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ABSTRACT
Duplicate detection is the process of identifying multiple but
different representations of same real-world objects, which
typically involves a large number of comparisons. Partition-
ing is a well-known technique to avoid many unnecessary
comparisons. However, partitioning keys are usually hand-
crafted, which is tedious and the keys are often poorly cho-
sen.

We propose a technique to find suitable blocking keys au-
tomatically for a dataset equipped with a gold standard. We
then show how to re-use those blocking keys for datasets
from similar domains lacking a gold standard. Blocking
keys are created based on unigrams, which we extend with
length-hints for further improvement. Blocking key creation
is accompanied with several comprehensive experiments on
large artificial and real-world datasets.

1. EFFICIENT DUPLICATE DETECTION
In a duplicate detection process the safe way to find all

duplicates is to compare each element (record) with each
other element. This approach is computationally expensive,
and it is also pointless, because the vast majority of com-
parisons is performed on two totally different records that
have little to nothing in common. Thus, efficient duplicate
detection relies on a good pair selection algorithm that an-
ticipates promising comparisons upfront and chooses only
those pairs for similarity measure calculation. The precision
of a duplicate detection run is largely driven by the abil-
ity of the similarity measure to tell non-duplicate records
apart. On the other hand, high recall is achieved by sophis-
ticated methods that are able to avoid comparisons among
non-duplicates. In this paper we generalize from similarity
measures and consider only recall, i. e., we propose a method
that automatically partitions records according to duplicity
with other records.

In general, pair selection divides the comparison space
into either overlapping or non-overlapping partitions and
performs the comparisons only within those partitions. One

well-known, non-overlapping technique for pair selection is
blocking. An expert usually selects one or more attributes
that he expects to have common values amid similar records,
the blocking key. The relation is partitioned according to
each record’s value, the blocking key value, for these at-
tributes. In an address data scenario, this could be, for
instance, the ZIP code or the family name (or the concate-
nation of both). It is probable that two records identifying
the same person have the same ZIP code or the same fam-
ily name. Other attributes, such as gender, social security
number, or middle initial, do not serve well, because the par-
titions would become either too large, leading to very many
unnecessary comparisons, or too small, separating duplicate
records over multiple partitions. Depending on the choice
of attributes and the actual value distribution in the rela-
tion, several attributes might be required to form the block-
ing/partitioning criterion to further refine and sub-partition
the partitions.

A refinement of that blocking approach is to consider only
parts of attribute values instead of their full value: First,
mistakes in the unconsidered parts of the attribute are ig-
nored and thus smoothed out, and second, partitions might
become too small if the entire attribute was considered. In-
stead, only parts of the attributes, usually the first n char-
acters or the first m vowels are used. A more sophisticated
method is to apply hash functions on the values, such as cal-
culating the Soundex [2] code for a value. However, selecting
a proper value for n or m, or deciding whether and which
hash functions make sense, requires domain-experience and
considerable manual effort.

Additionally, several passes with different blocking crite-
ria may be performed to overcome data defects in exactly
those attributes. Since blocking saves significant compu-
tation time, multiple passes can be afforded that keep the
overall recall considerably high.

We have observed that different positions in attributes
serve differently well as blocking criterion. For example, a
blocking key might use the first two characters of both the
city and the ZIP code attribute. Assuming no typos, with
such a key all address records with the same ZIP code end up
in the same (large) partition, and the city refines this parti-
tion to finally create appropriately sized partitions. However
for large cities, the ZIP code is the same (for this city) in the
first few characters, thus in fact not refining the city parti-
tion1. I. e., using the first few characters in a ZIP code does
not add any distinction to the blocking key. Each record

1For example, Stuttgart (Germany) has ZIP codes ranging
from 70173 to 70619.



has to be mutually compared to all other records in the par-
tition, which causes high computation costs. For example,
having 100,000 records in a partition causes approximately
5 billion comparisons. Hence, this blocking key does not
succeed in separating dissimilar records into different parti-
tions.

In contrast, the third character in a ZIP code might be
more relevant, because it changes for different districts of
a (large) city. Not all digits occur equally frequently and
resemble the actual distribution of addresses within this city.
Our approach will identify those relevant parts of attributes
and propose them for blocking keys.

