Efficient Similarity Search
in Very Large String Sets

Dandy Fenz!, Dustin Lange!, Astrid Rheinldnder?, Felix Naumann',

and Ulf Leser?

! Hasso Plattner Institute, Potsdam, Germany
2 Humboldt-Universitit zu Berlin, Department of Computer Science, Berlin,
Germany

Abstract. String similarity search is required by many real-life appli-
cations, such as spell checking, data cleansing, fuzzy keyword search, or
comparison of DNA sequences. Given a very large string set and a query
string, the string similarity search problem is to efficiently find all strings
in the string set that are similar to the query string. Similarity is defined
using a similarity (or distance) measure, such as edit distance or Ham-
ming distance. In this paper, we introduce the State Set Index (SSI) as
an efficient solution for this search problem.

SSI is based on a trie (prefix index) that is interpreted as a nondeter-
ministic finite automaton. SSI implements a novel state labeling strat-
egy making the index highly space-efficient. Furthermore, SSI’s space
consumption can be gracefully traded against search time.

We evaluated SSI on different sets of person names with up to 170 million
strings from a social network and compared it to other state-of-the-art
methods. We show that in the majority of cases, SSI is significantly faster
than other tools and requires less index space.

1 Introduction

Many applications require error-tolerant string search. For example, consider a
search application for customer support in a company. While search queries may
contain an incorrect spelling of a name, the search application should neverthe-
less find the matching entry of the customer in the database. Another application
arises in a biomedical context. To find and compare genomic regions in the hu-
man genome, search applications need to account for individual variations or
mutations in the genes. In these and many other scenarios, the data set consists
of millions of strings, while the search application is required to answer similarity
queries in subseconds.

In this paper, we tackle the string similarity search problem, which returns
for a given query all strings from a given bag of strings that are similar to the
query with respect to a previously defined string distance measure and a given
distance threshold. This problem has been covered since the 1960s [26], and is
also known as approximate string matching [19], string proximity search [24], or
error-tolerant search [4]. Much effort has been spent by the research community

2 Fenz, Lange, Rheinldnder, Naumann, Leser

to develop filtering techniques, indexing strategies, or fast string similarity algo-
rithms that improve the query execution time of similarity-based string searches.
However, a fast query execution is often accomplished by storing a wealth of in-
formation in huge indexes in main memory. For very large string collections with
hundreds of millions of strings, this approach often fails since indexes grow too
large.

We propose the State Set Index (SSI) as a solution for this problem. The
main advantage of SSI is that it has a very small memory footprint while pro-
viding fast query execution times on small distance thresholds at the same time.
In particular, we extend and improve TITAN [15], a trie index that is inter-
preted as a nondeterministic finite automaton (NFA), developed by Liu et al.
The contributions of this paper are:

— We introduce a novel state labeling approach, where only information on
the existence of states is stored. Different from previous approaches, state
transitions do not need to be stored and can be calculated on-the-fly.

— Using this highly space-efficient labeling strategy, SSI is capable of indexing
very large string sets with low memory consumption on commodity hard-
ware.

— SSI allows a graceful trade-off between index size and search performance by
parameter adjustment. These parameters, namely labeling alphabet size and
index length, determine the trade-off between index size and query runtime.
We comprehensively evaluate these parameter settings and derive favorable
settings such that index sizes remain small and the search performance is
still competitive.

— We evaluate SSI on several data sets of person names coming from a social
network. Our evaluation reveals that SSI outperforms other state-of-the-art
approaches in the majority of cases in terms of index size and query response
time. In particular, on a data set with more than 170 million strings and a
distance threshold of 1, SSI outperforms all other methods we compared to.

The remainder of this paper is structured as follows: Section 2 describes
related work. In Sec. 3, we cover basic definitions that are necessary for the
following sections. We describe our approach in Sec. 4 by defining the index
structure and algorithms for building the index and searching with it. We show
evaluation results in Sec. 5 and conclude the paper in Sec. 6.

2 Related Work

In the past years, the research community has spent much effort on acceler-
ating similarity-based string matching. Prominent approaches use prefiltering
techniques, indices, refined algorithms for computing string similarity, or all in
combination [19, 20].

Filter methods are known to reduce the search space early using significantly
less computational effort than computing the edit distance (or another similarity
measure) directly. As a result of this so-called filter-and-verify approach [28], only

Efficient Similarity Search in Very Large String Sets 3

a few candidate string pairs need to be compared using edit distance. Prominent
pre-filtering approaches are based on q-grams [8,9, 14], character frequencies [1],
or length filtering [2].

Tries as an index structure for strings and exact string matching in tries were
first introduced by Morrison [16] and were later extended by Shang et al. [25]
with pruning and dynamic programming techniques to enable similarity-based
string matching. Next to similarity-based string searches, tries and trie-based
NFAs are also known to perform well in other areas, such as exact pattern
matching [10], set joins [12], or frequent item set mining (7, 11].

