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ABSTRACT
Large amounts of graph-structured data are emerging from
various avenues, ranging from natural and life sciences to so-
cial and semantic web communities. We address the problem
of discovering subgraphs of entities that reflect latent topics
in graph-structured data. These topics are structured meta-
information providing further insights into the data. The
presented approach effectively detects such topics by exploit-
ing only the structure of the underlying graph, thus avoiding
the dependency on textual labels, which are a scarce asset
in prevalent graph datasets. The viability of our approach
is demonstrated in experiments on real-world datasets.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; H.4 [Information Systems
Applications]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION
The organization of data in entity-relationship graphs has

become the prime knowledge representation formalism for
many communities: For instance, in biology, biochemical
networks are used to capture regulatory or metabolic pro-
cesses, protein-protein interactions, etc. In social web plat-
forms, graphs are often used to represent relationships be-
tween entities of the platform, e.g., users, photos, home-
pages, etc. In the semantic web field, the Linked Open
Data (LOD) community uses RDF to organize data from
online communities, governments, scientific institutions, etc.
Given the wealth of graph-structured data, it is a challeng-
ing undertaking for data engineers to choose the appropriate
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data(sub)set for the task at hand. Moreover, many of these
sources, e.g., Yago, DBpedia, Freebase, or ProductDB, con-
tain cross-domain knowledge and describe millions of en-
tities but do not provide rich and meaningful meta infor-
mation. Hence, even when the knowledge source is given,
it is a difficult task to extract a subgraph of entities, in
which all entities belong to the same latent topic of interest.
Such a topical subgraph would avoid the hassle of managing
the whole dataset; instead, only a small and “appropriate”
fraction could be used. So far, there are no mechanisms
to discover, capture, and manage latent topics in entity-
relationship graphs. Further, rich textual labels are rela-
tively scarce and thus any mechanism for discovering latent
topics in these graphs should mitigate the dependency on
textual labels.

Many knowledge discovery tasks are typically topic-
related. As an example, consider the task of finding in-
teresting connections between the Nike-sponsored football
club FC Barcelona and the company Adidas. By inspecting
the DBpedia dataset, it turns out that some of Barcelona’s
most important players (e.g., Lionel Messi) have an adver-
tising contract with Adidas. This connection is depicted in
the sample subgraph of Fig. 1. As a matter of fact, the au-
tomated discovery of such interesting connections between
entities in large graph datasets is relatively costly. Hence,
for the above example, rather than performing the discov-
ery task on the whole graph, it would be advantageous to
exploit just the subgraph that interconnects all the sports-
related entities.

In this paper, we present an approach for discovering la-
tent topics in graph-structured data by exploiting only the
graph structure, thus completely avoiding the dependency
on textual labels. However, in the presence of rich textual
labels in the underlying graph, the proposed approach can
be used to complement well-known text-based topic-model
techniques, such as Latent Dirichlet Allocation (LDA) or
Latent Semantic Analysis (LSA).
Related Work. Besides LDA and LSA, the work most
related to ours is by Wu et al. [5] who categorize relational
tables according to topics. Further, there is a large body of
work on graph community detection [1, 2].

2. MINING LATENT TOPICS

Definition 1. Let E be a set of entities and R be a set of
relationship types. An entity-relationship graph is a set of
triples G ⊆ E × R × E. We denote by EG = {s | (s, p, o) ∈
G} ∪ {o | (s, p, o) ∈ G} the set of all entities from G and by
RG = {p | (s, p, o) ∈ G} the set of all relationships from G.
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Figure 1: Example of an entity-relationship graph:
Ellipses indicate entity nodes.Edges represent rela-
tionships among entities. Nodes in the large curly
brackets illustrate topically related entities. Their
classes, representing that topic, are depicted be-
low. All together they describe the latent topic that
corresponds to the subgraph enclosed by the large
transparent ellipses on top. Note that there can be
multiple topically related entity sets with equal rep-
resentations, i.e., sets of classes. For instance, Bob
Marley, etc. stem from another graph fractions (not
depicted), but are instances of the same classes.

As with RDF, a triple (s, p, o) ∈ G corresponds to a
subject-predicate-object statement. Note that since our ap-
proach relies on the graph structure only, it is not important
whether the entities in EG are represented by unique IDs
(e.g., URIs) or by rich textual labels.

Typically, in semantic web graphs, a specific relationship
rdf:type is used to connect an instance to the classes it be-
longs to. We refer to it as the type relationship. Given an
entity-relationship graph G, we denote the set of the im-
mediate classes of all instances from G by CG = {o | ∃s :
(s, type, o) ∈ G}. Consequently, by IG = EG \CG we denote
the set of all instances from G. The function t : IG → P(CG)
with t(e) = {c | (e, type, c) ∈ G} assigns all immediate
classes to a given instance from G.

