
Adaptive Windows for Duplicate Detection

Uwe Draisbach #1, Felix Naumann #2, Sascha Szott ∗3, Oliver Wonneberg +4

#Hasso-Plattner-Institute, Potsdam, Germany
1uwe.draisbach@hpi.uni-potsdam.de
2felix.naumann@hpi.uni-potsdam.de

∗Zuse Institute, Berlin, Germany
3szott@zib.de

+R. Lindner GmbH & Co. KG, Berlin, Germany
4owonneberg@lindner-esskultur.de

Abstract—Duplicate detection is the task of identifying all
groups of records within a data set that represent the same real-
world entity, respectively. This task is difficult, because (i) repre-
sentations might differ slightly, so some similarity measure must
be defined to compare pairs of records and (ii) data sets might
have a high volume making a pair-wise comparison of all records
infeasible. To tackle the second problem, many algorithms have
been suggested that partition the data set and compare all record
pairs only within each partition. One well-known such approach
is the Sorted Neighborhood Method (SNM), which sorts the data
according to some key and then advances a window over the data
comparing only records that appear within the same window.

We propose with the Duplicate Count Strategy (DCS) a
variation of SNM that uses a varying window size. It is based
on the intuition that there might be regions of high similarity
suggesting a larger window size and regions of lower similarity
suggesting a smaller window size. Next to the basic variant of
DCS, we also propose and thoroughly evaluate a variant called
DCS++ which is provably better than the original SNM in terms
of efficiency (same results with fewer comparisons).

I. MOTIVATION

Duplicate detection, also known as entity matching or record

linkage was first defined by Newcombe et al. [1] and has

been a research topic for several decades. The challenge is

to effectively and efficiently identify pairs of records that

represent the same real world object. The basic problem of

duplicate detection has been studied under various further

names, such as object matching, record linkage, merge/purge,

or record reconciliation.

With many businesses, research projects, and government

organizations collecting enormous amounts of data, it becomes

critical to identify the represented set of distinct real-world

entities. Entities of interest include individuals, companies, ge-

ographic regions, or households [2]. The impact of duplicates

within a data set is manifold: customers are contacted multiple

times, revenue per customer cannot be identified correctly,

inventory levels are incorrect, credit ratings are miscalculated,

etc. [3].

The challenges in the duplicate detection process are the

huge amounts of data and that finding duplicates is resource

intensive [4]. In a naive approach, the number of pairwise

comparisons is quadratic in the number of records. Thus, it

is necessary to make intelligent guesses which records have

a high probability of representing the same real-world entity.

These guesses are often expressed as partitionings of the data

in the hope that duplicate records appear only within individual

partitions. Thus, the search space can be reduced with the

drawback that some duplicates might be missed.

Two important approaches for reducing the search space are

blocking and windowing1, which are evaluated and compared

in [6]. The most prominent representative for windowing is

the Sorted Neighborhood Method (SNM) by Hernández and

Stolfo [7], [8]. SNM has three phases, illustrated in Fig. 1:

1) Key assignment: In this phase a sorting key is

assigned to each record. Keys are usually generated

by concatenating certain parts of attribute values (e.g.,

first 3 letters of last name | first 2

digits of zip code) in the hope that duplicates

are assigned similar sorting keys and are thus close

after the sorting phase. Sorting keys are not necessarily

unique.

2) Sorting: All records are sorted by the sorting key.

3) Windowing: A fixed-size window slides over the sorted

data. All pairs of records within a window are compared

and duplicates are marked.

w
w

Current
window
of records

Next
window
of records

�
�
�

�
�
�

Fig. 1. Illustration of the Sorted Neighborhood method [7].

A disadvantage of this approach is that the window size

is fixed and difficult to configure: If it is selected too small,

some duplicates might be missed. On the other hand, a too

large window results in many unnecessary comparisons. If

effectiveness is most relevant, the ideal window size is equal

to the size of the largest duplicate cluster in a data set. If

a perfect sorting key exists, which sorts all records of the

1called “non-overlapping blocking” in [5].

duplicate clusters next to each other in the sort sequence, then

all duplicates could be found. But even with the ideal window

size, many unnecessary comparisons are executed, because not

all clusters have that maximum size.

An example for this is the Cora Citation Matching data

set2, which comprises 1,879 references of research papers

and is often used to evaluate duplicate detection methods [9],

[10], [11]. In [12] we have described the definition of a gold

standard for the Cora data set and other data sets. In Cora

there are 118 clusters with at least 2 records. The histogram

in Fig. 2 shows on the x-axis the clusters sorted by their size

and on the y-axis the corresponding cluster size. As we can

see, there are a few clusters with more than 100 records, but

most groups have less than 50 records. Clusters with different

sizes are quite common for deduplication [13] and also agree

with our experience with industry partners [14].

 0

 50

 100

 150

 200

 250

2 20 40 60 80 100 120

C
lu

st
er

 s
iz

e

Cluster

Fig. 2. Number of records per cluster in the Cora data set.

In this paper3 we discuss the Duplicate Count strategy

that adapts the window size to increase the efficiency of the

duplicate detection process without reducing the effectiveness.

In the following Sec. II we discuss related work. The Duplicate

Count strategy and a variant called DCS++ is described

and elaborated in more detail in Sec. III. An experimental

evaluation is presented in Sec. IV and finally we conclude

and discuss our future work in Sec. V.

II. RELATED WORK

Several variations of the Sorted Neighborhood Method

(SNM) have been proposed. As the result is highly depending

on the used sorting key, multi-pass variants with multiple

keys and a finally calculated transitive closure can help to

improve the accuracy [3]. Monge and Elkan [13] adopt the

SNM and propose the union-find data structure that defines a

representative for each detected duplicate group. Records are

first compared to the representatives and only if the similarity

2http://www.cs.umass.edu/∼mccallum/code-data.html
3An extended version of this paper is available [15].

is high enough, they are compared with the other members of

that cluster.