The Peter index structure [22] was designed for near-duplicate detection in
DNA data and combines tries with filtering techniques to enable similarity-based
string searches and joins. It stores additional information at each trie node for
early search space pruning. Pearl [23] is a follow-up where restrictions on small
alphabets were removed and a strategy for parallelizing similarity searches and
joins was introduced. Closely related to SSI is TITAN [15], an index structure
based on prefix trees that are converted into non-deterministic automata A, such
that the initial state of A corresponds to the root node of the originating prefix
tree, and leaf nodes correspond to accept states in A. Additionally, further state
transitions are introduced in order to enable delete, insert, and replacement
operations on edit distance-based queries.

Algorithms based on neighborhood generation were first used for similarity-
based string matching by Myers [17]. One drawback of the original algorithm
by Myers is its space requirements, that makes it feasible only for small dis-
tance thresholds and small alphabets. The FastSS index [3] captures neighbor-
hood relations by recursively deleting individual characters and reduces space
requirements by creating a so-called k-deletion neighborhood. Similar to filtering
approaches, FastSS performs search space restriction by analyzing the k-deletion
neighborhood of two strings. By adding partitioning and prefix pruning, Wang et
al. [27] significantly improved the runtime of similarity search algorithms based
on neighborhood generation.

The Flamingo package [2] provides an inverted-list index that is enriched
with a charsum and a length filter. The filter techniques are organized in a tree
structure, where each level corresponds to one filter.

We empirically compare the State Set Index to FastSS, Flamingo, Pearl, and
TITAN, and show that it often outperforms these tools both in terms of query
execution time and with respect to index size (see Sec. 5). We could not compare
to Wang et al. since no reference implementation was available.

3 Basic Concepts and Definitions

In this section, we define basic terms and concepts that we use in the subsequent
sections.

4 Fenz, Lange, Rheinldnder, Naumann, Leser

3.1 Similarity Search and Measures

Let X' be an alphabet. Let s be a string in X*. A substring of s, denoted by
sli...j], starts at position i and ends at position j. We call s[1...j] prefiz,
sli...|s|]] suffix and sfi...], (1 <i<j<|s|]), infix of s. Any infix of length ¢ €
N is called g-gram. Conceptually, we ground our index structure and associated
algorithms on a similarity search operator defined as follows:

Definition 1 (Similarity search). Given a string s, a bag S of strings, a dis-
tance function d and a threshold k, the similarity search operator sSearch(s,S)
returns all s; € S for which d(s,s;) < k.

All similarity-based search operations must be based on a specific similarity
measure. Though there exist several techniques to measure the similarity of two
strings, we focus on edit distance for the scope of this paper.

Definition 2 (Edit distance [13]). The edit distance deq(s1, $2) of two strings
S1, S s the minimal number of insertions, deletions, or replacements of single

characters needed to transform sy into sa. Two strings are within edit distance
k, if and only if deq(s1, s2) < k.

Variations of edit distance apply different costs for the three edit operations.
While SSI is applicable to all edit distance-based measures with integer costs for
the different edit operations, we only consider the standard definition with equal
weights in this paper.

The edit distance deq(s1,s2) can be computed by dynamic programming in
O(]s1] * |s2]). Apart from the dynamic programming algorithm with quadratic
complexity in time and space, there exist various improvements for the edit dis-
tance computation. Bit-parallel algorithms [18] achieve a complexity of O(M)
where w is the size of the computer word. If a maximum allowed distance thresh-
old is defined in advance, the k-banded alignment algorithm [5] computes the
edit distance of two strings in O(k - max{|sl|, |s2|}).

)

3.2 Tries and NFAs

The construction of prefiz or suffix trees is a common technique for string search.
In the literature, such a tree is also called trie [6].

Definition 3 (Trie [6]). A trie is a tree structure (V, E,v,, X, L), where V is
the set of nodes, E is the set of edges, v, is the root node, X is the alphabet, and
L :V — X* is the labeling function that assigns strings to nodes. For every node
ve with L(v.) = s[1...n] that is a child node of vy, it holds L(v,) = s[1...n—1],
i.e., any parent node is labeled with the prefix of its children.

The trie root represents the empty string. The descendants of a node repre-
sent strings with a common prefix and an additional symbol from the alphabet.
A trie is processed from the root to the leaf nodes. Indexed strings are attached

Efficient Similarity Search in Very Large String Sets 5

to the node that can be reached by processing the complete string. Tries are an
efficient method for exact string search.

For efficient similarity search, a trie can also be interpreted as a nondeter-
ministic finite automaton [15].

Definition 4 (Nondeterministic finite automaton (NFA) [21]). A non-
deterministic finite automaton is defined as a tuple (Q, X, 9, qo, F'), where Q is
the set of states, X is the input alphabet, 6 : Q x (X' U {e}) — P(Q) is the state
transition function (with € referring to the empty word), qo is the start state,
and F is the set of accepting states.

The NFA begins processing in the start state gg. The input is processed
character-wise with the state transition function. An NFA is allowed to have
several active states at the same time. If, after processing the entire string, the
NFA is in at least one accepting state, the string is accepted, otherwise rejected.

