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Abstract

Governments are increasingly publishing their data to enable organizations and citizens to browse and analyze the
data. However, the heterogeneity of this Open Government Data hinders meaningful search, analysis, and integration
and thus limits the desired transparency.

In this article, we present the newly developed data integration operators of the Stratosphere parallel data analysis
framework to overcome the heterogeneity. With declaratively specified queries, we demonstrate the integration of
well-known government data sources and other large open data sets at technical, structural, and semantic levels.
Furthermore, we publish the integrated data on the Web in a form that enables users to discover relationships between
persons, government agencies, funds, and companies. The evaluation shows that linking person entities of different
data sets results in a good precision of 98.3% and a recall of 95.2%. Moreover, the integration of large data sets scales
well on up to eight machines.
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1. Integrating Open Government Data

The wealth of freely available, structured information
on the Web is constantly growing. Especially govern-
ments and public administrations are increasingly pub-
lishing their data to enable organizations and citizens
to browse and analyze the data. Most prominently,
data.gov for the US and data.gov.uk for the UK are con-
tributing thousands of data sets over a vast set of do-
mains, such as public spending, health care, traffic, agri-
culture, etc.

However, simply publishing the data on the Web does
not guarantee more transparency. On the one hand, the
large size of the data sets render manual inspection of
the data futile. On the other hand, the technical, struc-
tural, and semantic heterogeneity of the data prevents
meaningful automatic processing and analysis. Further-
more, complex data analysis tasks need additional back-
ground information, such as family or business relation-
ships.

We base our research on the Stratosphere parallel data
analysis framework!, which we extend with data inte-
gration operators to help to declaratively specify the in-
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tegration of large data sources. We demonstrate how
the integration of governmental data and other popular
data-providing projects, such as DBpedia and Freebase,
make it possible to create a single data set with a wide
and deep set of facts about entities. The integrated data
sets facilitates complex queries over the relationships of
the different types of entities in a straight-forward man-
ner.

Apart from data consumers within government orga-
nizations we distinguish two types of users with a spe-
cial interest in such data sets: On the one hand pro-
fessionals including data journalists and employees of
(non-government) organizations, and on the other hand
interested citizens.

Data journalism analyzes and filters large data sets to
create news stories [1]. The journalists investigate pub-
licly available data, such as the Afghan War Diary re-
leased on whistle-blower platforms. As a prerequisite,
they need simple access to interesting and relevant data
sets. While individual data sets might already contain
valuable material, integration of multiple data sets often
yields new insights: Recognizing that a politician spon-
sors large earmarks to a particular industry is already
interesting, but recognizing that the politician’s spouse
is a known lobbyist for that industry might be news.
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Individual interested citizens might not be willing or
able to formulate such questions, so we also provide the
searchable and browsable GovWild portal®>. However,
in this article, we focus on the data journalists.
Contributions and article structure. We illustrate the
heterogeneity of well-known data sets with a motivating
complex query and highlight the integration challenges
in Section 2. Our contributions in this article are the
following:

e We develop data cleansing operators for the Strato-
sphere framework (Section 3). Moreover, we em-
bed the operators into the declarative query lan-
guage Jaql.

o In Section 4, we evaluate the operators and show
that linking person entities of different data sets re-
sults in a good precision of 98.3% and a recall of
95.2%. Furthermore, the integration of large data
sets scales well on up to eight machines.

We also present briefly the Web portal GovWild to
access an already integrated data in Section 5, discuss
related work in Section 6, and finally conclude in Sec-
tion 7.

2. Investigating Governmental Money Flows

In this section we follow the imaginary data journalist
Alice, who wants to investigate nepotism in the United
States. She wants to analyze the official governmental
data sets to find suspicious money flows and then man-
ually inspect the records to find out whether they are
actually cases of nepotism. The analyzing query could
be: For each member of congress, find all earmarks
awarded to organizations or subsidiaries that have em-
ployed a relative of that member of congress.

To find interesting money flows, she starts by look-
ing for appropriate data sources that contain congress
members and their relatives, funds awarded to legal en-
tities (companies), and employment information of the
legal entities. Next, she uses our Stratosphere system
to integrate the data to an integrated data source with
the schema shown in Figure 1. Finally, she formulates
a query that extracts records that are potential cases of
nepotism. Each of the steps is elaborated in the follow-
ing paragraphs.

2.1. Finding and Integrating Data Sources

Alice primarily needs data sets containing records
of money flows. In the federal sector, there are usu-
ally two publicly available data sources: First, agen-
cies may engage in contracts with private companies.
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Figure 1: Excerpt of the integrated schema

As required by the Federal Funding Accountability
and Transparency Act, these expenses have been listed
on the USA spendings website® since 2007. Second,
congress members may direct long-term funds to private
companies, non-governmental organizations, or federal
states. The presidential Office of Management and Bud-
get publishes the so-called earmarks on its public web-
site*.

These two data sources offer reliable information
about the sponsor and the receiver of the funds. To nor-
malize names and title of the congress members, as well
as to add some family relations, Alice decides to inte-
grate the US Congress data source with the two former
data sources. Furthermore, Alice still needs more de-
tails about legal entities, especially the subsidiary rela-
tionship between companies, and their key employees.
Alice discovers that Freebase has two specific data sets
that cover these relationships. She also includes data
sets about politicians to find more relatives.

Table 1 summarizes the extractable entity and re-
lationship types in the data sources. Obviously, the
data of these sources overlap somewhat; for instance,
a politician might be mentioned in Freebase and in the
Congress data set. Recognizing such overlap increases
the amount of information available for that politician.

To obtain an integrated data set, Alice will integrate
the data sources technically, schematically, and semanti-

3http://www.usaspending.gov/
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Table 1: Extractable entities in US-related data sources

cally following the classic approach of data integration.
First, the data sets have to be downloaded and converted
to the same format to eliminate the technical hetero-
geneity. Second, individual data sources often contain
specific data errors that are addressed in source-specific
data scrubbing operations. Additionally, the attributes
of the data sources have to be mapped to the integrated
schema to solve schematic heterogeneity and the values
need to be normalized to a canonical form to remove
semantic heterogeneity between data sources. Finally,
the records of different sources representing the same
real world entity are fused and links between the fused
records are established to create the integrated data set.
Alice uses Stratosphere to formulate the complex query
shown in Figure 2.