Yan et al. [16] discuss adaptivity of record linkage algo-

rithms using the example of SNM. They use the window

to build non-overlapping blocks that can contain different

numbers of records. The pairwise record comparison then

takes place within these blocks. The hypothesis is that the

distance between a record and its successors in the sort

sequence is monotonically increasing in a small neighborhood,

although the sorting is done lexicographically and not by

distance. They present two algorithms and compare them with

the basic SNM. Incrementally Adaptive-SNM (IA-SNM) is

an algorithm that incrementally increases the window size

as long as the distance of the first and the last element in

the current window is smaller than a specified threshold.

The increase of the window size depends on the current

window size. Accumulative Adaptive-SNM (AA-SNM) on the

other hand creates windows with one overlapping record. By

considering transitivity, multiple adjacent windows can then

be grouped into one block, if the last record of a window

is a potential duplicate of the last record in the next adjacent

window. After the enlargement of the windows both algorithms

have a retrenchment phase, in which the window is decreased

until all records within the block are potential duplicates. We

have implemented both IA-SNM and AA-SNM, and compare

them to our work in our experimental evaluation. However,

our experiments do not confirm that IA-SNM and AA-SNM

perform better than SNM.

“Blocking” is an umbrella term for approaches that reduce

the search space for duplicate detection. The idea is to partition

the set of records into blocks and then compare all records only

within these blocks, assuming that records in different blocks

are unlikely to represent the same entity [17]. Thus, the overall

number of comparisons depends on the number and the sizes

of the blocks. Köpcke and Rahm divide these approaches into

disjoint and overlapping blocking methods [5]. The disjoint

blocking methods use a blocking predicate (e.g., the zip

code for person records) to create mutually exclusive blocks,

whereas overlapping blocking methods create overlapping

blocks of records. Examples for overlapping blocking methods

are SNM, canopy clustering, suffix array-based blocking, and

Q-gram based indexing, surveyed in [18]. A generalization

of standard blocking and the Sorted Neighborhood method is

presented in [6].

Whang et al. [19] propose an iterative blocking model in

which they use multiple blocking criteria at the same time

to build overlapping blocks. The detected duplicates are then

distributed to other blocks which can help to find additional

duplicates and reduces the processing time for the other

blocks. They propose two algorithms: Lego and Duplo. While

Lego assumes that blocks are not stored on the disk and is

therefore not applicable for data sets with millions of records,

Duplo uses a disk-based iterative approach that can handle

huge data sets. The concept of using the knowledge about

already detected duplicates to save comparisons is also an

essential part of our algorithm DCS++. However, in contrast

to iterative blocking, our algorithm does not include a merging

step.

The paper of Benjelloun et al. [20] defines the ICAR

properties (idempotence, commutativity, associativity, and rep-

resentativity) for match and merge functions in the duplicate

detection process. Idempotence means that a record matches

itself, whereas commutativity describes whether the order of

the records has an impact on the matching result. We assume

that the matching functions used with our algorithm fulfill

these two properties. We do not have to consider associativity

and representativity, because these are properties of the merge

function and our algorithm does not merge records. However,

Benjelloun et al. do not assume that the match function is

transitive (i.e., r1 ≈ r2 and r2 ≈ r3 does not imply r1 ≈ r3),

whereas transitivity is a key aspect of our algorithm DCS++.

They propose three algorithms: G-Swoosh is expensive, but

can be used if the ICAR properties do not hold. R-Swoosh

exploits the ICAR properties to reduce the number of com-

parisons. Finally, F-Swoosh also exploits the four properties

and additionally avoids repeated feature comparisons. This last

feature is irrelevant for our experimental setting; we include

R-Swoosh in our evaluation.

For algorithms that rely on the sorting order of the records,

the choice of a good sorting key is essential. It should be

distinct enough, that the result of the duplicate detection

process is not affected, e.g., for SNM the number of records

with the same sorting key should not be greater than the

window size. Furthermore, attributes that are less likely to

contain erroneous values should be used, especially for the first

few characters of the sorting key, as they are more important

for the sorting order than the last few [3]. For our experimental

evaluation, we used the same sorting key for all evaluated

approaches.

III. DUPLICATE COUNT STRATEGY

The Duplicate Count strategy (DCS) is based on the Sorted

Neighborhood Method (SNM) and varies the window size

based on the number of identified duplicates. Due to the

increase and decrease of the window size, the set of compared

records differs from the original SNM. Adapting the window

size does not inevitably result in additional comparisons; it can

also reduce the number of comparisons. However, adapting the

window size should result in an overall higher effectiveness

for a given efficiency or in a higher efficiency for a given

effectiveness.

DCS uses the number of already classified duplicates as an

indicator for the window size: The more duplicates of a record

are found within a window, the larger is the window. On the

other hand, if no duplicate of a record within its neighborhood

is found, then we assume that there are no duplicates or the

duplicates are very far away in the sorting order. Each record

ti is once the first record of a window. In the beginning,

we have a starting window size w, which is, as for SNM,

domain-dependent. In the first step, record ti is compared with

w− 1 successors. So the current window can be described as

W (i, i + w − 1). If no duplicate can be found within this

window, we do not increase the window. But if there is at

least one duplicate, then we start increasing the window.

A. Basic strategy

The basic strategy increases the window size by one record.

Let d be the number of detected duplicates within a window, c
the number of comparisons and φ a threshold with 0 < φ ≤ 1.

Then we increase the window size as long as d
c ≥ φ. Thus,

the threshold defines the average number of detected duplicates

per comparison. The pseudocode of this variant can be found

in Algorithm 1.