We make the following contributions:

1. A technique to automatically choose blocking keys that
are both a good estimation of the record similarity and
do not create too large partitions

2. A comprehensive evaluation on a large dataset and
high recall on related datasets

3. For our example domain, address data, a list of the
top blocking keys

The remainder of this paper is structured as follows: Sec-
tion 2 presents related work. Section 3 describes the general
idea of unigram-based partitioning, gives formalized notions
of pairs completeness, efficiency, and the overall blocking key
quality, and depicts the overall workflow. It further intro-
duces a novel technique to integrate attribute length-hints
into unigrams. Section 4 contains evaluations on the pre-
sented techniques, and finally Section 5 concludes the paper
and highlights further research directions.

2. RELATED WORK
Duplicate detection is a settled and broad field. Prior

work dates back many decades of research. This section
restricts briefly to duplicate detection in general and subse-
quently describes partitioning approaches and automation
of partitioning in particular.

Duplicate detection
Duplicate detection (or record linkage, reference concilia-
tion, instance identification, merge/purge, etc.) describes
the process of identifying same real-world objects within one
or several databases. Research started in the late 1960s [6]
and was driven by many different groups, organizations, and
purposes. That is why there are plenty of names for the
same research area (which are themselves duplicates). El-
magarmid [5] and Naumann and Herschel [14] give overviews
about the topic and present the fundamental steps and ap-
proaches.

Partitioning in general
Christen [3] compares several (so-called) indexing techniques
(traditional blocking, Sorted Neighborhood [9], q-grams [7],
canopy clustering [12], String-Map [10], and Suffix-array).
Concluding that they all achieve similar results on the same
dataset, he identifies the key definition as the most crucial
decision (which attributes to take and which part of those),
rather than the indexing technique. Draisbach [4] bridges
blocking and windowing approaches into sorted blocks.

Automatic blocking
Bilenko et al. [1] propose to take two orthogonal steps at
the same time. Not only do they decide on which attributes
to consider, but they also decide on the very information
taken from those attributes, e. g., “Same 1st Three Chars in
LastName” or “. . . Year same or off-by-one” (see Section 1).
They create disjunctive normal forms (DNFs) of different
length and evaluate them against a gold standard. DNFs
perform slightly better than canopy clustering. However,
the features need to be manually selected and their applica-
bility may differ over several domains.

Michelson and Knoblock [13] also use different DNFs that
were greedily aggregated via a training dataset. They con-
sider similarity measures from a small pool of methods com-
bined with all the attributes from the dataset as atomic fea-
tures and optimize the DNFs regarding reduction rate and
pair completeness. Due to the greedy approach, they only
find sub-optimal blocking keys and they also treat attributes
values as a whole and rely on the availability of similarity
measures.

Kenig and Gal [11] propose another technique that clus-
ters tuples according to their overlap of common attributes.
However, this approach relies on knowledge about the es-
timated size of the duplicate clusters and considers full at-
tributes. We promote a more general approach using uni-
grams instead of n-grams, without explicit specification of
attribute characteristics and without knowledge about the
anticipated duplicates.

3. PARTITIONING
Partitioning is the key to efficiency when carrying out

a duplicate detection process. Without partitioning, each
record has to be compared pairwise with each other record,
causing the effort to be squared regarding the number of
comparisons (see Figure 1(a)). To reduce this effort, only
records within the same partition are compared (intra-par-
tition comparisons), eliminating all inter-partition compar-
isons (see Figure 1(b), blocks2 are highlighted). Conse-
quently, each partition contains few enough elements to en-
sure a relatively quick execution of the duplicate detection
run and the total number of comparisons decreases dramat-
ically. Moreover, the partitioning pre-classifies clusters of
duplicates so that a high recall can be retained.
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(b) Intra-Partition Com-
parisons

Figure 1: Comparison of computation effort for ex-
haustive comparisons (a) and blocking (b).

2We use the terms partition(ing) and block(ing) synony-
mously.