Obviously, she needs a good understanding of the do-
main and the data sources and is able to formulate such
a complex query. A typical way to explore the data
sources is to download the different data sources and
use tools such as Google Refine’ to discover the rele-
vant parts of the schemata and unclean attributes. In the
following, we describe the different data sources with
their unique characteristics in more detail.

2.2. USA Spending

The website http://www.usaspending.gov/ provides
the data sets of spendings in several formats starting
from the year 2001, and it visualizes important trends
for all federal states. It forms the largest data source for
Alice’s query consisting of approximately 1.7 million
entries for the year 2009.

The data set is already the result of an integration of
eight major data sources. Among them are federal pro-
curement and award systems, contractor registries, and a
commercially maintained company repository. Further-
more, the Federal Procurement and the Federal Assis-
tance Award Data Systems are information integration
projects themselves managing the data of over 60 and
30 agencies, respectively.

Shttp://code.google.com/p/google-refine/
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tential cases of nepotism

As the schema of USA Spending is a superset of all
the attributes of the integrated data sources, the entries
have the overwhelming number of 176 attributes. Al-
though all of them are documented, Alice has to some-
times guess which attribute is suited best, e.g., whether
the value of obligated amount, base and exercised op-
tions value, or base and all options value should be used
as the value of expense in the global schema.

Another consequence is that very many of the at-
tributes are empty or filled with default values. Addi-
tionally, Alice discovers data conflicts between different
records, e.g., for the same company the annual revenue
in several entries differs strongly. A formal schema defi-
nition is missing and fields such as modnumber have dif-
ferent data types. Finally, she finds obvious data errors,
such as the field annual revenue with mentions over a



trillion dollars for one company.

2.3. US Earmark

In comparison to USA Spending, the website of the
US Earmarks lists the entries of the earmark database in
tabular form only. The earmarks are hierarchically or-
ganized at the levels of the spending committee, agency,
and bureau. For each year, Alice can browse these levels
individually or download all entries as a CSV file.

Since 2008, the database is designed to accurately
identify the congressional sponsor. Therefore, Alice can
extract person entities and employment relations in ad-
dition to the information about the sponsoring agency,
the contractor, and the earmark itself. The data sets of
the years 2008 to 2010 contain approximately 50,000
earmarks each. Unfortunately, every year has a differ-
ent schema with between 17 and 132 attributes. Hence,
Alice needs to integrate every year independently.

When an earmark has more than one sponsor or re-
cipient, the earmark entry is split into multiple records,
which Alice needs to group to collect all information
about the earmark. Furthermore, Alice wants to filter
some earmarks of the most recent data set that are place-
holders and do not contain a valid value for the mone-
tary amount.

2.4. US Congress

The online US Congress directory® provides bio-
graphic information of all former and current congress
members in about 95,000 entries. Unfortunately, the
data set is not available for download but is only acces-
sible through a search form. Alice would have to either
ask the webmaster for the complete data set or request
the help from a programmer to write a crawler (we ac-
tually crawled the website).

The result list of the search form contains the at-
tributes name, date of birth and death, position in the
congress, party, state, number of the congress, and an
id. Unlike the earmarks and the spendings, the US
Congress data set contains additional semi-structured
values in the form of the biography attribute, which lists
family relations, amongst others. An exemplary entry
starts with

CLINTON, Hillary Rodham, (wife of Pres-
ident William Jefferson Clinton), a Senator
from New York. ..

Shttp://bioguide.congress.gov/

As this entry shows, the name is complemented by
the profession or position of the relative, if known. We
found no misspellings or abbreviations in the positions,
which indicates an automatic generation of the relation-
ship texts. In order to parse such entries, a dictionary
of positions is sufficient to distinguish the positions and
the first names.

In cases where several persons share the same name,
the directory, fortunately, adds the date of birth and
death to the name, which allows effective record link-
age

CLINTON, George, (uncle of George Clinton
[1771-1809], ...

2.5. Freebase

Given the distribution of entity type in Table 1, Al-
ice decides to use Freebase’ to complement the data
sources. Freebase is a large, community-based open
data set covering every topic of the contributors’ inter-
ests. However, the comparably low quality of the data
makes integration with the other data sources challeng-
ing.

For Alice only company and politician data subsets
are relevant; about 1.4 million entries. These data
sets contain facts about companies, board members,
and subsidiary companies, as well as information about
presidents, congress members, politicians, and persons
in general.

Since 2008 Freebase evolved fast, which led to sev-
eral problems. First, the schema in Freebase is very het-
erogeneous, because several concurrent type hierarchies
exist. This originates from the restriction in Freebase
that only the original editor of a type or base may change
it. Second, in 2010 the ID system changed completely,
rendering all previously extracted links invalid.

A major drawback of the relevant company and per-
son data sets is the high number of missing values. Fig-
ure 3 visualizes the percentage of the non-null values
for the 73,074 company entries. Only 20 of 32 at-
tributes have more than 0.5% non-null entries and the
number of present values per entity follows a Zipf dis-
tribution. As the other data sources contain only infor-
mation about locations and the revenue of companies,
Alice can solely depend on the company name to link
the records in roughly 60% of the cases.

Similarly, the name of the person is the only attribute
that is consequently set in all 1,276,278 person entries
(Figure 4). The date of birth and gender is available for

7http://WWW.freebase.com/
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Figure 3: Ratio of filled attributes for all Freebase enti-
ties of type ‘company’

id

name

gender
date of birth
nationality
profession
place_of birth
places_lived
education
employment_history
height meters
religion
ethnicity
spouse_s

S ===

20 40 60 80 100
Fill Ratio in %

Figure 4: Ratio of filled attributes for all Freebase enti-
ties of type ‘person’

only half of the entries. Especially the year of birth is
crucial to distinguish two persons with similar names.
The Freebase data sets should complement the informa-
tion of the official data sources with additional relation-
ships between persons and companies. However, only
1% to 2% of the records contain family relationships
and only 6% have an employment history.

Due to the described problems, data sets from Free-
base should be carefully integrated to avoid worsening
the quality of the resulting integrated data set. The inte-
gration of messy data sets usually takes much more time

than clean data sets because different data flaws have to
be treated independently. If the gained information is
too small, the time invested into the integration does not
pay off. In Alice’s use case, the data is valuable to iden-
tify relationships between persons and legal entities and
she decides to integrate the data sets nonetheless. As she
manually verifies all results in the end, data errors in the
integrated data set does not result in wrong conclusions.