Algorithm 1 DCS (records, sorting key key, initial window

size w, threshold φ)

Require: w > 1 and 0 < φ ≤ 1
1. sort records by key
2. populate window win with first w records of records

4. /*iterate over all rec. and search for

duplicates*/

5. for j = 1 to records.length− 1 do

10. numDuplicates ← 0 /*number of det. duplicates*/

11. numComparisons ← 0 /*number of comparisons*/

12. k ← 2
13. /*iterate over win to find dup. of rec. win[1]*/

14. while k ≤ win.length do
15. /*check if record pair is a duplicate*/

16. if isDuplicate(win[1], win[k]) then
17. emit duplicate pair (win[1], win[k])
18. numDuplicates ← numDuplicates + 1
19. end if

28. numComparisons ← numComparisons + 1
29. /*potentially increase window size by 1*/

30. if k = win.length and j + k < records.length
and (numDuplicates/numComparisons) ≥ φ then

31. win.add(records[j + k + 1])
32. end if
33. k ← k + 1
34. end while

36. /*slide window*/

37. win.remove(1)
38. if win.length < w and j + k < records.length then
39. win.add(records[j + k + 1])
40. else /*trim window to size w*/

41. while win.length > w do
42. /*remove last record from win*/

43. win.remove(win.length)
44. end while
45. end if
46. j ← j + 1
47. end for
48. calculate transitive closure

B. Multiple record increase

The multiple record increase variant, dubbed DCS++, is an

improvement of the basic strategy. It is based on the assump-

tion that we have a perfect similarity measure (all record pairs

are classified correctly as duplicate or non-duplicate; we show

the performance of our algorithm with non-perfect similarity

measures in Sec. IV-C). Instead of increasing the window

by just one record, we add for each detected duplicate the

next w − 1 adjacent records of that duplicate to the window,

even if the average is then lower than the threshold φ. Of

course, records are added only once to that window. We

can then calculate the transitive closure to save some of the

comparisons: Let us assume that the pairs 〈ti, tk〉 and 〈ti, tl〉
are duplicates, with i < k < l. Calculating the transitive

closure returns the additional duplicate pair 〈tk, tl〉. Hence, we

do not need to check the window W (k, k+w−1); this window

is skipped. Algorithm 2 shows the differences of this variant

compared to Algorithm 1. The differences are the performed

check, whether a record should be skipped, and the handling

of a duplicate.

Algorithm 2 DCS++ (records, key, w, φ)

3. skipRecords ← null /*records to be skipped*/

4. /*iterate over all rec. and search for

duplicates*/

5. for j = 1 to records.length− 1 do
6. if win[1] NOT IN skipRecords then
7. ... see Algorithm 1

13. /*iterate over win to find dup. of rec.

win[1]*/

14. while k ≤ win.length do
15. /*check if record pair is a duplicate*/

16. if isDuplicate(win[1], win[k]) then
17. emit duplicate pair (win[1], win[k])
18. skipRecords.add(win[k])
19. numDuplicates ← numDuplicates + 1
20. /*increase window size from k by w-1

records*/

21. while win.length < k + w − 1
and j + win.length < records.length do

22. win.add(records[j + win.length + 1])
23. end while
24. end if
25. ... see Algorithm 1

33. k ← k + 1
34. end while
35. end if
36. ... see Algorithm 1

47. end for
48. calculate transitive closure

1) Selection of the threshold: If we do not check the

window W (k, k + w − 1), we might miss some duplicates

within this window, if W (k, k + w − 1) contains records in

addition to those in the window in which tk was classified as

duplicate. In Fig. 3, record tk was classified as duplicate of

ti. The window of ti ends with tj . Let us assume that tl is

also a duplicate of ti and tk. If l ≤ j (case 1 in Fig. 3), then

tl is detected as duplicate, even if the window of tk is not

considered. On the other hand, if l > j (case 2), we would

not classify tl as duplicate, due to the assumption that we do

not have to create the window of tk. We show that with the

right selection of the threshold this case cannot happen.

ti tk tl tj

ti tk tj tl

window of ti

window of tk

window of ti

window of tk

Case 1: l � j

Case 2: l � j

Fig. 3. Illustration of the two cases l ≤ j and l > j that have to be
considered for the selection of the threshold.

Proposition 3.1: With a threshold value φ ≤ 1
w−1 no

duplicates are missed due to skipping windows.

Proof: We first show that the increase by multiple records

cannot cause one window to outrange the other one. Then we

show that with φ ≤ 1
w−1 the skipped windows do not contain

additional records, i.e., the window of tk cannot outrange the

window of ti.
(i) When tk is detected to be a duplicate of ti, the window

of ti is increased from tk by w− 1 records and thus contains

the same records as the beginning window of tk. Every time

a new duplicate is detected, both windows are increased by

w − 1 records from that duplicate.

(ii) Windows are no longer increased, if d
c < φ. Let f be

the number of already detected duplicates in window W (i, k),
with f ≥ 1 because at least tk is a duplicate of ti, and k − i
as the number of comparisons. To ensure j ≥ l we need:

f + d

(k − i) + c
≥ φ >

d

c
(1)

Due to the assumption of a perfect similarity measure, d is

the same for both windows. From (1) we can infer:

f + d ≥ φ · (k − i)+φ · c (2)

and φ · c > d (3)

Inserting (3) in (2) results in:

φ ≤ f

k − i
(4)

Now we want to show which value we have to choose for

φ, so that (4) is valid for all windows W (i, k). The highest

possible value for k is k = f ·(w−1)+i, which means that all

previously detected duplicates were the last of the respective

window. Thus, we have:

φ ≤ f

k − i
=

f

f · (w − 1) + i− i
=

1

w − 1
(5)

We have shown that if the threshold value is selected φ ≤
1

w−1 , all windows Wi comprise at least all records of a window

Wk where tk is a duplicate of ti. So leaving out window Wk

does not miss a duplicate and thus does not decrease the recall.

