogeneous data from one or more
sources into a target database. Designing and maintaining Etl workflows re-
quires significant manual work, e.g., the effort is up to 70% of the development
cost in a typical data warehouse environment [8]. Etl workflows are stored in
repositories to be executed periodically, e.g., daily or once a week. In the course
of a complex data warehousing project up to several hundred Etl workflows
are created by different individuals [1] and stored in such repositories. More-
over, the created Etl workflows get larger and more complex over time. Cryptic
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schemata are a well-known problem in the context of data warehousing. The
main reason for cryptic schemata is the tendency to assign compact attribute
labels consisting of a number of domain-specific abbreviations and acronyms.

Example 1 (Cryptic Attribute Labels). Consider a repository of Etl workflows
to extract, transform, and load data of an Oltp system with attribute labels
from the well-known Tpc-e schema. With the to-be-generated decryption pairs
〈CO ≈ COMPANY〉 and 〈SP ≈ STANDARD, POOR〉, it would be easier for a developer
who is unfamiliar with this schema to identify the semantics of attribute labels,
such as CO SP RATE.

Manually finding decryption pairs is ineffective and time consuming. To illus-
trate this problem, consider the attribute label CO SP RATE from the previous
example. As this attribute label is too specific to have a mapped attribute la-
bel as decryption in the given Etl repository, the developer has to look up
all pairs of mapped attribute labels that give a hint on an appropriate decryp-
tion of tokens CO and SP. With over ten thousand of pairs of mapped attribute
labels in the evaluated Etl repositories, manual schema decryptions becomes
infeasable. Readers are referred to our technical report [2] for a comprehensive
overview of schema and Etl workflow characteristics in the given real-worldEtl
repositories.

In this paper, we regard Etl workflows as transformation graphs of the well-
known model introduced by Cui and Widom [7]. This model is generally appli-
cable to Etl workflows from common Etl tools: An Etl workflow is a directed
acyclic transformation graph (DAG) and the topologically ordered graph struc-
ture determines the execution order of the connected transformations. In Etl,
most transformations are a generalization of relational operators supporting mul-
tiple inputs and outputs. Two transformations are connected in the graph if one
transformation is applied to the output obtained by the other transformation.
Accordingly, attributes in the output schema of a transformation are connected
to the corresponding attributes in the input schema of the subsequent trans-
formations. We leverage these connected attribute labels in the existing Etl
workflows as valuable source of information for automated schema decryption.
We have observed that connected attributes with different labels often contain
reasonable decryptions – often not for the entire label but for tokens within the
labels. As cryptic attribute labels are often too specific to have a connected at-
tribute label as decryption in the given Etl repository, the problem is to pair
portions of the cryptic attribute label with portions of more descriptive attribute
labels to produce reasonable decryptions.

Example 2 (Connected Attribute Labels). Consider the Etl repository from Ex-
ample 1. Within some Etl workflows, extracted source attributes were renamed
in the succeeding transformation to provide a better readability. For exam-
ple, the attribute label CP COMP CO ID was renamed to COMPETITOR COMPANY ID

and CO CEO to COMPANY CEO. Thus, labels CO CEO and COMPANY CEO and labels
CP COMP CO ID and COMPETITOR COMPANY ID are connected, respectively.
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Fig. 1. An exemplary ETL workflow

As Etl tools allow the developer to drag-and-drop attribute labels from output
to input schemata, there are many connected attributes with equivalent labels.
But in large Etl repositories there is also a large number of connected attributes
having different labels. There are several reasons for this, such as (1) source-,
lookup-, and target-schemata used in an Etl workflow are often created in-
dependently and thus contain different attribute labels; (2) a data warehouse
schema based on instances of cryptic source schemata uses attributes consisting
of more descriptive tokens to provide a better readability; (3) copy-and-paste of
entire transformations is a common practice in Etl development, which results
in Etl sub-workflows connected to intermediate attributes with different labels.