For similarity search, we interpret a trie as an NFA. In the NFA version of the
trie, the trie root node is the start state of the NFA. The nodes with associated
result strings are marked as accepting states. The trie’s edges are interpreted as
state transitions with reading symbols. In addition, the NFA version contains for
each state transition one additional state transition for reading ¢ as well as one
e-transition from each state to itself. These e-transitions allow state transitions
that simulate deletion, insertion, and replacement of symbols as necessary for
edit distance calculation. To do similarity search with the NFA, the query string
is processed as input symbol sequence by the NFA. After the processing step,
the NFA is in zero, one, or more accepting states. The query result contains all
strings that are attached to the reached accepting states.

The NFA idea described so far generates for a large amount of indexed strings
a large automaton with many states (but there can be no false positives in the
result string set). In the next section, we describe our approach that restricts
the number of NFA states and checks the result string set for false positives.

4 State Set Index

The State Set Index (SSI) is an efficient and configurable index structure for
similarity search in very large string sets. In this section, we first describe the
key ideas of SSI before giving details on the indexing and searching algorithms.

4.1 Index Structure

SSI is based on a trie that is interpreted as an NFA. In the following, we de-
scribe the key ideas behind SSI that go beyond the basic trie and NFA concepts
described above.

6 Fenz, Lange, Rheinldnder, Naumann, Leser

State labeling. The SSI states are labeled with numbers. Each label is cal-
culated from the history of read symbols. For this purpose, the original input
alphabet, in the following referred to as X7, is mapped to a labeling alphabet
XL ={12,...,¢maz} C N with ¢z < |X]. A mapping function m : X — X,
defines the mapping of characters from the two alphabets. A label for a state
with read symbols s;...5,-15, € X} can be calculated as follows:

I(s1...8n—18n) =1(s1...Sn—1) " | XL] + m(sn)
l(e)=0

with e referring to the empty word.

Restriction of labeling alphabet size. SSI allows to restrict the size of the
labeling alphabet X';. When choosing a labeling alphabet with ¢pe. < |X7|
(note the strict “less than” sign), at least two symbols from the input alphabet
are mapped to the same symbol from the labeling alphabet.

This can reduce the number of existing states in the resulting NFA. For any
two prefixes p1,pa of two indexed strings, the states I(p1),1(p2) are merged iff
I(p1) = l(p2). This is the case iff for at least one character position pos in p;
and po, it holds p1[l : pos — 1] = pso[l : pos — 1] and p1[pos| # pa[pos] and
m(p1[pos]) = m(pa[pos]), i.e., two different characters at the same position are
mapped to the same symbol in the labeling alphabet and the prefixes of the
strings before this character match.

Depending on the chosen mapping, a state may contain several different
strings. With ¢pq. < |X7|, it is not possible to reconstruct a string from a
state label, as there are several different possibilities for that. Thus, we need
to store which strings are stored at which state. In addition, it is possible that
the accepting states may contain false positives, i.e., strings that are not query-
relevant. This makes it necessary to check all resulting strings by calculating the
exact distance to the query string before returning results.

Choosing a labeling alphabet size is thus an important parameter for tuning
the SSI. A too large labeling alphabet size results in a large NFA with many
states and thus large storage requirement, but few false positives. In contrast,
a too small alphabet size leads to an NFA with only few states that does not
restrict the number of result strings enough; the consequence is a large number
of false positives.

Restriction of index length. SSI allows to restrict the number of indexed
symbols. From each string s; ...s, € X}, only a prefix with a maximum length
of indnqy is indexed. The “leaf” states contain all strings with a common prefix.

Restricting the index length can reduce the number of existing states. For any
two strings g1, g2, the two states I(g1) and [(ga) are equal iff [(g1[1 : indmaz]) =
1(g2[1 : indmaz])-

Similar to choosing the labeling alphabet size, we face the challenge of han-
dling possible false positives in the result string sets also for restricted index

Efficient Similarity Search in Very Large String Sets 7

length. The index length is thus a second parameter to tune the trade-off be-
tween a large index (large index length, high memory consumption) and a large
number of false positives to be handled (small index length, low memory con-
sumption). In our analysis of a large string data set with the Latin alphabet
(and some special characters) as input alphabet, we observed optimal results
with a labeling alphabet size of 4 and an index length of 14 (see Sec. 5.1 for a
discussion of this experiment).

Restricting the labeling alphabet size as well as the index length can signif-
icantly decrease the number of existing states. For example, in a data set with
1 million names, the mapping from the Latin alphabet to a labeling alphabet
with 4 and restricting the index length to 14 results in a state count reduction
from 5,958,916 states to 2,298,209 states (a reduction ratio of 61 %).

Storing states. Due to the history-preserving state labels, all potential suc-
cessors of a state can be calculated. With a calculated state label, it is easy to
check whether such a state exists: For any state ¢, the state transition with the
character ¢ € X', by definition exists iff ¢. = ¢ - | X'| + ¢ exists. This is because
for any character ¢’ € X', \ {c}, it holds ¢ # ¢ and thus ¢ = ¢ |XL| + ¢ # ¢.

To benefit from this observation, SSI only stores which states that actually
exist, i.e., only states ¢ for which there is at least one prefix p of a string in
the indexed string data set with [(p) = ¢. This reduces the necessary storage
capacity, because it is not necessary to store state transitions. Also, during query
answering, checking the existence of state transitions is not required.