2) DCS++ is more efficient than Sorted Neighborhood:
In this section we show that DCS++ is at least as efficient as

the Sorted Neighborhood Method. Let b be the difference of

comparisons between both methods. We have b > 0 if DCS++

has more comparisons, b = 0 if it has the same number of

comparisons, and b < 0 if it has fewer comparisons than SNM.

Per detected duplicate, our method saves between 0 and w−2
comparisons.

To compare DCS++ with SNM, we have to examine the

additional comparisons due to the window size increase and

the saved comparisons due to skipped windows. Figure 4

shows the initial situation. In window Wi, we have d detected

duplicates and it is increased up to tj . The number of com-

parisons within W (i, j) is c = j− i. In any case, we have the

comparisons within the beginning window of ti. The number

of additional comparisons compared to SNM can be defined as

a = j−i−(w−1). With s as the number of saved comparisons,

because we do not create windows for the duplicates, we have

s = d · (w − 1). We show that a− s ≤ 0.

ti tk ti+w-1 tm

Wi: window of ti

beginning window of ti

tj

tk

tm

additional comparisons of ti

beginning window of tk

beginning window of tm

… …

…

…

…

…

Fig. 4. Initial situation

Proposition 3.2: With a threshold value φ ≤ 1
w−1 DCS++

is at least as efficient as SNM with an equivalent window size

(wSNM = wDCS++).

Proof: We have to distinguish two cases: In case (i) the

beginning window of ti contains no duplicate and in case (ii)

it contains at least one duplicate.

(i) If there is no duplicate of ti within the beginning window

W (i, i + w − 1), then we have no additional comparisons

due to a window size increase, but we also do not save any

comparisons due to skipping windows. It therefore holds:

b = a− s = 0− 0 = 0 (6)

(ii) In the second case we have d > 1 duplicates within the

beginning window. Then it holds:

b = a− s (7)

= [j − i− (w − 1)]− [d · (w − 1)] (8)

= j − i− (d+ 1) · (w − 1) (9)

As the window size is increased until d
c < φ and the last

record is not a duplicate, we need with φ ≤ 1
w−1 at least

c = d · (w− 1) + 1 comparisons to stop the window increase.

In the most unfavorable case (see Fig. 5), we find in the

last comparison the duplicate tk and therefore increase the

window by w − 1 additional records. Then for W (i, k) we

have d
d·(w−1) = φ and for W (i, k + w − 1) we have d

c =
d

d·(w−1)+(w−1) and thus c = d · (w − 1) + (w − 1). We then

have for c = j − i:

b = j − i − (d+ 1) · (w − 1) (10)

= d · (w − 1) + (w − 1)− (d+ 1) · (w − 1) (11)

= (d+ 1) · (w − 1) − (d+ 1) · (w − 1) (12)

= 0 (13)

So in this case we have b = 0, which means the same

number of comparisons as the SNM with a window size of w.

ti tk tk+w-1

window of ti

beginning
window of ti beginning window of tk

… …

Fig. 5. Unfavorable case. Duplicate tk is the last record in the window of
ti. Thus, due to the window increase there are w−1 additional comparisons.

We now show that for all other cases b > 0. In these cases,

we have fewer than w− 1 comparisons after d
c falls under the

threshold. The best is, when there is just a single comparison

(see Fig. 6).

ti tk tk+w-1

window of ti

beginning window of ti

beginning window of tk

… …

Fig. 6. Favorable case. Duplicate tk is the first record next to ti. Thus, due
to the window increase there is just one additional comparison.

It holds for the number of comparisons c:

d · (w − 1) + 1 ≤ c ≤ d · (w − 1) + (w − 1) (14)

So in the most favorable case c = j − i = d · (w− 1) + 1 we

have:

b = j − i− (d+ 1) · (w − 1) (15)

= d · (w − 1) + 1− (d+ 1) · (w − 1) (16)

= 1− (w − 1) (17)

= 2− w (18)

As window size w is at least 2, we have b ≤ 0. So in

comparison to SNM we find the same number of duplicates

but can save up to w − 2 comparisons per duplicate.

Thus, we have shown that DCS++ with φ ≤ 1
w−1 needs in

the worst case the same number of comparisons and in the

best case saves w− 2 comparisons per duplicate compared to

the Sorted Neighborhood Method.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the Duplicate Count strategy.

Sec. IV-A describes the data sets and experiment settings and

Section IV-B presents the results.

A. Data sets and Configuration

The experiments were executed with the DuDe toolkit [12],

which is implemented in Java. To calculate the transitive

closure, we use Warshall’s algorithm [21]; additional dupli-

cate pairs created by the transitive closure do not count as

comparison, because for these pairs no comparison function

is executed. Our evaluation is primarly based on the number

of comparisons, because complex similarity measures are the

main cost driver for entity resolution. The transitive closure is

calculated for both, the Duplicate Count strategies (DCS and

DCS++) and the Sorted Neighborhood Method (SNM). As we

show later, the costs for the transitive closure depend on the

number of duplicate pairs and hardly differ for the different

algorithms.

To evaluate duplicate detection results, a variety of evalu-

ation metrics exists [22], [23]. As we want to evaluate algo-

rithms that select candidate pairs, we do not use a similarity

function in Sec. IV-B. Instead, we assume a perfect similarity

function by using a look-up in the gold standard to decide

whether a record pair is a duplicate or not. Thus, all candidate

pairs are classified correctly as duplicate or non-duplicate. For

the evaluation, we measure the recall (fraction of detected

duplicate pairs and the overall number of existing duplicate

pairs) in relation to the number of executed comparisons. As in

real world scenarios the assumption of a perfect classifier does

not hold, we examine in Sec. IV-C the effects of an imperfect

classifier. We use precision (fraction of correctly detected

duplicates and all detected duplicates) and recall as quality

indicators for the used classifiers and the F-Measure (harmonic

mean of precision and recall) as measure to compare the

different algorithms.