After Alice explored the individual data sets, she for-
mulates the query in Stratosphere.

3. Data Cleansing with Stratosphere

In this section, we present the extension of Strato-
sphere to cleanse data in a potentially large-scale data
integration project. All data cleansing operators are
first-class citizens and fully embedded in the optimiza-
tion model. Therefore, Alice can embed the data cleans-
ing operators into a complex query context to answer
specific questions. For example, she might focus her
analysis on specific persons, states, or companies.

First we describe the general architecture of Strato-
sphere and then we explain the technical, schematic, and
semantic integration with the new operators.

3.1. Stratosphere

Stratosphere is a joint research project that explores
how the elasticity of Clouds can be exploited to process
analytical queries massively in parallel. It includes an
declarative query language to specify queries consisting
of basic operators as well as domain-specific high-level
operators. Unlike most traditional DBMS, Stratosphere
inherently supports text-based and semi-structured data
and is thus well suited to perform data cleansing.

The parallelization of data cleansing with Strato-
sphere decreases the computation time and thus facil-
itates the following exemplary use cases:

Large-scale data sources: The Stratosphere system is
built to process web-scale data in a massively par-
allel fashion. With data cleansing algorithms that
scale well with the number of nodes, big data sets
with tens or hundreds of gigabytes can still be pro-
cessed in reasonable time.

Incremental tuning: Data integration is often consid-
ered a one off affair. However, in reality, the im-
mense variety and number of parameters, settings,
and mappings require many passes until the inte-
grated data is in a state ready to be used further.
A shorter round trip time allows more trial runs
within a given time slot, and minimizes wait-time
for the developer.
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Fast changing data sources: In near real-time appli-
cation areas, such as fraud detection in financial
transactions [13], new data is constantly added and
needs to be processed in a timely manner.

Virtual integration: When only a small part of the in-
tegrated data set is needed, partial or virtual in-
tegration may strongly speed up the query pro-
cessing. Stratosphere reoptimizes queries and may
early on reduce the amount of data to be cleansed
(note that the rewriting rules of cleansing operators
is still future work).

The design of Stratosphere is heavily influenced by
Hadoop® and aims to overcome some shortcomings of
Hadoop. It processes directed acyclic data flow graphs
with semantically richer base operators in addition to
the traditional map and reduce. A built-in optimizer ad-
justs the data flow graph to the actual data set for im-
proved performance. The complete Stratosphere stack
is shown in Figure 5.

Nephele constitutes the fault-tolerant, parallel execu-
tion engine of Stratosphere [24]. It interprets job graphs
and distributes the tasks to the network nodes. Nephele
is specifically designed to run on heterogenous envi-
ronments. Furthermore, it fully exploits the elasticity
of Clouds by automatically booking and releasing in-
stances during runtime, whenever needed.

The parallel programming model PACT (PAralleliza-
tion ConTracts) [2] builds upon the Nephele execution
engine. It is a data-oriented generalization of Map/Re-
duce and consists of second-order functions that exe-
cute first-order functions with specific semantics. Aside
from the well-known map and reduce, Stratosphere in-
troduces three additional PACTs, which process two in-
put streams. Similar to map and reduce, these func-
tions are responsible for partitioning the input of the

8http://hadoop.apache.org

data sources and call the user-defined first-order func-
tion.

The cross PACT generates the cartesian product of
the two input tuple sets and transfers the pairs indepen-
dently to the wrapped user-defined function. For join-
related operations, the match PACT guarantees that the
user-defined function is called for every pair of entries
with the same key. Lastly, cogroup groups all entries
with the same key, but still allows to distinguish be-
tween the data sources.

While all PACTs could be efficiently implemented in
Hadoop by exploiting the existing user-definable func-
tions as shown by Dittrich et al. [10], the extended ex-
pressiveness of the PACTs in Stratosphere leads to more
concise and comprehensible query plans [3]. Moreover,
Stratosphere adaptively optimizes the query plans and
benefits from the additional semantic information of the
contracts [4]. Lastly, Stratosphere introduces a complex
cost model with these operations, which allows better
usage of computation units to minimize the effective
monetary costs.

To help data analysts to formulate common analysis
queries without delving into depth of the parallel pro-
gramming model, high level query languages, such as
Jaql [5], Pig, and Hive, have been evolving for Hadoop.
As a consequence, Stratosphere offers an abstraction
for declarative languages with the Stratosphere data and
processing model (SOPREMO) for a wide support of
different query languages. SOPREMO is an extensible
framework for high-level operators including domain-
specific complex operators such as the data cleansing
operators and basic relational operators such as selec-
tion and projection.

As Stratosphere aims to facilitate a possibly large
range of structured and semi-structured applications,
SOPREMO uses Json as its data model and thus ab-
stracts from the underlying key/value data model of
PACT. Operators implemented in SOPREMO process
one or more input streams of Json objects and apply
transformation expressions to produce one more output
streams. A stream is basically a list of objects where the
actual order of items is not relevant and undefined in
most cases. Only special operators such as Sort define a
globally applicable order.

The primary query language of Stratosphere is an
adoption of Jagl (Json Query Language) [5]. It provides
transformation-based query operators that fit well into
the data cleansing use case. The Jaql parser transforms
the scripts into Abstract Syntax Trees and maps them
to the SOPREMO operators to form a SOPREMO plan.
The SOPREMO compiler then successively translates
the plans into a PACT program. The SOPREMO layer,
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$dirty_earmarks = read hdfs(’UsEarmark.json’);
$nick_names = read hdfs(’UsNickNames.json’);

$scrubbed_earmarks = scrub $dirty_earmarks
with {
// normalization with built-in expressions
amount: [type decimal, amount %= 1000],
// normalization with user-defined functions
sponsorLastName: [required ,
NormalizeName (sponsorLastName) ],
sponsorFirstName: [required ,
NormalizeName (sponsorFirstName) ,
replace sponsorFirstName with $nick_names
default sponsorFirstName],

Listing 1: Scrubbing the US Earmarks Data Set

however, is out of scope of this article; we depict for
each integration step the final PACT program generated
from the respective query script.

The following subsections demonstrate how Alice
specifies the different parts of her analytical query.