Because SSI state labels are numbers, a simple storage format can be defined.
A bitmap, where each bit combination represents a label of an existing or non-
existing state, is sufficient to store which states do exist.

Storing data. Due to the introduced restrictions, an accepting state may refer
to multiple, different strings — the strings cannot be completely reproduced from
the state labels. Thus, it is necessary to store the strings behind the states. The
required data store has a rather simple interface: A set of keys (the accepting
states), each with a set of values (the strings referred to by the states) needs
to be stored. Any key/multi-value store is suitable for this task. Since the data
store is decoupled from the state store, the data store can be held separately.
Thus, while the state store can be configured to be small or large enough to fit
into main memory, the data store can be held in secondary memory.

4.2 Algorithms
In the following, we describe the details for indexing a large string set with SSI

and searching with the created index.

Indexing. The indexing process is shown in Algorithm 1. All strings to be in-
dexed are processed one after another. Each string is read character-by-character.

8 Fenz, Lange, Rheinldnder, Naumann, Leser

Algorithm 1 Indexing with SSI
Input: set of strings to be indexed stringSet,
labeling alphabet size cmaq,
index length ind,qq,
mapping function m : X — X,
Output: set of existing states stateSet,
set of accepting states acceptingStateSet,
map of states with indexed strings dataStore
stateSet := {}
acceptingStateSet := {}
dataStore = {}
for all str € stringSet do
state :== 0
for pos :=1 — min(indmas, |str|) do
state := state - Cmae + m(str[pos])
stateSet.add(state)
acceptingStateSet.add(state)
dataStore.add(state, str)
: return stateSet, acceptingStateSet, dataStore

—
pali IR A o R v

—_

After reading a character, the current state is calculated and stored. Finally, af-
ter reading the entire string, the last state is marked as accepting state and the
string is stored at this state’s entry in the data store. After the initial indexing
process, it is also possible to index additional strings using the same steps.

Example. We illustrate the SSI index with an example. Consider the strings
Miiller, Mueller, Muentner, Muster, and Mustermann and the alphabet mapping
shown in Table 1. In this example, we chose a labeling alphabet size of ¢4, = 4
and an index length of ind,,q; = 6.

Yr||M|ule|l|r|i|n|t|s|m]|a
Y|l 12]3|4]1]|2|3|4|1]2|3
Table 1. Example for alphabet mapping function m : X — X'

Figure 1 shows all existing states of the resulting index. The accepting states
point to the indexed strings as follows:
1869 — {Miiller}, 1811— {Mueller}, 1795— {Muenter}, 1677 — {Muster, Muster-
mann} O

Searching. We now describe how to process a query string ¢ € X7 with edit
distance k € N. The search process is shown in Algorithm 2.

First, a set S of cost-annotated states s with state ¢, and associated costs
As (the number of edit distance operations required so far) is created. We write

Efficient Similarity Search in Very Large String Sets 9

€ €
i a a

Fig. 1. Example for states created by SSI with ¢mez = 4 and indmas = 6

s := (¢Ps, \s). Initially, all states that can be reached from the start state with
at most k e-transitions are added to S. To determine these states, the labels of
the successors of the start state are calculated and their existence is validated. If
a state s in S is associated with several different costs A4, only the record with
the lowest A4 is kept; all other records are dismissed. This selection is done for
all state calculations and is not stated again in the following.

Next, the query string q; is translated into the labeling alphabet with ¢ :=
I(gr). The characters of ¢ are processed one-by-one. The following steps are
processed for each character ¢ in q.

Another empty set S* of current cost-annotated states is created. For each
cost-annotated state (ds, As) in S, a set S* is created and processed with the
following steps:

— To simulate deletion of characters, the cost-annotated state {(¢s, As + 1) is
added to S¥ if A\; +1 < k.

— To simulate matching of characters, it is checked whether the state ¢ :=
¢s-| XL |+ exists. This state exists if and only if there is a transition from ¢
with the character ¢ to ¢%. If the state exists, then (¢*, \;) is added to S:.

— Next, the insertion of characters other than c is simulated. If A\;+1 < k, then
for each ¢f := ¢4 - | X +m(c*) with ¢* € X1 \ {c}, a new cost-annotated
state (¢%, A\s + 1) is added to S?.

— Inserting characters is simulated using e-transitions. For each cost-annotated
state (¢s, As) in S7, all states ¢} are determined that can be reached from
¢s with k e-transitions. For each such state, the annotated states (¢*, \s +1)
with A\; <7 < k are added to S7.