In this paper, we will focus on attribute pairs between connected transforma-
tions for schema decryption. We ignore the connections among attribute labels
within a single transformation, because a developer usually avoids using syn-
onyms within a single transformation. Our approach overcomes the weaknesses
in existing approaches, such as string and schema matching techniques. These
methods lead to poor decryption results due to the use of domain-specific ab-
breviations, acronyms, and tokens in Etl schemata. Moreover, it is infeasible
to exploit data redundancies between different schemata to find pairs of corre-
sponding attribute labels: The data created in the intermediate Etl processing
steps is not persisted and we lack this helpful information. Re-executing and
storing data from intermediate processing steps is an unrealistic assumption in
a typical data warehouse scenario.

2 Using Connected Attributes for Decryption

To illustrate our approach upfront we introduce a toy example of an Etl work-
flow in Fig. 1. The Etl workflow loads company data into a dimension table
of a data warehouse. The extracted source data is the input of a lookup trans-
formation. There, a company record is assigned a country from a lookup table
using the company identifier as lookup key. Finally, the data is loaded into the
data warehouse (DWH).

We observe that (1) attributes can be tokenized based on special characters.
We also observe that (2) no two connected attributes have the same label. This
is a typical situation if source, lookup, and target schemata were developed inde-
pendently or for different purposes. Finally, we observe that (3) some attributes
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use abbreviations that appear in extended form in connected attribute labels.
These observations were made repeatedly in our analysis of three real-world Etl
repositories, each with up to several hundred Etl workflows containing thou-
sands of connected attribute pairs with different labels.

Our decryption approach finds reasonable decryptions within the given Etl
repository by making use of all three observations: For each Etl workflow in
the Etl repository, we first break all labels into tokens, based on case-change or
non-alphabetical separators. In the example, we tokenize using the underscore
as separator. The second observation allows us to identify attribute labels with
same or similar semantics. If data from an attribute in the source or preceding
transformation is used as input for some attribute in the target or subsequent
transformation, it is reasonable to assume that their two labels are semantically
related – in most cases they are semantically equivalent. For instance, CO CTRY

and COUNTRY in Fig. 1 are such connected attribute labels. Finally, using the third
observation, we realize that the tokens CO and COMPANY co-occur in multiple pairs
of connected attribute labels, leading us to believe that they are synonymous
(and not for instance CO and COUNTRY).

With the identified decryptions from the Etl repository, we can suggest de-
cryptions for cryptic attribute labels of a given schema. For instance, given a
schema with the cryptic attribute label CO ID, it is decrypted to COMPANY ID

using the decryption 〈CO ≈ COMPANY〉 derived from Etl workflow in Fig. 1.

3 Schema Decryption

Our goal is to suggest “decryption pairs” to provide developers with a better
understanding of cryptic schemata and Etl workflows.

Definition 1 (ETL Workflow). An Etl workflow comprises a set of trans-
formations T with input and output schemata, interconnected with each other
forming a DAG. Let W = (V,E) be a DAG representing an Etl workflow con-
sisting of a set of vertices V representing the involved transformations. The edges
e ∈ E ⊆ V × V connect the output schema of one transformation with the input
schema of another transformation, i.e., e represents an ordered pair of transfor-
mations.

In this section we explain how to find decryptions for cryptic schemata lever-
aging the large number of connections among attribute labels in the given Etl
repository.

Definition 2 (Connected Attribute Labels). Two attribute labels are con-
nected if there exists at least one Etl workflow in which a direct link is
established between the corresponding attributes in the output and input schemata
of two connected transformations.
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Table 1. Sample results for a Spanish Etl repository from the finance industry domain

Input Schema DEBT RT, RESID VAL AT RISK, UNP PEN INT

Top-5 Decryption Pairs
〈UNP ≈ UNPAID〉, 〈INT ≈ INTEREST〉, 〈PEN ≈ PENALTY〉,
〈RT ≈ RATE〉, 〈RESID, VAL ≈ RESIDUAL, VALUE〉