3.2. Data Scrubbing

Alice starts by scrubbing the individual data sources
with the script in Listing 1. For each (nested) value, she
specifies a scrub expression that is a list of constraints
and transformations. The scrub operator checks if the
values of each record meet the respective constraints
and either corrects invalid values or filters the record.
In contrast, the transformations map the current value
to exactly one new value. The first scrub expression
ensures that each amount is a number and normalizes
the amount from thousand dollars to dollars. The next
two expressions use a user-defined function to normal-
ize the names that can be either formulated directly in
Jaql or as a registered Java function. Finally, the last
scrub expression additionally uses the replace operator
to resolve nicknames to the canonical name, e.g., Bill to
William.

The current set of validation rules allow to specify
that the field must be present and non-null as well as to
define the expected type, range, and set of possible val-
ues. We plan to extend them with set-based constraints
such as uniqueness and automatic outlier detection de-
pending on the standard deviation. A transformation
may be an arbitrary Jaql expression that operates on the
current record. Currently, there is a basic set of prede-
fined functions for string formatting and array manipu-
lation. Additionally, the replace operator may be used to
lookup values in a reference table and replace them by
standardized values, e.g., abbreviations or misspellings

Map
Validate values
Filter invalid records

Map Map

key « first name

key < nickname
value < first name

[

L]

Match

Replace nickname
with canonical name

Figure 6: Scrub with embedded replace operator

of the states of the US are normalized. If the value is not
in the dictionary, the default expression is evaluated.
The implementation of the scrubbing operator is
basically a map that filters invalid and uncorrectable
records. For each scrub expression it locates the respec-
tive value, and applies the constraints and transforma-
tion successively. After all constraints have been met
and all transformations have been applied, the record
with the updated values is emitted. However, the nested
replace operator cannot be executed in the map as the
auxillary nickname list is not available inside the map.
Therefore, the replace operator is pushed outside the
scrub operator and the partial query is rewritten to

replace $earmark.sponsorFirstName in
$scrubbed_earmarks with $nick_names
default $earmark.sponsorFirstName

The replace operator uses two maps to create the
lookup dictionary and extract the values to replace. It
then partitions the corresponding records and lookup
values together with a match. The first-order function
replaces the value with the lookup value or evaluates the
default expression if no lookup value has been found.

After Alice specified the basic rules of scrubbing op-
erations for the US Earmark data set, she continues to
extract the different entities. If she encounters more data
errors in the different sources, she has always the possi-
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extract from $earmark in $scrubbed_earmarks

into {
$funds = group by $earmark.earmarkld {
id: generateld (’earmark’),

amount: sum($earmark[+].amount),
currency: ’USD’,
date: {

year: $earmark[0].enactedYear

),
subject: $earmark[0].shortDescription ,

}

$recipients = group by $earmark.recipient |
id: generateld (’earmark_person’),

names: [$earmark.recipient],
receivedFunds: transform $earmark into |
id: $funds|[3earmark.earmarkld].id,

amount: $earmark.amount

},
category: $earmark[0].recipientType ,
}
b

write $funds to hdfs(’Earmark_Funds.json’);

Listing 2: Simultaneous extraction of entities

bility to refine existing or define additional scrub rules.

3.3. Entity Extraction

To formulate her query, Alice wants to extract the
funds, persons, and legal entities as well as their respec-
tive relationships from the designated data sets (see Ta-
ble 1).

The design of the extract operator is optimized to
maintain the crucial information of relationships within
a data set. Therefore, the operator allows the simultane-
ous specification of the mapping rules for all dependent
entities types as shown in Listing 2. In the script, all
three entity types fund, person, legal entity are logically
extracted at the same time. Note that legal entities ap-
pear in two roles: as the recipient of a fund and as the
public employer of the sponsor.

As briefly described in Section 2.3, one earmark is
split into multiple records for each sponsor and recipi-
ent. The extraction of an earmark thus groups all rel-
evant records by the earmarkld and chooses or aggre-
gates the respective values (Line 2-10). For example,
the total amount spent is the sum of the amounts of the
individual records.

The other entities are extracted similarly with one no-
ticeable exception. Within the extraction operator, the
result sets remain indexed by their grouping key and
other extraction definition may directly access these in-
dices. Line 14 demonstrates how the reified relationship
received_funds links to the id of the corresponding fund.
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$sponsors =
Smembers =

read hdfs(’EarmarkSponsors.json’);
read hdfs(’CongresslMembers.json’);

$linked_persons = cluster records
$sponsor in $sponsors, $member in $members
where jaccard (lastName) >= 0.9 &&
[ 5 % jaroWinkler(firstName),
5 % jaroWinkler(lastName), ...]
partition on
[ removeVowels(lastName)[0:3],
state + firstName[0:2] ]
into { S$sponsor, $member 1},

>= 0.8

Listing 3: Record linkage of persons

The current set of recipient records is transformed into
an array of two elements. While the value of the amount
is directly copied from the record, the fund id is resolved
with the index notation on the fund result set.

The implementation of the basic extraction defini-
tions is essentially a map and reduce aggregation job.
Additionally, all index notations (see Line 15) are re-
solved in three steps. First, the assignment of the index
notation to the target field is substituted by the key value
earmarkld. Second, an auxiliary lookup table $ear-
markld_to_fundld is built transparently. Finally, a strict
replace operator without default expression is added af-
ter the main extraction process.

replace $recipients.received_funds[=].1id
with $earmarkId_to_fundIld

At the end of the scrubbing process, all types of enti-
ties are separately accessible for each data source. The
respective data sets of the same type are then merged in
the following record linkage step.

3.4. Record Linkage

An important step of the data integration process
identifies the real world entities across the different data
sources. Only these connection effectively allow Alice’s
complex query over several data sets. For governmental
money flows, persons and legal entities appear in several
data sources and need to be linked, while there should
be no fund in more than one data source.

The Stratosphere query language introduces two new
operators to ease the formulation of the conditions and
parameters of a record linkage task. First, the link
record operator performs basic entity resolution and re-
turns the links between two records. Second, the cluster
record operator additionally groups all transitively con-
nected records and adds all unconnected records. List-
ing 3 demonstrates how Alice clusters two data sources
with person entities.




In this query, the similarity is declared as two con-
ditions (Lines 6-8). First, a strict condition on the last
name allows only minimal errors in the respective val-
ues. The second condition combines several similari-
ties on attributes with possibly different weights. In this
case, both the first and the last name have a weight of
five. The wrapping array represents the combination of
the individual similarity values, which normalizes the
similarity to [0; 1] by definition. The result is finally
compared to the more relaxed threshold of 0.8.