10 Fenz, Lange, Rheinldnder, Naumann, Leser

Algorithm 2 Searching with SSI
Input: query string ¢, maximum edit distance k
Output: result string set R

1: S:={(it-c,i) | 0<i<k,ce Xp}NstateSet Initial e-transitions
2: for pos :=1 — min(indmas, |q|) do

3 ST ={}

4: for all (¢s,\s) € S do

5: Ss =}

6: if \s +1 <k then Deletion
T: Sz =St U{gs, As + 1)

8: fori:=1—|X.| do Match & Substitution
9: 0% = o+ |TL] +i

10: if ¢ € stateSet then

11: if ¢ = m(q[pos]) then

12: Se =50 U (¢5, As)

13: else if \; +1 < k then

14: Se =50 U (s, As +1)

15: Se=SU{{ps+i-c,i) | s€S: A <i<k,ce Xp}NstateSet) Insertion
16: S*=5"US:

17. S:=5"

18: R:={} Retrieve strings and filter by distance

19: for all (¢s,As) € S do

20: if ¢s € acceptingStateSet then

21: R := RU{s € dataStore.get(ps) | dea(s,q) < k}
22: return R

Then, S is replaced by S* and all steps are repeated with the next character.
After processing all characters, the state set S represents the final state set.
For all states from S that are accepting, all strings stored at those states are
retrieved. This set of strings is filtered by calculating the actual edit distance to
the query string as it may contain false positives. This set of filtered strings is
the result of the search.

Ezxample. Consider the index in Fig. 1 and the example query Mustre with
a maximum distance of k = 2. The initial state set S = {(0,0), (1, 1), (6,2)}
contains all states reachable from the start state with at most k£ = 2 e-transitions.
Next, the first character ¢ = 1 (M) is processed. The state sets S* = S¥ = () are
created. For all entries in .S, the five above-described steps are executed. After
processing the first character, we have:

S ={(0,1),(1,0),(6,1),(28,2),(27,2), (25,2) }

After that, the character ¢ = 2 (u) is processed. The state set after this step
is:
S = {<0’ 2>v <17 1>’ <6a 0>7 <287 1>’ <27a 1>7 <257 1>a <1167 2>a
(112,2), (111,2), (104,2)}

Efficient Similarity Search in Very Large String Sets 11

After processing the third character ¢ =1 (s), we have:

S ={(1,2),(6,1), (28,1), (27, 1), (25,0), (116,2), (112, 2),
(111,2), (104, 1), (419, 2)}

The next character ¢ = 4 (t) results in:

S ={(6,2),(28,1), (27,2), (25, 1), (104, 0), (116, 1), (112, 1),
(111,2), (419, 1), (1677, 2), (467,2), (452, 2)}

The character ¢ = 1 (r) is processed as follows:

S = {(28,2),(25,2), (104, 1), (116,2), (112, 2), (419, 1),
(1677,1), (1869, 2), (467,2), (452, 2)}

With the last character ¢ = 3 (e), we finally have:
S = {(104,2), (419, 1), (1677, 2), (467,2), (1811, 2)}

From the set of states in S, only the accepting states 1677 and 1811 are
further processed. The strings stored at these states are Muster, Mustermann,
and Mueller. After filtering false positives, we finally have the result string set
{Muster}.

O

Complexity. To index n strings with a maximum index length ind,,,q., at most
ndmaz States need to be calculated for each string. Thus, we have an indexing
complexity of O(n - indmaz)-

The most important size factor of SSI is the number of created states. For an
index length ind,,q, and an indexing alphabet X';,, the number of possible states
is | X L\i"dmaz. The index size depends on the chosen parameters where ind,, .
is the dominant exponential parameter.

The search algorithm of SSI mainly depends on ¢4z, indmas, and the search
distance k. In the first step, k - |cmaz| potential states are checked. For each
existing state, its successor states are created. These consist of up to one state
created by deletion, ¢4, states created by match or substitution, and k& - |¢naz |
states created by insertion of a character. This process is repeated up to ind,qz
times. Overall, we have up to (k- |Cmaz|) - (1 + &+ |Cmaz| + k - [Crmaz|)"dmes
steps and thus a worst-case complexity of O((k - |ciaz|)™@ma+). Similar to the
indexing process, the complexity is bound by the parameters ¢4, and ind,qz
where ind,, ., is the dominant exponential factor. By evaluating the existence
of states during the search process and proceeding only with existing states,
we typically can significantly decrease the number of states that are actually
evaluated.

12 Fenz, Lange, Rheinldnder, Naumann, Leser

5 Evaluation

We use a set of person names crawled from the public directory of a social
network website to evaluate the performance of SSI for parameter selection, index
creation, and for search operations. Table 5 shows some properties of our data set.
The set Dy, contains all person names we retrieved, whereas the sets D; consist
of ¢ randomly chosen strings taken from Dy,;. First, we evaluate the impact of
different parameter configurations on the performance of SSI and then choose the
best setting to compare SSI against four competitors. In particular, we compare
SSI to FastSS [3], TITAN [15], Flamingo [2], and Pearl [23], which are all main
memory-based tools for index-based similarity string operations (see Sec. 2 for
details). For Flamingo and Pearl, we use the original implementations provided
by the authors. For FastSS and TITAN, we use our own implementations of the
respective algorithms. Our evaluation comprises experiments both for indexing
time and space as well as experiments on exact and similarity-based search
queries.

All experiments were performed on an Intel Xeon E5430 processor with 48
GB RAM available using only a single thread. For each experiment, we report
the average of three runs.