We chose three data sets for the evaluation. The Cora
Citation Matching data set has already been described in

Sec. I and we use the attribute newreference (typically

the concatenation of the first author’s last name and the

year of publication) as sorting key. The second data set was

generated with the Febrl data generator [24] and contains

personal data. Using the Zipf distribution, 30,000 duplicates

were added. Figure 7 shows the distribution of cluster sizes

within the Febrl data set. We use a complex sorting key,

created of the first 3 letters of culture, and the first 2

letters of title, social security ID, postcode, phone

number, address, surname, and given name, always with-

out spaces.

 400

 600

 800

 1000

 1200

 1400

 1600

 2 3 4 5 6 7 8 9 10
N

um
be

r
of

 c
lu

st
er

s

Cluster size

Fig. 7. Distribution of the cluster sizes for the Febrl data set

The third data set is artificially polluted real-world data

and contains about 1 million records with persons and their

addresses. It was created by an industry partner who uses this

data set to evaluate duplicate detection methods and is thus

a good benchmark. Our sorting key is the concatenation of

the first three letters of the zip code, two letters of street

and last name, and one letter of street number, city,

and first name. Table I gives an overview of the three data

sets.

TABLE I
OVERVIEW EVALUATION DATA SETS

Data set Provenance # of records # of dupl. pairs
Cora real-world 1,879 64,578
Febrl synthetic 300,009 101,153
Persons synthetic 1,039,776 89,784

We compare the Duplicate Count strategies on the one hand

with SNM and on the other hand with IA-SNM and AA-SNM.

As window sizes we use values from 2–1000 for the Cora and

the Febrl data set and values between 2–200 for the Persons

data set. The threshold φ for the Duplicate Count strategies

is 1
w−1 as suggested in the previous section. IA-SNM and

AA-SNM use the normalized Edit-Distance for creating the

windows with thresholds from 0.1–1.0 for the Cora data set

and 0.1–0.75 for the other two data sets. All algorithms use the

same classifiers to decide, whether a record pair is a duplicate

or not.

B. Experiment Results: Perfect Classifier
For the Cora data set, Fig. 8(a) shows the minimal number

of required comparisons to gain the recall value on the

x-axis. A comparison means the execution of a (probably

complex) similarity function. Please note the logarithmic scale

in opposite to Fig. 8(b), where we bring into focus the most

relevant recall range from 96% – 100%. Both figures show

the monotonic increase of SNM and the Duplicate Count

strategies. The results of IA-SNM and AA-SNM are inter-

polated, which means that they show the minimum number of

required comparisons to gain at least the specific recall. The

most comparisons are needed for the IA-SNM and AA-SNM

algorithms. We see that due to the window size increase, DCS

performs worse than SNM. By contrast, DCS++ outperforms

SNM, because it omits the creation of windows for already

classified duplicates.

 1000

 10000

 100000

 1000000

10000000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ris

on
s

Recall

DCS
AA SNM
IA SNM

SNM
DCS++

(a) Required comparisons (log scale).

 0

 200000

 400000

 600000

 800000

 1000000

 1200000

 1400000

 1600000

 1800000

 0.96 0.97 0.98 0.99 1

C
om

pa
ris

on
s

Recall

DCS
AA SNM
IA SNM

SNM
DCS++

(b) Required comparisons in the most relevant recall range.

Fig. 8. Results of a perfect classifier for the Cora data set. The figure shows
the minimal number of required comparisons to gain the recall value on the
x-axis.

Both SNM and DCS++ make use of calculating the tran-

sitive closure to find additional duplicates. Thus, some du-

plicates are selected as candidate pairs by the pair selection

algorithm (e.g. SNM and DCS++) and then classified as du-

plicates, while other duplicates are detected when calculating

the transitive closure later on. Figure 9 shows this origin of

the duplicates. The x-axis shows the achieved recall value

by summing detected duplicates of executed comparisons and

those calculated by the transitive closure. With increasing

window size SNM detects more and more duplicates by

executing the similarity function, and thus has a decreasing

number of duplicates detected by calculating the transitive

closure. DCS++ on the other hand has hardly an increase

of compared duplicates but makes better use of the transitive

closure. As we show later, although there are differences in

the origin of the detected duplicates, there are only slight

differences in the costs for calculating the transitive closure.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.95 0.96 0.97 0.98 0.99 1

D
up

lic
at

es

Recall

SNM − Algorithm
SNM − Trans. Closure

DCS++ − Algorithm
DCS++ − Trans. Closure

Fig. 9. Comparison of the origin of the detected duplicates for the Cora
data set. The figure shows for the recall values on the x-axis the number of
duplicates detected by the pair selection algorithm (SNM / DCS++) and the
number of duplicates additionally calculated by the transitive closure.

The results for the Febrl data set (cf. Fig. 10(a)) are similar

to the results of the Cora data set. Again, the IA-SNM and the

AA-SNM algorithm require the most comparisons. But for this

data set SNM requires more comparisons than DCS, whereas

DCS++ still needs the fewest comparisons.

In Fig. 10(b) we can see again that SNM has to find most

duplicates within the created windows to gain high recall

values. DCS++ on the other hand finds most duplicates due to

calculating the transitive closure. It is therefore important, to

use an efficient algorithm that calculates the transitive closure.

In contrast to the Cora data set, the Persons data set has

only clusters of two records. The Duplicate Count strategy is

therefore not able to find additional duplicates by calculating

the transitive closure. Fig. 11 shows that DCS++ nevertheless

slightly outperforms SNM as explained in Sec. III-B2. The

difference between DCS and SNM is very small, but the basic

variant needs a few more comparisons.