When integrating more than two data sources, rules
for specific combinations can be created by referenc-
ing the bound variable. For example, the following
rule compensates incorrect splits in the names of US
congress members during the crawl.

jaroWinkler (firstName + middleName,
$member . firstName + $member.middleName) > 0.9

With the info statement, the user specifies which val-
ues of the correspondences have to be selected to iden-
tify the entities in the fusion phase. In this case, the
complete records for both persons are emitted. As this is
the default configuration, it could be omitted. If needed,
the similarities of all evaluated conditions can be in-
cluded in the resulting correspondence record with sim-
ilarities. Tt is planned to provide further information
about the match to ease debugging.

Optionally, a data partitioning method can be spec-
ified on one or more attributes. The naive approach of
comparing every two entities of the given data sources is
not feasible for Alice’s query, because it would result in
more than two billion comparisons for the persons in US
Congress and US Earmarks alone. The script specifies
to use multi-pass blocking [12] (Lines 9-11). For the
first pass, persons are grouped by their first three conso-
nants of the last name. In the second pass, all persons
are regrouped using the state and the first two letters of
their first name to match persons with either severe er-
rors in their last name or a name change after marriage.

The cluster records operator calculates the transitive
closure of the pairs of corresponding entities to form
clusters of entities. The underlying algorithm corre-
sponds to graph component enumeration in an undi-
rected graph, where entities are vertices and correspon-
dences become edges. Cohen presented an iterative ap-
proach of finding components for Hadoop [8]. Alexan-
drov et al. showed that the most compute-intensive part
of enumerating the triangles in a graph can be well op-
timized in Stratosphere [3].

Note that the actual numbers for thresholds and
weights depend strongly on the domain and the query.
For example, when establishing links between Linked

Open Data entities, false positives would result in a ma-
jor loss of data quality as consuming application might
draw wrong conclusions from the false connections.
Nevertheless, since Alice reviews all results from the
complete query in any case, she could choose to use
even smaller thresholds and allow more false positives
to occur in exchange for less false negatives.

The translation of the link operators to PACT pro-
grams are defined by the applied partition algorithm im-
plementations. Blocking results in a map call to extract
the blocking key and a subsequent match to compare
tuples with the same key from different sources as de-
picted in Figure 7a.

In the case of a sorted neighborhood method [16], an
adoption of the RepSN Hadoop algorithm by Kolb et
al. [18] is applied (Figure 7b). It basically partitions the
data depending on the sorting key and creates overlap-
ping partitions by prepending a prefix to the key. In the
shuffle phase, the partitioner uses the prefixes to parti-
tion the entries, while the sorting phase sorts the entries
within a partition in the same run. To handle two input
data sources, we replaced the reduce of the original al-
gorithm RepSN with a cogroup and consequently main-
tain separate window buffers for the data sources inside
the user-defined functions of the cogroup.

If no blocking method is provided, the resulting plan
may vary strongly, as the record linkage operator tries to
exploit properties of the similarity function as good as
possible. Figure 7 illustrates an alternative plan for the
link operation, which uses the first strict condition. The
combination of the set-similarity function Jaccard with
a relatively high threshold, allows an efficient execution
of the algorithm introduced by Vernica et al. [22]. The
main idea is that two strings of length ten need to have
eight of nine 2-grams in common to achieve a Jaccard
similarity of 0.9. Hence, the algorithm first counts the
frequencies of the tokens in a preprocessing step. The
algorithm then uses only the least frequent N-gram as a
join criterion to drastically reduce the amount of pairs
that need to be compared with the given conditions.

The corresponding PACT program consists of two
parts (see Figure 7). First, in a preprocessing step, the
join attribute of the smaller data source is tokenized
and the frequency is counted. Afterwards, the tokens
are sorted by frequency and globally aggregated in one
sorted list. In the second part, the cross contracts pro-
cesses each earmark sponsor or congress member using
the list of sorted tokens. It also tokenizes the join at-
tribute and emits the least frequent tokens. If too few
tokens of a congress member are found in the list, the
entry is not emitted, because it is impossible to pass the
threshold.
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$fused_persons = fuse $cluster = [Ssponsor,
Smember] in $linked_persons

with weights {
$member: 0.99,
$sponsor: 0.99,
$sponsor.addresses :

}

into {
id: generateld(’person’),
lastName: [vote(abbr), longest],
firstName: [vote(abbr), first],
addresses: MergeAddresses,
originalRecords: $cluster [#].id,

}

update S$cluster.relative [+#].id in $cluster

with id;

0.7,

write $fusedPersons to hdfs(’Persons.json’);

Listing 4: Data fusion of persons

Alice’s query offers an inherent parallelization as the
record linkage can be applied to person and legal en-
tities independently. Further parallelization is realized
through multiple passes and the implementation algo-
rithm of the record linkage strategy.

3.5. Data Fusion

In general, links between entities of several data
sources can be used in two ways. First, they may be
published to connected the entities of the different data
sources, e.g., finding new links between Linked Open
Data sources. Second, the linked records can be ulti-
mately merged into one entry with data fusion. The for-
mer approach would leave the interpretation of the value
and the conflict resolution to the application developer
that wants to use the data, while the latter approach usu-
ally looses data that does not fit in the applied conflict
resolution strategies.

As Alice is not interested in the relationships between
data sets but between entities, she decides to merge the
relevant attributes with the fusion script shown in Fig-
ure 4.

The into clause specifies the conflict resolution rules
for the attributes. The resolution functions are applied
as long as there is more than one value. For example,
the last name is determined by the value with the highest
weight or the longest of two equivalently high weighted
value candidates.

Additionally, the update clause allows to define for-
eign key relationships that should be updated with the
merged id. The clause is optional and is syntactic sugar
for a replace operator that replaces the old value with
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the new value in a temporary set created in an additional
step.

replace $fused_persons.relative [*].id
with $oldId_to_newld

At the end of the script, weights for the different data
sources and fields are recursively defined. The weights
of nested structures accumulate by multiplication, e.g.,
the actual weight of sponsors.addresses is 0.99 * 0.7.
These weights are passed to the conflict resolution func-
tions as an contextual parameter. The resolution func-
tion may choose to honor or to ignore the meta informa-
tion depending on the semantics. For example, the first
function does not use the weights, while vote uses the
Dempster-Shafer theory of confidence [20] to determine
the suitable candidate as described in the following.