Set # strings avg./min./max. | input alphabet # exact
string length size duplicates
Dy 170,879,859 13.99 /1 / 100 38 70,751,399
Daook 200,000 14.02 /1 / 61 29 5,462
Daook 400,000 14.02 / 1/ 54 32 17,604
Dsoork 600,000 14.01 /1 /55 35 35,626
Dsoork 800,000 14.02 /1 / 61 33 54,331
Dioook 1,000,000 14.01 /1 /64 35 77,049

Table 2. Evaluation data sets.

5.1 Evaluation of SSI Parameters

We exemplarily used the set D1ggor to evaluate the impact of different parameter
configurations on the performance of SSI on small string sets. Since the maximum
index length ind,,q, and labeling alphabet size |X'| have a large influence on
the performance of SSI, we varied both ind,,q. and || in the range of 2 to 15.
We could not perform experiments on larger parameter ranges due to memory
constraints of our evaluation platform.

As displayed in Fig. 2(a), the average query execution time drastically de-
creases with increased labeling alphabet size and maximum index length. In
particular, a configuration of SSI with ind,,., = 12 and |X| = 8 outperforms
a configuration using ind,.. = 2 and |X';| = 2 by three orders of magnitude
(factor 1521). On the other hand, when increasing indq, and | Xy |, we observed
that the index size grows significantly (see Fig. 2(b)). For example, changing the
configuration from indm,q, = 2 and |Xr| = 2 to indpe, = 6 and | X = 13

Efficient Similarity Search in Very Large String Sets 13

1000

5o
100 £ 3
10 $&5
1 32
2 0.1 g
4 ¢ 6 gc
2 S o'
%4}799/81012 10 8 cere® 22
Dhoe,. 14 12 o
s 1 et®
(a) Average query execution time (log- (b) Average index size in MBytes
scale)

Fig. 2. Evaluation of parameters indma, and | Y| for D1goor and k = 1.

increases memory requirements by a factor of 60. We also observed that the
number of false positives and the number of accessed keys per query decreases
both with increasing ind,,q., and |X'| size (data not shown) and conclude that
this is the main reason for the positive outcome of a large labeling alphabet and
a large index length. However, we could not increase both parameters further
due to memory limitations of our platform, but we expect a further decrease of
query execution time.

We also evaluated the influence of varying parameters on query execution
time and index size on Dp,y;. Results are shown in Fig. 3 for selected configura-
tions. Similar to the experiments on D1ggox, the index size grows heavily while
increasing ind,,q, and |Xr|. Particularly, choosing | X | = 3 and indpe. = 15
yields in an index size of approximately 12 GB, whereas a configuration with
| X1 =5 and indae: = 15 needs a bit vector of 28 GB. On the other hand, the
query execution time decreases with elongating ind,,q, and | X |. Using | X | = 3
and ind,,q, = 15, the query execution time averages to 8 milliseconds, whereas
with |X7| = 5 and ind,q. = 15 the query execution time diminishes to 2.6 mil-
liseconds on average at the expense of a very large index. We also experimented
with other settings of ind,,q, and | Y| in the range of 2 to 15, but these con-
figurations either did not finish the indexing process in a reasonable amount of
time or ran out of memory on our evaluation platform. Therefore, we did not
consider these settings for parameter configuration on large string sets.

In summary, both parameter variations of |Y;| and ind,.. have a large
impact on the performance of SSI. While increasing | X' | or ind,qz, the number
of false positive results that need to be verified decreases, which yields in a
considerably fast query response time. However, our experiments also revealed
that at some point, no further improvements on query response time can be
achieved by increasing | X | and ind,,q.. This is caused by an increased effort
for calculating involved final states that outweighs the decreased amount of false-
positive and the number of lookups in this setting.

Therefore, a beneficial configuration for indexing up to one million person
names is to fix | X | = 8 and ind,q, = 12. Using this configuration leads to a

14 Fenz, Lange, Rheinldnder, Naumann, Leser

"ane =413

= 5113

m4/14

m 514
=415
m 5/15

N WA OO N 0 ©

avg. query execution time in ms.

10 12 14 16 18 20 22 24 26 28 30
Index size in GB

Fig. 3. Trade-off between index size and query execution time on Dy, and k = 1 on
varying configurations of indmax € {3,4,5} and |Xr| € {13,14,15}.

fast query execution time with on a moderate index size. When indexing larger
string collections, a shift in favor of index length is reasonable, since an increasing
length yields larger performance enhancements with respect to query response
time. However, elongating the index length and the labeling alphabet yields also
in a vast growth of the index size, but we strive for an index structure that is
efficient both in terms of space and time. Thus, we decided to configure SSI with
| XL = 4 and ind,q, = 14 for all following experiments using Dy, since this
configuration gives us the best query execution time with an index size of at
most 20 GB.

5.2 Index Creation Time and Memory Consumption

We evaluated SSI in terms of index creation time and memory consumption and
compared it to other main-memory index structures, namely FastSS, TITAN,
Pearl, and Flamingo on all available data sets. For all evaluated tools, we ob-
served that both index sizes and indexing time grow at the same scale as the
data sets.