We also evaluated the performance of the R-Swoosh algo-

rithm [20]. R-Swoosh has no parameters, it merges records

until there is just a single record for each real-world entity.

The results of R-Swoosh are 345,273 comparisons for the Cora

 1

 10

 100

 1000

 10000

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

C
om

pa
ris

on
s

in
 m

ill
io

ns

Recall

AA SNM
IA SNM

SNM
DCS

DCS++

(a) Minimal number of required comparisons (log scale) to gain the recall value
on the x-axis.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0.86 0.88 0.9 0.92 0.94 0.96 0.98

D
up

lic
at

es

Recall

SNM − Algorithm
SNM − Trans. Closure

DCS++ − Algorithm
DCS++ − Trans. Closure

(b) Comparison of the origin of the detected duplicates, i.e. whether the
duplicate pairs are created by the pair selection algorithm or calculated by the
transitive closure later on.

Fig. 10. Results of a perfect classifier for the Febrl data set.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.8 0.805 0.81 0.815 0.82 0.825

C
om

pa
ris

on
s

in
 m

ill
io

ns

Recall

DCS
SNM

DCS++

Fig. 11. Results of a perfect classifier for the Person data set. The figure
shows the minimal number of required comparisons to gain the recall value
on the x-axis.

data set, more than 57 billion comparisons for the Febrl data

set, and more than 532 billion comparisons for the Person data

set. So for the Cora data set with large clusters and therefore

many merge operations, R-Swoosh shows a better performance

than SNM or DCS, but it is worse than DCS++. For the Febrl

and the Person data sets, R-Swoosh requires significantly more

comparisons, but on the other hand returns a “perfect” result

(recall is 1).

C. Experiment Results: Imperfect Classifier

So far we have assumed a perfect classifier, which is nearly

impossible to develop in practice. In this section we analyze

the effects of an imperfect classifier on the results of the

DCS++ algorithm.

Figure 12 shows a sequence of sorted records. We first

assume that all three labeled records ti, tj , and tk are du-

plicates. Table II shows all possible combinations of how the

classifier could classify these pairs, if the pairs were created

as candidates by an algorithm. We further assume that tj is

within the initial window of ti and tk is within the initial

window of tj . Additionally, we assume for this example that

if 〈ti, tj〉 is classified as duplicate, then the window of ti is

increased until it includes at least tk. Otherwise, we have to

distinguish the two cases whether tk is included in the window

of ti or not.

ti tj tk… …

Fig. 12. Sorted records for evaluation of an imperfect classifier

For each combination, Table II describes the effect of

the classification on the overall result. Each classified non-

duplicate is a false negative. Please note that the stated

classification refers to the result of the classifier. If the pair

is not created, the classifier result is irrelevant; calculating

the transitive closure can yet change the final classification

of a record pair. Misclassification is not just a problem of

the Duplicate Count Strategy, but also occurs with any other

method.

If 〈ti, tj〉 is a duplicate, DCS++ does not create a window

for tj and therefore the classification of 〈tj , tk〉 does not

depend on the classifier, but only on the calculation of the

transitive closure.

In cases 5–8 of Tab. II 〈ti, tj〉 is classified as non-duplicate,

and so there is no guarantee that the window of ti is large

enough to comprise tk. But if tk is included and 〈tj , tk〉 is

classified correctly (case 5), then the transitive closure also

includes 〈ti, tj〉 as a duplicate.

Compared to the Sorted Neighborhood Method (SNM),

case 3 is especially interesting, because pair 〈tj , tk〉 is not

created and therefore 〈ti, tk〉 is not detected to be a duplicate

due to calculation of the transitive closure. SNM does not skip

windows and would therefore classify 〈tj , tk〉 and due to the

transitive closure also 〈ti, tk〉 correctly as duplicate. So for

TABLE II
ALL THREE PAIRS ARE DUPLICATES. THE TABLE SHOWS FOR THE DCS++ ALGORITHM THE NUMBER OF FALSE NEGATIVES (FN) IF PAIRS ARE

MISCLASSIFIED AS NON-DUPLICATES.

No
Pair created / classifier result

FN Explanation〈ti, tj〉 〈ti, tk〉 〈tj , tk〉
1 y D y D n D 0 All pairs classified correctly; pair 〈tj , tk〉 is not created but classified by the TC.
2 y D y D n ND 0 All pairs classified correctly; pair 〈tj , tk〉 is not created but classified by the TC.
3 y D y ND n D 2 As 〈ti, tj〉 is a duplicate, no window is created for tj . Thus, 〈tj , tk〉 is

not compared and therefore also misclassified as non-duplicate.
4 y D y ND n ND 2 Only 〈ti, tj〉 is classified correctly as duplicate.
5 y ND y/n D y D 0/2 If the window for ti comprises tk , then 〈ti, tj〉 is classified as duplicate by calc.

the TC. Otherwise, both 〈ti, tj〉 and 〈tj , tk〉 are misclassified as non-duplicate.
6 y ND y/n D y ND 2/3 If the window for ti comprises tk , then only 〈ti, tj〉 is classified as duplicate.
7 y ND y/n ND y D 2 Only 〈tj , tk〉 is classified correctly as duplicate.
8 y ND y/n ND y ND 3 All record pairs are misclassified as non-duplicate

TABLE III
ALL THREE PAIRS ARE NON-DUPLICATES. THE TABLE SHOWS FOR THE DCS++ ALGORITHM THE NUMBER OF FALSE POSITIVES (FP) IF PAIRS ARE

MISCLASSIFIED AS DUPLICATES.