In Fig. 1, for cleaner illustration, the edge labels between
the entities have been omitted. Given such an entity rela-
tionship graph, we seek subgraphs of topically related en-
tities (background ellipses in the first layer). Such sub-
graphs comprise instances (second layer) as well as respec-
tive classes (third layer). These classes then describe the la-
tent topic (fourth layer) of the underlying entity-relationship
subgraph (first layer).

For the discovery of latent topics in entity-relationship
graphs, we use a two-phase approach that exploits the inher-
ent structure of the graph. First, we discover coherent con-
nected subgraphs, so-called conceptual patterns, that cap-
ture “strong” relations between classes. In the second step,
we combine these subgraphs to derive larger subgraphs that
represent latent topics. We propose two alternative methods
for the first phase in Sec. 2.1. Each of these methods discov-
ers connected subgraphs with different structural properties.
The combination of the discovered subgraphs is presented in
Sec. 2.2.

2.1 Conceptual patterns
We start by introducing the basic subgraph structures

that are used by our algorithms. These subgraph structures
satisfy three main criteria: (1) the subgraph is connected;
(2) for each instance in the subgraph, there is also one of its
immediate classes in the subgraph, i.e., the subgraph com-
prises some conceptual information; (3) the subgraph has a
high occurrence frequency in the underlying graph, i.e., it is
a salient interconnection pattern.

Definition 2. Let G and G′ be two entity-relationship
graphs. G′ has a match in G if there exists a subgraph
G∗ ⊆ G such that:

1. |IG′ | = |IG∗ |

2. ∀e ∈ IG∗ : |t(e)| = 1

3. ∀(s′, p′, o′) ∈ G′ with s′, o′ ∈ IG′ , ∃(s, p, o) ∈ G∗
with t(s′) = t(s) ∧ t(o′) = t(o)

We call the graph G′ a conceptual pattern of G and the
subgraph G∗ a conceptual match of G′ in G.

Note that a conceptual match is determined by the class
IDs that occur in the pattern. Instance IDs are irrelevant.
In order to find a conceptual match of G′ in G, a subgraph
G∗ of G that is isomorph to G′ has to be found. Figure 2
gives an example of two conceptual matches.

record&

band&

club&

mana-
ger&

band&

event&

Bob&

Far&
East&
Tour&

Town&
Hall&

The&
Rolling&
Stones&

Voodoo&
Lounge&

club&

record& band&

manager&

event&

Figure 2: Two conceptual patterns (left) and their
conceptual matches in the graph of Fig. 1 (right).

Conceptual Motif Patterns. To discover salient sub-
graph patterns that interconnect groups of instances with
their direct classes (thus capturing conceptual relations be-
tween the instances), we adopt the notion of network motifs
from [3] for Def. 2. There, a motif is defined as a “signifi-
cantly often recurring interconnection pattern”.

Definition 3. Given an entity-relationship graphG, a con-
ceptual motif is a conceptual pattern G′ of G that has signif-
icantly more conceptual matches in G than in any random
graph with equal node properties.

To determine whether a subgraph pattern is a conceptual
motif, we generate random graphs that contain all nodes
(instances and classes) of the original graph and accept only
those that have a similar node degree distribution as the
original graph. This can essentially be done by shuffling
around edges of the original graph. Then, we use a t-Test
(α = 0.01 in 30 random graphs) to check the occurrence
frequencies of patterns in the original against pattern fre-
quencies in the accepted random graphs. In the following,
we refer to conceptual motifs as CM patterns.



Mutual Information Patterns. Although CM patterns
can be derived directly from the entity-relationship graph,
they are computationally relatively expensive. To provide
a more efficient pattern discovery mechanism, we work on
an abstract version of the entity-relationship graph. This
abstract graph contains all classes of the original graph as
nodes; its edges are derived from the connections between
the instances in the original graph.

LetG be an entity-relationship graph and let ni(c) = |{e ∈
IG | c ∈ t(e)}| be the number of instances in G that have c
as an immediate class. Similarly, let nt(c1, c2) = |{(s, p, o) ∈
G | c1 ∈ t(s) ∧ c2 ∈ t(o)}| be the number of triples in G for
which the subject and the object entity have c1 and c2 as
immediate classes, respectively. Now, we define a weighted
graph over the classes of G as follows:

Definition 4. A weighted abstract graph over an entity-
relationship graph G is a graph GG = (V, E , w) with

V = CG (the set of classes)

E = {(c1, c2) | c1, c2 ∈ CG ∧
∃(s, p, o) ∈ G : c1 ∈ t(s) ∧ c2 ∈ t(o)}

∀(c1, c2) ∈ E :

w(c1, c2) = log
nt(c1, c2)/α

ni(c1)/β ∗ ni(c2)/β

where α =
∑

c1,c2∈CG
nt(c1, c2) is the total number of triples

(s, p, o) where s and o have immediate classes. Further, β =∑
e∈IG

|t(e)| is the total number of type edges in G.