With the Dempster-Shafer theory of confidence, we
address the question which value v; of a set of conflict-
ing values we believe most. We start with some initial
beliefs in the respective source and translate it into a
belief function. Then we combine the respective belief
functions of alternative values. Finally, we choose the
value with the highest belief.

Given a set of possible values V = (J{v;}, we first
assign the basic belief masses m, : 2V - [0;1] to all
occurred value combinations with the following proper-
ties m, (@) = 0 and Y yeov my(V) = 1.

For simplicity, we assume non-array values in this
w if|V]=1
0 else
being the manually assigned weight to the source and
attribute.

Next, we combine the different masses with Demp-
ster’s rule of combination

article resulting in m,(V) = with w

ZV,—H) mi ({V})mZ(Vl)

my & my({v}) = 1= Yy oy mi((v)ma(V)

ey

The nominator collects the evidence of all V; C V
that support the specific value v denoted with —. In the
example script, Alice uses the abbr function that sup-
ports "John’ with the value ’J. but not vice versa. The
denominator normalizes small mass sums for dissimilar
values.

As an example, consider having the three possible
values ’J.’, ’John’, and ’Bill’ constituting V. The ini-
tial belief mass functions is m(J.) = 0.7, m;(V) =
0.3, my(John) = 0.8, my(V) = 0.2, m3(Bill) = 0.9,
and m3(V) = 0.1. The combination of the first two
masses yields m>(J.) = (0.7 %« 0.2)/1 = 0.14 because
’J. is only right if we do not believe *John’. Further
miz(John) = (0.7 %« 0.8 + 0.3 % 0.8)/1 = m,(John) since
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join
$sponsor in $persons ,
$relative in $persons,
$fund in $funds ,
$recipient in $legal_entity ,
$subsidiary in $legal_entity

where
($relative .id in $sponsor.relatives [x].id
or $relative.id = $sponsor.id) and

$fund .id in $sponsor.enacted_funds [*].id

($subsidiary .id in $recipient.subsidiaries
[%].1id

or $subsidiary.id =

into {

Srecipient.id)

}

Listing 5: Alice’s query for potential cases of nepotism

’J.” supports our belief in "John’. Finally, the last com-
bination my3 results in the following denominator d =
1-(0.8%0.9+0.14%0.9) = 0.154 and masses m3(J.) =
(0.14%0.1)/d = 0.09, m123(John) = (0.8%0.1)/d = 0.52,
and m3(Bill) = (0.9 * 0.2 * 0.3)/d = 0.35. Although
we initially had more belief in ’Bill’, the two evidences
for "John’ outweighs it.

The implementing PACT program is a straight-
forward map that applies all the resolution strategies to
the occurring conflicts. If updates are specified, it trans-
parently retains all original values for the given field,
and uses a map for each update to create a lookup list
from old values to new values. Subsequently, a replace
operator is executed for each update.

3.6. Analysis of the Integrated Data Set

Alice finally specified all the integration operations
and can now formulate her query on the integrated data
set. Note that most of the integration rules as well as the
analytical query evolve with time and that Alice would
probably start to query the data set at an earlier point in
time.

Nevertheless, Listing 5 shows the Jaql script that ex-
ecutes Alice’s initial query to find nepotism:

For each member of congress, find all earmarks
awarded to organizations or subsidiaries that have em-
ployed a relative of that member of congress.

All conjunctions are translated into subsequent
matches on the join key, while disjunction result in
unions of parallel joins where a union is implemented
with reduce.

Alice receives 263 potential cases that she can thor-
oughly investigate. Most of these funds have been en-
acted to counties for which a relative of the sponsor
works. Whether this is an actual case of nepotism, or a
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Operator Syntax

Data Scrubbing scrub input with rules
Entity Extraction extract from input into entities
Record Linkage link/ cluster records input where

similarity_condition partition on
partition_key into target_expr
Data Fusion fuse input with weights weight_map

into result

Dictionary Lookup

replace input with dictionary
default default_expr

Table 2: Summary of data cleansing operators

regular spending can only be decided by an expert with
profound domain knowledge such as Alice.

This section demonstrated how the data integration
can be formulated in a query with Stratosphere. We in-
troduced five new operators in Jaql summarized in Ta-
ble 2 that allow a concise and declarative specification
of the data integration steps. All operators are trans-
lated to PACTs and thus integrated into the Stratosphere
stack.

The Stratosphere project is at an early stage of de-
velopment. The latest, stable version is publicly avail-
able as open source at http://stratosphere.eu. Some of
the presented functions are experimental at the time of
writing and will be merged in the next stable release. In-
terested developers are welcome to evaluate their PACT
implementations for the operators.

4. Evaluation

We evaluated the Stratosphere platform on parts of
Alice’s use case to assess the effectiveness and effi-
ciency. All experiments ran on a cluster of eight ma-
chines (Intel Core Duo 2x2.66GHz) and 2 GB RAM us-
ing Stratosphere 0.1.1 and java 1.6.0.16 with 1.5 GB
RAM per JVM task manager.

For the experiments, we closely observed the scal-
ability of the two integration scripts that integrate all
three US sources. The first script integrates two com-
parably small data sets, namely the earmarks and the
congress members. It scrubs the data sets, resolves per-
sons and legal entities in both data sets, and then fuses
the entity clusters. The second script similarly inte-
grates the spendings into the previously integrated data
set. We omit the results from the integration of Free-
base, as the integration of the small politician data sets



behaved like the first script and the integration of the
larger company data set had a similar performance to
the second script. Table 3 lists the input format and sizes
of the most recent data sets of 2010 and the number of
resulting entities per type.

Source Format Size Resulting Entities (in k)
(in MB)  Person Legal Fund
US-Earmark CSV 54.9 2.3 15.6 9.8
US-Congress HTML 222 33.0 0.4 0.0
First script Json 13.9 2.3 15.8 9.8
US-Spending  CSV 2,508.3 0.0 1,662.8 3,158.1
Second script Json 1,261.2 23 1,667.1 3,167.9

Table 3: Sizes of the data sets in the evaluation

4.1. Effectiveness of Record Linkage

To measure the quality of the record linkage for both
linkable entity types, i.e., person and legal entity, we
manually inspected a sample of 1000 linked pairs to cal-
culate the precision:

true positives

precision = — —
true positives + false positives

We evaluated the precision on the results of the first

script for persons and on the results of the second script

for legal entities. As all earmarks have to be sponsored

by at least one congress member, we could additionally

assess the recall for the record linkage between earmark
sponsors and congress members:

true positives

recall = — -
true positives + false negatives

However, we did not evaluate the recall for legal enti-
ties as this would have required a large amount of man-
ual inspections of negatives.