No
Pair created / classifier result

FP Explanation〈ti, tj〉 〈ti, tk〉 〈tj , tk〉
9 y ND y/n ND y ND 0 All pairs classified correctly as non-duplicate.
10 y ND y/n ND y D 1 Only 〈tj , tk〉 is misclassified as duplicate.
11 y ND y/n D y ND 1/0 If the window for ti comprises tk , then only 〈ti, tk〉 is misclassified as duplicate.
12 y ND y/n D y D 3/1 If the window for ti comprises tk , then 〈ti, tj〉 is misclassified by calculating

the TC. Otherwise, only 〈tj , tk〉 is misclassified as non-duplicate.
13 y D y ND n ND 1 Only 〈ti, tj〉 is misclassified
14 y D y ND n D 1 As 〈ti, tj〉 is classified as duplicate, no window is created for tj . Thus, 〈tj , tk〉

is not compared and therefore also correctly classified as non-duplicate.
15 y D y D n ND 3 All pairs are misclassified; pair 〈tj , tk〉 is not created but classified by the TC.
16 y D y D n D 3 All pairs are misclassified; pair 〈tj , tk〉 is not created but classified by the TC.

case 3, we have two false negatives for DCS++, but no false

negatives for SNM.

Table III also refers to the records ti, tj , and tk in Fig. 12,

but we now assume that they are all non-duplicates. The results

are similar to those in Table II, but this time classified dupli-

cates are false positives. In cases 13–16, 〈ti, tj〉 is incorrectly

classified as duplicate and thus, no window for tj is created.

The classification of 〈tj , tk〉 depends only on the transitive

closure. This results in fewer false positives, compared to

the SNM, in case 14 because SNM would compare 〈tj , tk〉
and thus misclassify it as duplicate. Additionally, due to the

calculation of the transitive closure, also 〈ti, tk〉 would be

misclassified as duplicate, resulting in three false positives for

SNM opposed to one false positive for DCS++.

Based on these results we can say that a misclassification

can but does not necessarily have a negative impact on the

overall result. We now experimentally evaluate the effect of

misclassification. The experiment uses different classifiers for

the CORA data set. Classifiers can be very restrictive, which

leads to a high precision, but a low recall value. Such a

classifier that does not detect all real duplicates favors SNM, as

described before in case 3. On the other hand, classifiers with a

lower precision and hence a higher recall value favor DCS++,

because misclassified non-duplicates are worse for SNM (see

case 14). Thus, the results depend on the precision/recall

tradeoff of the classifier and we therefore use the F-Measure

(harmonic mean of precision and recall) in our experiments as

quality indicator.

Table IV gives an overview of the used classifiers. The

values are the results of an exhaustive comparison without

calculating the transitive closure. We have selected one clas-

sifier with both a high precision and a high recall value (C1).

The other two classifiers have either a high recall (C2) or high

precision (C3) value.

TABLE IV
THREE CLASSIFIERS FOR THE CORA DATA SET. NUMBERS ARE BASED ON

AN EXHAUSTIVE COMPARISON WITHOUT CALCULATING THE TRANSITIVE

CLOSURE.

Classifier Precision Recall F-Measure
C1 98.12 % 97.17 % 97.64 %
C2 83.27 % 99.16 % 90.52 %
C3 99.78 % 84.13 % 91.23 %

Figure 13 shows the interpolated results of our experi-

ments – one chart for each of the classifiers. We see for

all three classifiers that DCS requires the most and DCS++

the least number of comparisons, while SNM is in between.

Figure 13(a) shows the results for classifier C1 with both a

high recall and a high precision value. The best F-Measure

value is nearly the same for all three algorithms and the same

is true for classifier C2 with a high recall, but low precision

value, as shown in Fig. 13(b). However, we can see that the

F-Measure value for C2 is not as high as for classifiers C1

or C3. Classifier C3 with a high precision but low recall

value shows a slightly lower F-Measure value for DCS++ than

for DCS or SNM. This classifier shows the effect of case 3

from Table II. Due to skipping of windows, some duplicates

are missed. However, the number of required comparisons is

 1000

 10000

 100000

 1000000

 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ris

on
s

F−Measure

DCS Basic − C1
SNM − C1

DCS++ − C1

(a) Required comparisons (log scale) classifier C1

 1000

 10000

 100000

 1000000

 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ris

on
s

F−Measure

DCS Basic − C2
SNM − C2

DCS++ − C2

(b) Required comparisons (log scale) classifier C2

 1000

 10000

 100000

 1000000

 0.7 0.75 0.8 0.85 0.9 0.95 1

C
om

pa
ris

on
s

F−Measure

DCS Basic − C3
SNM − C3

DCS++ − C3

(c) Required comparisons (log scale) classifier C3

Fig. 13. Interpolated results of the three imperfect classifiers C1-C3 for the
Cora data set.

significantly lower than for the other two algorithms. Here, the

DCS++ algorithm shows its full potential for classifiers that

especially emphasize the recall value.
So far we have considered only the number of comparisons

to evaluate the different algorithms. As described before,

DCS++ and SNM differ in the number of detected duplicates

by using a classifier and by calculating the transitive closure.

We have measured the execution time for the three classifiers,

divided into classification and transitive closure (see Fig. 14).

As expected, the required time for the transitive closure is

significantly lower than for the classification, which uses

complex similarity measures. The time for the classification is

proportional to the number of comparisons. All three classifiers

require about 0.2 ms per comparison.
The time to calculate the transitive closure is nearly the

same for all three algorithms and all three classifiers. SNM

requires less time than DCS or DCS++, but the difference is

less than 1 second. Please note that the proportion of time for

classification and for calculating the transitive closure depends

on the one hand on the data set size (more records lead to more

comparisons of the classifier) and on the other hand on the

number of detected duplicates (more duplicates require more

time for calculating the transitive closure).