Many of the tools we compared to are not able to handle very large string
collections. Figure 4(a) displays the memory consumption of each created in-
dex in main memory. We were able to index Dy, only with SSI and Flamingo;
FastSS, Pearl, and TITAN ran out of memory during index creation. In particu-
lar, FastSS even failed to create indexes with more than 400,000 strings. Another
severe drawback of FastSS is that it needs to create a separate index for each
edit distance threshold k — in contrast to all other evaluated tools.

Clearly, SSI outperforms all other trie- or NFA-based tools in terms of mem-
ory consumption and outperforms FastSS, Pearl, and TITAN with factors in the
range of 1.4 (Pearl on Dagor) to 4.5 (Pearl on Dyggox). Compared to Flamingo,
which is based on indexing strings by their lengths and char-sums, we observed
that SSI is advantageous for indexing large data sets. When indexing Dy, SSI
needs 3.0 times less memory than Flamingo. For small data sets with up to

Efficient Similarity Search in Very Large String Sets 15

)
o
14
[=)
=3
=]

10,000,000

% & SS| -o-Titan -V FastSS, k=1 T & SS| --Titan ¥V FastSS, k=1
? -4 Flamingo - Pearl ® -4 Flamingo #-Pearl
% 10.000 g tooo00o
o £ 100,000
1,000 27;44;"—'_:3 ‘ r /.———» ‘
= /
@ 100 2
5 £ 1000
2
< 10 i} 100 1
400,000 800,000 170,000,000 400,000 800,000 170,000,000
200,000 600,000 1,000,000 200,000 600,000 1,000,000
strings # strings

(a) Average index size in MBytes (log- (b) Average index creation time in mil-
scale) liseconds (log-scale)

Fig. 4. Index creation

one million strings, Flamingo outperforms SSI with factors in the range of 2.4
(D1oook) to 5.0 (D2ook)-

We also evaluated SSI on the time spent for index creation. As displayed in
Fig. 4(b), SSI indexes all data sets significantly faster than the other trie- or
NFA-based methods. It outperforms FastSS with factors 3.2 to 3.7 on k = 1,
TITAN with factors 4.0 to 4.7, and Pearl with factors 7.4 to 9.6. Similar to the
memory consumption, SSI is the more superior the larger the data sets grow.
Compared to Flamingo, SSI is only slightly slower (factors in the range of 1.4
to 2.0).

5.3 Query Answering

To evaluate the performance of SSI in query answering, we assembled a set of
1,000 example queries separately for each data set as follows: First, we randomly
selected 950 strings from the respective data set and kept 500 of these strings
unchanged. On the remaining 450 strings, we introduced errors by randomly
changing or deleting one character per string. Additionally, we generated 50
random strings and added them to the set of queries. For each query, we measured
the execution time and report the average of all 1,000 queries. We compared
SSI to all above-mentioned tools both for exact and similarity-based queries
with varying edit distance thresholds k € {0,1,2,3}. For all search experiments,
indexing was performed in advance and is not included in the measured times.

For exact queries, SSI outperformed all competitors independent of the data
set size (see Fig. 5(a)). Specifically, SSI outperformed FastSS with factor 2.3
on Dogor and factor 1.5 on Dyggr, TITAN with factors varying between 1.6 on
Dgoor and 2.1 on Dsyggi, Pearl with factors varying between 5.3 on Dggor and
6.6 on Dogo, and Flamingo with factors from 2.0 on Dagox to 44.1 on Dyyy.

As displayed in Fig. 5(b — d), SSI significantly outperforms the trie- and
NFA-based tools TITAN and Pearl on edit distance based queries. Using an edit
distance threshold of k = 1, SSI outperforms TITAN with a factor of 4, using
k=3, SSI is 5.4 to 7.4 times faster than TITAN depending on the data set.
Compared to Pearl, SSI is faster by more than one order of magnitude, indepen-

16 Fenz, Lange, Rheinldnder, Naumann, Leser
100

- SS| @ Titan V- FastSS & Flamingo #=Pearl

_

=

time in ms. (log-scale)
s

0.1 i—// A
=
—
0.014
0 — —
400,000 800,000 170,000,000
200,000 600,000 1,000,000
strings
(a) k=0
100
- SS| -*-Titan v FastSS & Flamingo #=Pearl
O i —
g 104
g .
A e
S
o
£
= 0.1
v
0.01 — —
400,000 800,000 170,000,000
200,000 600,000 1,000,000
strings
(b) k=1
1000
&SS| *wf' ingepbmpPeart>
3 100
3 ‘_’—o——ﬂ——"—_' /‘
@
8 10 ,/
= —
(2]
£
£ 1
(0]
£ v v
0.1
0.01 - - - - { —
400,000 800,000 170,000,000
200,000 600,000 1,000,000
strings
(c) k=2
10000
& SS| #-Titan V- FastSS -4 Flamingo ¥ Peart
1000
) B
O] ———— K'
3 100 —
g —
£ /
= v
g M
0.1
0.01 I
400,000 800,000 170,000,000
200,000 600,000 1,000,000
strings
(d) k=3

Fig. 5. Average query execution time in milliseconds (log-scale).