3.1 Our Schema Decryption Approach

For a given schema consisting of a set of cryptic attribute labels, our algorithm
returns a ranked list of decryptions in descending order of their frequency of
occurrence in the given Etl repository. We regard an attribute label as a set
of tokens and represent a decryption as a pair of corresponding token sets that
appear to be used synonymously within the Etl repository. The algorithm iter-
ates over all attribute labels l from the given schema and returns the set of all
applicable decryptions to decrypt l. Thus, for each attribute label l, we create all
possible decryptions leveraging the large number of connected attribute labels
in the given Etl repository (see Sec. 3.2). Each decryption is then added to the
result. Finally, the algorithm returns a compact list of decryptions ranked in
descending order of their frequency of occurrence in the Etl repository.

Let Ti and Tj be disjoint sets of tokens, i.e., Ti ∩ Tj = ∅. We define a decryp-
tion pair 〈Ti ≈ Tj〉, where Ti and Tj are synonyms. We regard token sets and
not single tokens, because a decryption often applies to multiple tokens or even
contains multiple tokens. Table 1 shows a sample schema decryption in which
individual tokens but also token sets are decrypted. A decryption pair is appli-
cable to an attribute label only if either all tokens from Ti, or all tokens from Tj

occur in the (tokenized) attribute label. Tokens from Ti or Tj may occur in any
order in the attribute label.

Definition 3 (Decryption Pair). Let Ti and Tj be disjoint sets of tokens. We
call 〈Ti ≈ Tj〉 a decryption pair if the token set denoted by Ti is synonymous to
the token set denoted by Tj.

Finally, to suggest a compact list of decryption pairs, we remove all subsumed
decryption pairs from the result list, retaining only maximal decryption pairs.

Example 3 (Maximal Decryption Pair). Consider the three created decryp-
tion pairs 〈SP ≈ STANDARD〉, 〈SP ≈ POOR〉 〈SP ≈ STANDARD, POOR〉 derived
from the same pairs of connected attribute labels. We only suggest 〈SP ≈
STANDARD, POOR〉 and remove the other two subsumed decryption pairs from
the result list.

Definition 4 (Maximal Decryption Pair). Let L = {(lm, ln)} be the set of
pairs of connected attribute labels containing decryption pair 〈Ti ≈ Tj〉. We call
〈Ti ≈ Tj〉 a maximal decryption pair if there is no decryption pair 〈T ′

i ≈ T ′
j〉 for

every {(lm, ln)} ∈ L with Ti ⊆ T ′
i and Tj ⊆ T ′

j.
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3.2 Finding Decryption Pairs

We now describe how we identify decryption pairs 〈Ti ≈ Tj〉: Given an attribute
label and some contained tokens Ti, we want to find all applicable decryption
pairs for Ti. To this end, we search among all connected attribute labels in the
given Etl repository for those that contain Ti. More formally, we consider all
attribute labels l that contain Ti and are connected to some attribute label
containing no subset of Ti. Using these pairs of connected attribute labels, we
choose candidate decryption pairs 〈Ti ≈ Tj〉, where Tj is some subset of tokens
from the other attribute label. A candidate decryption is added to the result if
all three of the following observations hold.

Our first observation is that connected attribute labels often share tokens, i.e.,
such tokens appear in both connected attribute labels. In Example 2 in Sec. 1,
connected attribute labels CP COMP CO ID and COMPETITOR COMPANY ID share to-
ken ID and connected attribute labels CO CEO and COMPANY CEO share token CEO.
Considering shared tokens for decryption makes no sense, since their counterpart
is the same token in the other label. Thus, we do not create decryption pairs
containing a shared token. In the example we would not create a decryption pair
such as 〈CO ≈ CEO〉; the token CEO is already ‘taken’ by its counterpart CEO in
the other attribute label.

Our second observation (and assumption) is that synonymous token sets are
never used together in a single attribute label, as it would be useless to label
a single attribute with synonyms. That is, if tokens x and y appear together
in one attribute label, there is no decryption pair 〈Ti ≈ Tj〉 with x ∈ Ti and
y ∈ Tj or vice versa. Considering the attribute labels in Example 2 in Sec. 1,
we do not create decryption pair 〈CO ≈ COMP〉 from a corresponding pair of
connected attribute labels, because both tokens appear together in the attribute
label CP COMP CO ID and thus are very unlikely to represent synonyms.