The weighted abstract graph models the strength of rela-
tionships between classes with an estimate of the mutual
information. In the next step, for a given abstract graph GG
and an integer m, we address the problem of extracting the
top-k maximum-weight subgraphs that interconnect any m
nodes in GG.

Definition 5. Given a weighted abstract graph GG =
(V, E , w) and two integers k,m ∈ N, the top-k maximum-
weight connected subgraph problem is to find k connected
subgraphs Gi = (Vi, Ei) (i = 1, ..., k ∧ |Vi| = m), such that
there is no subgraph Gj = (Vj , Ej) (j 6= 1, ..., k ∧ |Vj | = m)
with

∑
e∈Ei w(e) <

∑
e∈Ej w(e).

Note that the above problem is a variation of the dense
k-subgraph problem, which is known to be NP-hard. How-
ever, given the typical size of abstract graphs (i.e., hun-
dreds of nodes) and the threshold m ≤ 10 on the subgraph
size, as well as a long-tail edge weight distribution, one can
determine k maximum subgraphs by means of a bottom-
up branch-and-bound strategy. We omit the algorithm for
space reasons.

2.2 Percolating Patterns
So far we described two approaches for generating sub-

graph patterns that capture structural relations between
classes. These patterns serve as building blocks for com-
posing larger subgraphs, which in turn represent the latent
topics.

Intuitively, patterns percolate through the graph if the
graph comprises overlapping matches for similar patterns
(inspired by Clique Percolation [4]). Figure 3 depicts the
percolation of three different conceptual patterns. Then,
the chain of pattern matches forms a latent topic, i.e., a
subgraph that is best described by the class IDs occurring

in the patterns (here club, record, band, manager, and event).
This collection of classes might stand for the topic “music”.

4"

5"1"

3"2"

re#
cord'

club'

band'

mana#
ger'

band'

event'

band'

re#
cord'

mana#
ger'

re#'
cord' band' mana#

ger'

event'club'

Figure 3: Neighboring pattern matches (dotted,
dashed, and solid lines) in the graph of Fig. 1.

We now formalize the above intuition: Given a set P of
conceptual patterns and an entity relationship graph G, let
M represent all conceptual matches of patterns from P in G.
We construct a match graph GM by combining the matches
from M . First, we define the notion of neighboring con-
ceptual patterns. Then, we discuss the construction of the
graph GM that captures such neighborhood information.

Definition 6. Let d ∈ N, d > 1. Two conceptual patterns
p1 and p2 are d-neighboring patterns in an entity-relationship
graph G if there exist matches G1 for p1 and G2 for p2 that
share at least d instance nodes in G. We refer to the matches
G1, G2 as d-neighboring matches.

In our implementation we have chosen the lower bound d =
min (|IG1 |, |IG2 |)−1. We use this strict setting to ensure that
neighboring matches (and thus the respective patterns) are
highly similar, which in turn leads to particularly cohesive
subgraph structures. The construction of the graph GM is
based on the above definition of d-neighboring matches.

Definition 7. Given d ∈ N, d > 1 and the set M =
{G1, . . . , Gn} of all conceptual matches of the patterns
p1, .., pm in an entity-relationship graph G, the match graph
GM is constructed as follows:

1. Each match Gi ∈M becomes a node of GM .

2. A pair (Gi, Gj) ∈ M ×M becomes an edge of GM iff
Gi and Gj are d-neighboring matches.

Figure 4 depicts a match graph: each match is a node in GM .
Note that GM is not necessarily connected; in practice, it
consists of several connected components. Each connected
component in GM represents a structurally cohesive sub-
graph of the original entity relationship graph. By the defi-
nition of conceptual patterns, these subgraphs also represent
cohesive interconnections between classes. By the same ra-
tionale these connected subgraphs are also good candidates
for capturing latent topics. 4"

5"1"

3"2"

rec$%
ord% band% mana

ger%

event%club% 2"

1"

3" 4"
5"

re$%
cord% band%

club%
1"

1"1"

re$%
cord% band% mana$%

ger%

1" 1" 1"

band% mana$
ger%

event% 1" 1"

1"

Figure 4: Match graph GM created from matches
shown in Fig. 3.