Efficient Similarity Search in Very Large String Sets 17

dent of the data set and the edit distance thresholds. However, on comparatively
small data sets (Dagok, Daook), FastSS is by an order of magnitude faster than
SSI. This observation needs to be put into perspective, since FastSS on the one
hand needs to create a separate index for each k, and creating indexes with more
than 400,000 strings was not possible using FastSS. In contrast, SSI does not
have these limitations.

Furthermore, we acknowledge that Flamingo, which has a different indexing
and search approach (cf. Sec. 2), is significantly faster than SSIT in many situ-
ations. For searches in Dy, with £ = 0 and k& = 1, SSI was faster by a factor
of 4.2, in all other situations, Flamingo outperformed SSI. Recall that Flamingo
uses considerably more memory than SSI for indexing Dy, to achieve this (cf.
Fig. 4(a)). We also clearly observe that the advantages of Flamingo grow the
larger edit distance thresholds get. However, future improvements of SSI could
directly address this issue, e.g., by integrating bit-parallel edit distance computa-
tion methods which provide a fast edit distance computation that is independent
of the chosen threshold k.

6 Conclusion

In this paper, we presented the State Set Index (SSI), a solution for fast similarity
search in very large string sets. By configuring SSI’s parameters, we can scale
the index size allowing best search performance given memory requirements.
Our experiments on a very large real-world string data set showed that SSI
significantly outperforms current state-of-the-art approaches for string similarity
search with small distance thresholds.

References

1. S. A. Aghili, D. Agrawal, and A. E. Abbadi. BFT: Bit filtration technique for
approximate string join in biological databases. In Proc. of the Intl. Symposium
on String Processing and Information Retrieval (SPIRE), pages 326-340, 2003.

2. A. Behm, R. Vernica, S. Alsubaiee, S. Ji, J. Lu, L. Jin, Y. Lu, and C. Li. UCI
Flamingo Package 4.0, 2011.

3. T. Bocek, E. Hunt, and B. Stiller. Fast Similarity Search in Large Dictionaries.
Technical report, Department of Informatics, University of Zurich, 2007.

4. M. Celikik and H. Bast. Fast error-tolerant search on very large texts. In Proc. of
the ACM Symposium on Applied Computing (SAC), pages 1724-1731, 2009.

5. J. W. Fickett. Fast optimal alignment. Nucleic Acids Research, 12(1):175-179,
1984.

6. E. Fredkin. Trie memory. Commun. of the ACM, 3:490-499, September 1960.

7. G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In
Proc. of the ICDM Workshop on Frequent Itemset Mining Implementations, 2003.

8. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava. Approximate string joins in a database (Almost) for free. In Proc.
of the Intl. Conf. on Very Large Databases (VLDB), pages 491-500. Morgan Kauf-
mann, 2001.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Fenz, Lange, Rheinldnder, Naumann, Leser

L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an RDBMS
for web data integration. In Proc. of the Intl. World Wide Web Conf. (WWW),
pages 90-101, 2003.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candi-
date generation: A Frequent-Pattern tree approach. Data Mining and Knowledge
Discovery, 8(1), 2004.

R. Jampani and V. Pudi. Using Prefix-Trees for efficiently computing set joins. In
Proc. of the Intl. Conf. on Database Systems for Advanced Applications (DASFAA),
2005.

V. L. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 1966.

C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for approximate
string searches. In Proc. of the Intl. Conf. on Data Engineering (ICDE), pages
257-266. IEEE Computer Society, 2008.

X. Liu, G. Li, J. Feng, and L. Zhou. Effective indices for efficient approximate string
search and similarity join. In Proc. of the Intl. Conf. on Web-Age Information
Management, pages 127-134. IEEE Computer Society, 2008.

D. R. Morrison. PATRICIA — practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, 15(4):514-534, 1968.

E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,
12:345-374, 1994.

G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM, 46(3):395-415, 1999.

G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1), 2001.

G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24:2001, 2000.
M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J.
Res. Dev., 3:114-125, April 1959.

A. Rheinldnder, M. Knobloch, N. Hochmuth, and U. Leser. Prefix tree indexing
for similarity search and similarity joins on genomic data. In Proc. of the Intl.
Conf. on Scientific and Statistical Database Management (SSDBM), pages 519—
536. Springer, 2010.

A. Rheinldnder and U. Leser. Scalable sequence similarity search in main memory
on multicores. In International Workshop on High Performance in Bioinformatics
and Biomedicine (HiBB), 2011.

S. C. Sahinalp, M. Tasan, J. Macker, and Z. M. Ozsoyoglu. Distance based indexing
for string proximity search. In Proc. of the Intl. Conf. on Data Engineering (ICDE),
pages 125-136, 2003.

H. Shang and T. Merrett. Tries for approximate string matching. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 8:540-547, 1996.

T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics and
Systems Analysis, 4:52-57, 1968.

W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient approximate entity extraction
with edit distance constraints. In Proc. of the ACM Intl. Conf. on Management of
Data (SIGMOD), pages 759-770, 2009.

C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. Proc. of the VLDB Endowment, 1:933-944, August
2008.