Our last observation is that a decryption is consistently used between two
connected transformations. To determine the consistency of a decryption pair
derived from a pair of connected attribute labels, we determine its correctness
(confidence) and frequency of occurrence (hit-ratio) throughout the correspond-
ing schemata of the two connected transformations: Let LTi = {(lm, ln)} be the
set of pairs of connected attribute labels in which all tokens of Ti appear either
in lm or ln (but not both, as these are the trivial cases). These pairs represent
the positive class for the decryption of Ti. Further, let LTi,Tj be the set of pairs
of connected attribute labels in which Ti appears in one label and Tj in the other
label. These pairs represent the true positive class for the decryption. Note that
LTi,Tj ⊆ LTi . Then we define confidence as

confidenceTi,Tj =
|LTi,Tj |
|LTi |

and we define the hit-ratio for decryption pair 〈Ti ≈ Tj〉 as

hit-ratioTi,Tj =
|LTi,Tj |
|LTj |

.
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Note that both confidence and hit-ratio have to be considered. A high hit-ratio
may result in a poor confidence, i.e., the decryption from Ti to Tj may occur
frequently, but Ti also occurs frequently with other tokens in connected attribute
labels. Similarly, a high confidence, e.g., achieved by returning only correct de-
cryptions producing no false positives, may result in a poor hit-ratio.

Example 4 (Quality of Decryption Pairs). Consider the connected attribute la-
bels from Example 2 in Sec. 1. Decrypting CO to COMPETITOR might have a high
hit-ratio in the corresponding schemata of the two connected transformations,
if COMPETITOR often co-occurs with CO. As CO also occurs frequently with tokens
different from COMPETITOR, such as COMPANY, decrypting CO to COMPETITOR re-
sults in a poor confidence. On the other hand, decrypting COMP to COMPANYmight
have a high confidence: labels with the token COMP are almost always connected
to labels containing COMPANY, but labels containing COMPANY might also often
be connected with labels containing CO (but not COMP). Thus the decryption of
COMP to COMPANY has a low hit-ratio.

As the quality of a decryption pair depends on both measures, we choose the har-
monic mean of confidence and hit-ratio to determine the quality of a decryption
pair. The harmonic mean is a typical way to aggregate measures:

harmonicMean =
2 · confidence · hit-ratio
confidence+ hit-ratio

As the reverse decryption of Tj to Ti results in the same harmonic mean value,
we can ignore order. In our experiments, we choose a threshold value of 80% for
the harmonic mean to suggest consistent decryptions from pairs of connected
attribute labels.

4 Experimental Study

We evaluated our schema decryption approach on three real-world Etl reposi-
tories. These repositories were created separately by different departments of a
banking organization in Switzerland (CH), Germany (DE), and Spain (ES) using
Informatica PowerCenter1. Informatica provides Etl workflow specifications in
a proprietary Xml format, which our schema decryption algorithm takes as in-
put. Schemata and connections between attribute labels are pre-indexed offline
and are used to compute schema decryptions in an online fashion. Our algorithm
operates efficiently and typically returns a ranked list of decryption pairs for a
given schema in under a second.

4.1 Evaluation Technique

We have successfully tested our schema decryption approach on all Etl work-
flows from the three given Etl repositories. To evaluate the accuracy of our

1 www.informatica.com

www.informatica.com
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Table 2. Calculating average precision for top-3 decryption pairs

Rank Decryption Pair rel(i) Precision

1 〈UNP ≈ UNPAID〉 1 1

2 〈INT ≈ OUTPUT〉 0 1/2

3 〈PEN ≈ PENALTY〉 1 2/3

schema decryption, we randomly selected three schemata consisting of at least
20 attribute labels from each repository and use schema decryption to generate
ranked lists of decryption pairs for the selected nine schemata.