The record linkage of persons achieved good results
with a precision of 98.3% and a recall of 95.2% as it
uses the first name, last name, and temporal informa-
tion (birth year and congress membership). In compar-
ison, the precision in resolving legal entities is lower
with 85.6% because it is mainly based on the name of
the company.

Finally, we compared our distributed implementa-
tions of the record linkage algorithms with single-
threaded implementation in the duplicate detection
toolkit[11]. The single-threaded implementations con-
ducted the same comparisons as our distributed imple-
mentations. That means that our algorithms work cor-
rectly in respect to the single-threaded implementations.
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Figure 8: Execution times

Therefore, further improvements in the quality thus can
only be achieved by applying a better similarity measure
or more suitable record linkage algorithm.

4.2. Efficiency

We ran the scripts three times on up to eight nodes
separately and averaged the execution times in Figure 8.
The execution time of the first script strongly decreased
for two nodes in comparison to the non-distributed exe-
cution at one node because the record linkage of the two
entity types could be easily distributed between the two
nodes.

However, further nodes did not substantially decrease
the time for two reasons. First, the individual record
linkages as the most compute-intensive part did not
benefit much from the parallelization because the dis-
tributed candidate comparison did not amortize the ad-
ditional data shipping due to the comparably small num-
ber of candidate pairs. Second, the current implemen-
tation of the input parsers and output writers cannot be
executed in parallel, which adds a linear overhead to the
parallel algorithms.

The integration of the large data set in the second
script ran up to twenty times longer. The execution
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Figure 9: Execution time of the operators in the second
script

time steadily decreased when adding new nodes as the
amount of comparisons in the record linkage is large
enough to amortize the shipping costs.

We also determined how well the individual opera-
tors performed for the large integration script. Because
Stratosphere uses a consumer-producer pattern, we can-
not directly measure the execution time of one operator.
Instead, we stopped the integration script three times
before and three times after one operator ran and cal-
culated the difference of the mean times. As illustrated
in Figure 9, the record linkage operator experiences a
noticeable speed up while the entity extraction operator
only gains little time during the scale out. The speed
up of latter operator is limited by the group by aggrega-
tions. Data fusion and data scrubbing perform in near-
constant time because they read or write the data into
the sequential input and output.

Figure 10 visualizes the scale out factors that were
calculated by dividing the execution time on one node
by the execution time of all cluster configurations. The
integration of the large script leaves more potential for
scaling out. However, the scale out properties of both
scripts are still far from the ideal line. Some algorithms,
especially the transitive closure are currently basic im-
plementation that do not scale well. In the future, we
will work on better algorithms that are transparently
hidden behind the presented operators and available for
the query optimizer to generate more efficient plans.

To put these measurements into perspective, the pro-
cess to create the data for the original GovWILD portal
can serve as a baseline (see Section 5). The same set of
steps are performed, albeit on all sources of Table 4 and
not just the three US sources. There, a mixed workflow
of Jaql (on Hadoop) and Java programs have an over-
all runtime of approx. 5h. Thus, development cycles to
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improve the workflow are tremendously shortened with
our approach.

5. GovWild Portal

Besides professional data analysts with profound do-
main knowledge, we also want to increases the trans-
parency for interested citizens. While former is prob-
ably able to formulate a complex query, most citizen
are most likely overwhelmed by the cheer number of
possibilities and options. Therefore, we maintain the
GovWild portal to increase the transparency of govern-
mental money transactions by providing a materialized
integration of major governmental data sources [6]. It
builds upon IBM’s information integration project Mi-
das [19] and currently integrates US American, Euro-
pean, and German data sources related to money flows
as listed in Table 4.

Source Format #Tuples  #Attributes
US-Spending (2009) XML 1,724,654 141
US-Earmark (2008) CSv 43,524 37
US-Congress HTML 95,253 8
EU-Financial HTML 60,733 14
EU-Parliament HTML 3,133 18
DE-Party Donations HTML 1,102 5
DE-Agricultural HTML 103,652 8
DE-Bundestag HTML 629 10
Freebase TSV 1,389,602 54

Table 4: Data sources integrated into GovWild

The GovWild portal http://govwild.org provides the
integrated data set as a download as well as a Web inter-
face to explore it. The portal is based on the Information
Workbench by fluid Operations AG, which helps users



interact with semantic Web data [15]. The user can in-
vestigate the large amount of data in several ways. He
can search for politicians, examine their spending statis-
tics, and browse through their funds. He may look for
a company or legal entity, view the received funds, and
work their way back to the sponsor. Additionally, funds
are directly accessible and can be sorted by specific cri-
teria such as the amount of money spent. Moreover,
featured queries help users to find interesting connec-
tion and may be an entry point to learn formulating sim-
ple queries. Finally, arbitrary SPARQL queries can be
processed.

The Information Workbench inherently handles RDF
triples only. A customized transformation script from
fluid Operations triplifies the Json files to RDF triples in
the N-Triples format. In order to capture all attributes of
GovWild in the RDF triples, we have created a custom
ontology. We map persons to a subclass of foaf:Person,
all legal entities to a subclass of foaf:Agent, and funds
to a customly defined class.

Since Freebase represents a major hub of the Link-
ing Open Data cloud and also constitutes a major data
source for GovWild, the RDF data set of GovWild is
connected to the Linking Open Data cloud. The portal
offers the OWL ontology, the integrated data in Json and
RDF for download.

6. Related Work

In this section, we review related work for the inte-
gration of Open Government Data and for scalable data
integration frameworks similar to Stratosphere.

6.1. Government Data Portals

Generally, the integration of Open Government Data
is an interesting intersection of the Semantic Web and
data integration research areas. Semantic Web re-
searcher usually aim to include the data sources in the
Linking Open Data Cloud (LODC). The heterogeneity
of the data sources remains unchanged, but interlinkage
of the RDF subjects allows to derive complex relation-
ships over several intermediate entities.