3. EVALUATION
We now evaluate general properties as well as the semantic

coherence of the returned subgraphs.
Input. We used the DBpedia dataset (v3.6) which is highly
heterogeneous and covers cross-domain information. We ex-
tracted an entity-relationship graph with 1,008,985 nodes
and 4,789,940 edges. For this evaluation, we used patterns
of size 3 and 4 and show results for a varying number of
conceptual patterns used for percolation.
Gold Standard. For the quality evaluation, we compare
classes contained in the mined entity-relationship subgraphs
to those derived from Wikipedia portals. We extracted la-
tent topic representations (sets of classes) from the portals
by converting Wikipedia URLs to DBpedia URIs and deter-
mining associated classes. In the following the term topic
refers to its representation, i.e., a set of classes from that
topic.
Topic Assignment. We now have a set of topics from our
approach and a set of 799 reference topics. For assigning our
topics to reference topics, we computed Jaccard set similar-
ity values sim(Tx, Ty) for each pair of topics (one from our
set and one from the reference set). Then, we assign a topic
Tx to a reference topic Ty, iff sim(Tx, Ty) is the maximum
for both. That is, there are no topics T ′x or T ′y such that
sim(Tx, Ty) < sim(Tx, T

′
y) or sim(Tx, Ty) < sim(T ′x, Ty).

Though this is a very strict criterion, it models our intuition
that not all topics from our approach have a corresponding
reference topic and vice versa.
Characteristics of Mined Topics. In general, CM pat-
terns lead to more topics than MI patterns. CM pat-
terns mainly produce topics comprising three to five distinct
classes. MI patterns typically result in topics comprising
three to four classes.

To examine topic overlaps, we determined Jaccard set sim-
ilarity values for each pair of topics in the result, see Tab. 1.
The average similarity for CM pattern topics decreases with
the number of patterns under consideration. As for MI pat-
tern topics, we observe only a slight variation over the num-
ber of percolating patterns. In general, created topics rarely
overlap and MI patterns produce less overlapping topics.
This is a desirable property, since otherwise topics are diffi-
cult to distinguish.

Table 1: Pairwise Jaccard Set Similarity of topics.
CM patterns MI patterns
avg. std. avg. std.

16k 0.150 0.150 0.062 0.122
32k 0.125 0.139 0.044 0.101
64k 0.109 0.129 0.042 0.096

128k 0.098 0.123 0.042 0.096
256k 0.087 0.117 0.041 0.093
512k 0.081 0.114 0.045 0.092

1024k 0.071 0.110 0.046 0.091

Quality of Mined Topics. At the time of evalua-
tion, Wikipedia featured 1,094 portals. Portals are in-
tended to present a given topic and introduce “the reader
to key articles, images, and categories that further describe
the subject” (see http://en.wikipedia.org/wiki/Portal:

Contents). A typical portal is divided into common infor-
mation, selected articles, selected facts, current news, and
the like. However, many of these links to other articles
change frequently and cannot be considered a stable ref-
erence. Numbers for the extracted topics are also shown

in Tab. 1. The number of topics evenly ranges over all
sizes, i.e., 30 − 60 topics from size 2 to 26 distinct classes.
The similarity among these topics is considerably higher
(0.159 ± 0.118 on average) then for our topic sets under
consideration. Table 2 depicts average precision, recall and

Table 2: Average topic mining performance with
respect to Wikipedia portals.

Prec. Rec. F-m. Count
CM patterns 16k 0.82 0.65 0.70 66

32k 0.84 0.65 0.72 80
64k 0.82 0.64 0.70 102

128k 0.84 0.63 0.69 118
256k 0.83 0.64 0.69 123
512k 0.81 0.65 0.68 117

1024k 0.81 0.65 0.68 134
MI patterns 16k 0.65 0.52 0.55 37

32k 0.70 0.54 0.58 50
64k 0.71 0.54 0.57 61

128k 0.71 0.53 0.57 61
256k 0.69 0.52 0.56 70
512k 0.67 0.52 0.55 77

1024k 0.67 0.52 0.55 83

F-measure values for the comparison with mapped topics
created from Wikipedia portals. Apparently, the extraction
performance is stable over the different numbers of perco-
lating patterns. The precision ranges around 0.83 for topics
generated by CM patterns and from 0.65 to 0.71 for those
generated by MI patterns. Recall values lie around 0.65 and
0.53, respectively. In general, CM patterns yield better val-
ues then MI patterns. Most likely, this is the case, since CM
patterns produce more topics. Consequently, more map-
pings can be found for the reference topics. The number of
mapped topics (rightmost column in Tab. 2) supports this
hypotheses.

4. CONCLUSION
We explored the problem of mining latent topics from

graph-structured data and presented a novel approach that
exploits only the structure of an entity-relationship graph.
For the evaluation, we ran our algorithm on the DBpedia
dataset and compared the mined result to topics extracted
from Wikipedia. The findings show, that we can reasonably
reconstruct a portion of this information. This is a remark-
able result, given that our approach avoids textual labels.
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