In our evaluation we consider the top-k decryption pairs pi in the ranked list.
Let i be the position of pi in the ranked list, i.e., i ≤ k. Then, we manually
determine whether pi is relevant/correct or not for the given schema, i.e., we
set rel(i) to 0 or 1, respectively. We consider a decryption pair to be accurate if
it helps to understand the underlying semantic domain of the original attribute
label. Then, we calculate the average precision measure for the top-k decryption
pairs. The average precision is the average of the precision values for the seen
accurate decryption pairs. Average precision is a widely-used evaluation measure
in information retrieval to indicate ranking accuracy [4]:

Definition 5 (Average Precision). Let P (i) be the precision of the first i
suggested decryption pairs. Then, the average precision at position k is

AvPk =

∑k
i=1 P (i) · rel(i)
∑k

i=1 rel(i)

where precision is defined as P (i) =
∑i

j=1 rel(j)

i

Example 5 (Average Precision). Table 2 shows an illustrative top-3 example of
ranked decryption pairs. The examples are from the Etl repository from Spain
(ES). The precision values after each new accurate decryption is observed are 1
and 2

3 . Thus, the average precision of the top 3 results (with two seen accurate
decryptions) is given by (1 + 2

3 ) / 2 = 83%.

4.2 Results

Fig. 2 shows the accuracy of our schema decryption approach. We measure the
mean average precision for each of the experiments and show the top-5, top-10,
top-15, and top-20 results. For all three repositories the algorithm achieves an
accuracy of above 90%. For the CH repository the algorithm provides the best
accuracy. This is expected, because if there is a pair of connected attributes with
different labels in the CH repository, it often contains an accurate decryption.
The experiments demonstrate the advantages of identifying decryption pairs
based on tokens and based on their characteristics. Additional experiments con-
firmed that our approach results in a significantly lower number of incorrect,
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Fig. 2. Schema Decryption Accuracy for Etl Repositories (CH), (DE), (ES)

conflicting and redundant decrpytion pairs compared to other approaches. We
compared our approach to a straightforward alternative of choosing entire la-
bels of two connected attributes as decryption pair. In addition, we compared
our approach against different string-similarity measures, such as Levenshtein
distance [9].

5 Related Work

Our work is related to research on schema normalization in the field of data
integration [10], attribute-synonym finding for relational tables and spreadsheet
data in web pages [6] and string and schema matching techniques [9,3,5].

Sorrentino et al. present a semi-automatic technique for schema normaliza-
tion and motivate the importance of incorporating individual examples in the
process of schema normalization [10]. In contrast, ours is the first work that
incorporates connected attribute labels from complementing schemata as source
of information for fully-automated schema decryption.

The authors of [6] point out that distance metrics and global dictionaries, as
often used for string and schema matching, are not appropriate to automatically
find synonyms for arbitrary attribute labels. This observation is supported by our
experimental results: Common distance metrics result in poor decryptions and
global dictionaries lead to a relatively poor coverage of domain-specific abbrevi-
ations, acronyms, and tokens. The authors of [6] propose a large-scale discovery
method on 125 million relational tables extracted from 14.1 billion Html ta-
bles. Their approach is based on pairs of attribute labels co-occurring in tables
with same context attributes. As already pointed out in the introduction, those
data-driven approaches are infeasible for Etl systems. Furthermore, with our
approach we can identify accurate decryptions from a substantially smaller cor-
pus of examples compared to data-driven approaches relying on a large set of
web-scale example data [3,6].
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6 Conclusion

With this paper we presented a fully-automated schema decryption method
leveraging the large number of mapped attribute labels in a given Etl repository.
Our work is motivated by observing the need of easy-to-understand schemata
during Etl development and maintenance. Cryptic schemata significantly in-
crease the amount of time to understand unfamiliar data, as many readers might
have experienced themselves. We demonstrated that our schema decryption ap-
proach provides helpful suggestions for three different real world Etl reposito-
ries. An Etl developer is now able to quickly grasp the underlying semantics of
data records in cryptic schemata.
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