 0

 50

 100

 150

 200

 250

DCS DCS++ SNM DCS DCS++ SNM DCS DCS++ SNM

T
im

e
in

 s

Time Classification
Time Transitive Closure

Classifier C3Classifier C2Classifier C1

Fig. 14. Required Time for the best F-Measure result of each classifier.

V. CONCLUSION

With increasing data set sizes, efficient duplicate detection

algorithms become more and more important. The Sorted

Neighborhood method is a standard algorithm, but due to

the fixed window size, it cannot efficiently respond to dif-

ferent cluster sizes within a data set. In this paper we have

examined different strategies to adapt the window size, with

the Duplicate Count Strategy as the best performing. In

Sec. III-B2 we have proven that with a proper (domain- and

data-independent!) threshold, DCS++ is more efficient than

SNM without loss of effectiveness. Our experiments with real-

world and synthetic data sets have validated this proof.
The DCS++ algorithm uses transitive dependencies to save

complex comparisons and to find duplicates in larger clusters.

Thus, it is important to use an efficient algorithm to calculate

the transitive closure. In contrast to previous works, we

consider the costs of the transitive closure separately.

Overall, we believe that DCS++ is a good alternative to

SNM. The experiments have shown the potential gains in

efficiency, allowing to search for duplicates in very large data

sets within reasonable time.

ACKNOWLEDGEMENT

This research was partly supported by the German Research

Society (DFG grant no. NA 432).

REFERENCES

[1] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James,
“Automatic linkage of vital records.” Science, vol. 130, pp. 954–959,
1959.

[2] L. Gu and R. Baxter, “Adaptive filtering for efficient record linkage,”
in Proceedings of the SIAM International Conference on Data Mining,
2004, pp. 477–481.

[3] F. Naumann and M. Herschel, An Introduction to Duplicate Detection
(Synthesis Lectures on Data Management), 2010.

[4] H. H. Shahri and A. A. Barforush, “A flexible fuzzy expert system
for fuzzy duplicate elimination in data cleaning,” in Proceedings of the
International Conference on Database and Expert Systems Applications
(DEXA), 2004, pp. 161–170.

[5] H. Köpcke and E. Rahm, “Frameworks for entity matching: A com-
parison,” Data & Knowledge Engineering (DKE), vol. 69, no. 2, pp.
197–210, 2010.

[6] U. Draisbach and F. Naumann, “A comparison and generalization of
blocking and windowing algorithms for duplicate detection,” in Pro-
ceedings of the International Workshop on Quality in Databases (QDB),
2009.

[7] M. A. Hernández and S. J. Stolfo, “The merge/purge problem for large
databases,” in Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 1995, pp. 127–138.

[8] M. A. Hernández and S. J. Stolfo, “Real-world data is dirty: Data
cleansing and the merge/purge problem,” Data Mining and Knowledge
Discovery, vol. 2(1), pp. 9–37, 1998.

[9] M. Bilenko and R. J. Mooney, “Adaptive duplicate detection using
learnable string similarity measures,” in Proceedings of the International
Conference on Knowledge Discovery and Data Mining (KDD), 2003, pp.
39–48.

[10] X. Dong, A. Halevy, and J. Madhavan, “Reference reconciliation in
complex information spaces,” in Proceedings of the ACM International
Conference on Management of Data (SIGMOD), 2005, pp. 85–96.

[11] P. Singla and P. Domingos, “Object identification with attribute-mediated
dependences,” in European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD), 2005, pp. 297–308.

[12] U. Draisbach and F. Naumann, “DuDe: The duplicate detection toolkit,”
in Proceedings of the International Workshop on Quality in Databases
(QDB), 2010.

[13] A. E. Monge and C. Elkan, “An efficient domain-independent algorithm
for detecting approximately duplicate database records,” in Workshop on
Research Issues on Data Mining and Knowledge Discovery (DMKD),
1997.

[14] M. Weis, F. Naumann, U. Jehle, J. Lufter, and H. Schuster, “Industry-
scale duplicate detection,” Proceedings of the VLDB Endowment, vol. 1,
no. 2, pp. 1253–1264, 2008.

[15] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg, “Adaptive win-
dows for duplicate detection,” Hasso-Plattner-Institut für Softwaresys-
temtechnik an der Universität Potsdam, Tech. Rep. 49, 2011.

[16] S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles, “Adaptive sorted neigh-
borhood methods for efficient record linkage,” in Proceedings of the
ACM/IEEE-CS joint conference on Digital libraries (JCDL), 2007, pp.
185–194.

[17] R. Baxter, P. Christen, and T. Churches, “A comparison of fast blocking
methods for record linkage,” in Proceedings of the ACM SIGKDD
Workshop on Data Cleaning, Record Linkage, and Object Consolidation,
2003, pp. 25–27.

[18] P. Christen, “A survey of indexing techniques for scalable record
linkage and deduplication,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. PrePrints, 2011.

[19] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-
Molina, “Entity resolution with iterative blocking,” in Proceedings of
the ACM International Conference on Management of Data (SIGMOD),
2009, pp. 219–232.

[20] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
and J. Widom, “Swoosh: a generic approach to entity resolution,” VLDB
Journal.

[21] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM,
vol. 9, pp. 11–12, January 1962.

[22] P. Christen and K. Goiser, “Quality and complexity measures for data
linkage and deduplication.” in Quality Measures in Data Mining, ser.
Studies in Computational Intelligence, 2007, vol. 43, pp. 127–151.

[23] D. Menestrina, S. Whang, and H. Garcia-Molina, “Evaluating entity
resolution results,” Proceedings of the VLDB Endowment, vol. 3, no. 1,
pp. 208–219, 2010.

[24] P. Christen, “Probabilistic data generation for deduplication and data
linkage,” in IDEAL, Springer LNCS 3578, 2005, pp. 109–116.