The model project of enriching publicly accessible
Open Government Data with semantic information is
data.gov.uk [21]. The portal serves as a central con-
tact point for data publishers and consumers for offi-
cial non-personal data in the UK. It helps governmental
agencies to prepare their data sets for publication on the
Comprehensive Knowledge Archive Network and man-
ages meta data for all data sets such as descriptions and
statistics. Consumers can browse through the hierarchi-
cally organized data sets. The rapid development of the
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portal stems from the broad support of the British gov-
ernment and the involvement of the main advisors Sir
Tim Berners-Lee and Professor Nigel Shadbolt. It pro-
vides access to over 5,600 data sets at the time of writ-
ing, most of them need to be integrated into the LODC.

A similar repository has been launched for the US on
data.gov. It currently lists over 300,000 data sets. How-
ever, the integration in the Semantic Web is still in the
beginning. The collaborating Tetherless World Constel-
lation at the Rensselaer Polytechnic Institute researches
two ways of interlinking the entities [9] with the LODC.
On the one hand, they allow portal visitors to manually
link entities. On the other hand, they explore machine
learning techniques to find these connections automati-
cally. Overall they found about 5,800 links to DBpedia,
GeoNames, and GovTrack.

Both portals follow the same approach. The data
ownership remains at the agencies and thus the sources
are highly heterogeneous. The interlinkage leverages
users or applications to formulate complex queries, but
they must also resolve occurring conflicts on their own.
In comparison, the GovWild portal integrates fewer data
sources, but additionally aligns schemata and fuses data.
The data is partly integrated into the LODC as it main-
tains the links to the original Freebase records.

A major disadvantage of officially funded portals be-
came obvious in the bill for the fiscal year 2011 as the
US government cut the budget for the electronic govern-
ment fund to $8 million from $34 millon (SEC. 1552.
in the bill®). The future of the affected data.gov remains
uncertain, while most agencies will still publish their
data (independently).

6.2. Scalable Data Integration

Since the amount of data is steadily increasing, but
the computation power per unit is only slowly raising,
it becomes important to perform data integration in par-
allel. Beyer et al. demonstrated that it is feasible to
achieve that goal with Hadoop and Jaql [5]. However,
the development is rather time-consuming and error-
prone, since data cleansing operations are not inherently
supported. In the following, we shall present paralleliz-
able frameworks that include data cleansing by design.

The key for massive parallelization is a declarative
description of the cleansing tasks to facilitate optimiza-
tion and distribution of the tasks. Galhardas et al.
created custom SQL operations in AJAX to formulate
such an declarative description and translate it to SQL

9http://rules.house. gov/Media/file/XML_112_1/WD/FINAL2011.
XML



for execution [14]. While the proposed approach has
the advantage that the query optimization techniques
of DBMS could be exploited, it relied heavily on user-
defined function for the data transformation tasks. They
also needed to modify the DBMS itself to support the
full range of their functions.

Similarly, Herschel and Manolescu extended XQuery
to perform data cleansing with XClean [17]. In direct
comparison with AJAX, they generated pure XQuery
queries and thus did not need to modify the query pro-
cessing engine. Additionally, the integrated data trans-
formation were expressive enough to not depend on the
user-defined functions, even though they also supported
external function definitions.

Tasks specified in both AJAX and XClean can be ex-
ecuted in parallel if the query processing engine sup-
ports parallelization. However, the languages SQL and
XQuery are not designed for massive parallelization and
it is highly unlikely that the processing engines will
fully exploit the complete computation power of larger
clusters in the near future.

In comparison, Silk is inherently developed to run
on a Hadoop cluster [23]. It interprets declarative job
descriptions formulated in the Silk Link Specification
Language to automatically find similar entries across
multiple RDF data sets. Nonetheless, Silk is currently
not embedded in a larger query system and provides no
means to fuse the data leaving the conflict resolution to
processing applications.

Lastly, there are three relevant projects at the UC
Irvine that together perform parallel data cleansing.
The FLAMINGO Project focuses on similarity search
and data integration queries through sophisticated in-
dex techniques. The second project is ASTERIX!'
which provides a data and programming model for
scalable analysis of large amounts of semi-structured
data. The ASTERIX Query Language allows to declar-
atively formulate similarity searches and fuzzy joins in
a similar fashion as XQuery. Since both projects are
closely connected, it is to expected that the parallel data
cleansing algorithms of FLAMINGO are ported to AS-
TERIX [22]. Ultimately, the queries are executed on
Hyracks, the parallel execution runtime [7]. The pro-
grams in Hyracks form an acyclic directed graph very
similar to Stratosphere. However, the operations on the
lowest level are rather database-oriented and might be
limited to the domain of structured and semi-structured
data. Additionally, there are currently no data cleansing
operators in the query language.

10http://asterix.ics.uci.edu/

16

7. Conclusion and Future Work

In this article, we described the challenges that arise
in the integration of Open Government Data. We moti-
vated the integration process with the data journalist Al-
ice who investigates nepotism. She identified four major
data sources that yield the necessary entities and rela-
tionships. However, since the data sets are maintained
independently and even official data sources contain er-
rors and incomplete data, the integration is challenging.
For example, often only one or two attributes can be
effectively used for record linkage as many values are
missing. Consequently, the chances increase to either
assign incorrect link or miss correspondences.

We demonstrated how Alice formulates a complex
query to integrate the data sources in Stratosphere.
Stratosphere interprets Jaql queries enriched with op-
erators specific to data integration tasks. We explained
the translation of the queries to the basic parallel pro-
gramming model that is a generalization of Map/Re-
duce. Furthermore, the evaluation showed that most
implementations scale well for large data sets and the
outlined settings result in a good precision and recall.

Nevertheless, Stratosphere requires good domain
knowledge and the user must be able to formulate a non-
trivial query. To give interested persons the opportunity
to view the data without these skills, we publish the re-
sult of the integration of several sources on the GovWild
portal http://govwild.org for online browsing or down-
load.

For the future, all of the presented new integration
operators need to be fully included into the cost model
of Stratosphere. The greatest challenge is to estimate
how many clusters the record linkage will produce. The
number of clusters determine the runtime of the fusion
and link operations. Moreover, the maximum size of
the clusters also greatly influences the conflict resolu-
tion functions of the fusion phase. Random sampling
of unclean data is not sufficient, as it selects a duplicate-
free subset with a high probability. Thus, more sophisti-
cated focused sampling methods need to be evaluated.
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