The crucial parameter for partitioning is the blocking key,
the criterion for partitioning records into blocks. When us-
ing attribute values to create blocking keys, the smallest
possible unit are the individual unigrams of attribute val-
ues. We specify a chosen unigram by so called unikeys; a
unikey defines an attribute and a position within, for ex-
ample, the third character of the family name attribute,
written as familyname-23. Hence, the value of a unikey
for a given attribute value is a single character, the un-
igram. For instance, the aforementioned unikey and the
family name attribute value “Sørensen” yield the unigram
“r”. A blocking key is then a list of m unikeys, for example
[city-3, date-2, givenname-2]4; a corresponding block-
ing key value could look like “s 2 r”.

Note that there are two objective functions (pairs com-
pleteness and efficiency) that could be optimized for. For
example, find the most effective blocking key with a fixed
efficiency (costs) of, say, 1 billion comparisons. In this pa-
per, we formally present a (configurable) trade-off between
both functions and optimize this trade-off.

Our goal is to find the “best” blocking key for a given
dataset. The quality of a blocking key derives from both
pairs completeness (how many duplicates are found) and ef-
ficiency (how many comparisons are performed to find those
duplicates). Pairs completeness is measured in the achieved
recall, efficiency is calculated using the absolute number of
comparisons. A perfect blocking key would create partitions
exactly according to the tuples’ duplicity relations, thus no
unnecessary comparisons are performed and all duplicates
are found. In the opposite, a trivial blocking key would put
every tuple into a giant single partition, achieving perfect
pairs completeness, too, but disrupting efficiency by far too
many unnecessary comparisons. The notion of blocking key
quality is explained in more detail in Section 3.1.

Once good blocking keys are determined for a training
dataset that has a gold standard, this knowledge can be used
for other (test) datasets from a similar domain where no gold
standard is available. Two datasets are of the same or simi-
lar domain if both schemata overlap to a certain degree; the
higher the overlap, the higher the domain-similarity. The
required overlap ratio depends on the actual application,
user preferences (if available), value distribution (especially
language), error characteristics, and the used blocking keys.

In such a test dataset, blocking keys still have to be “good”
(i. e., effective and efficient), but also valid. This means,
their unikeys have to be available in the schema of the test
dataset. Validity is defined below.

Finally, the set of good blocking keys for training datasets
can be applied to test datasets automatically without any
human interaction. See Section 3.2 for the overall workflow.
Section 3.3 describes the integration of length-hints for uni-
grams.

3.1 Problem Statement and
Blocking Key Quality

Given a dataset and its schema, find a valid blocking key
(or a set of k valid blocking keys) that achieves the optimal
trade-off between pairs completeness and efficiency.

3By convention, we start indexing at 0.
4Note that the order of unikeys is irrelevant. We always
state them in alphabetical order.

Validity
Usually, a dataset different from the training dataset will
comprise other attributes. A given blocking key is called
valid in a test dataset, iff all of its unikeys are available in the
test dataset, both regarding the availability of the schema
attributes as well as the attribute lengths. The attribute
length is defined by the schema (e. g., a CHAR(100) in SQL)
or is infinite for other data sources (e. g., CSV files).

Pairs completeness
The pairs completeness [8, 13] is the measure of how many
of the duplicates can be found for a blocking key, i. e., how
effective the blocking key is.

A blocking key is used to create a partitioning to pre-
classify duplicate records. Subsequently, a similarity mea-
sure is applied on each possible pair within each partition. If
the pair’s similarity is above a given threshold, it is treated
as a duplicate, otherwise as a non-duplicate. The ratio of
actual duplicates among the declared pairs divided by all du-
plicates is called recall and serves as the pairs completeness.
In our experiments, we replace such a similarity measure by
a lookup in the true matches.

Efficiency
A blocking key is efficient if it uses relatively few compar-
isons to achieve a given pairs completeness. Thus, the mea-
sure for efficiency is the average number of performed com-
parisons for each found duplicate.

In practice, however, the number of comparisons should
not exceed a fixed threshold θ. We express efficiency by
normalizing the number of comparisons c according to θ
and subtract it from 1 to align it to the pairs completeness.
Thus, efficiency is defined as 1−( c

θ
) ∈ [0, 1], assuming c ≤ θ.

This measure resembles the term Filtered Reduction Ra-
tio [8]. Yet using the actual number of potential comparisons
(5 · 1010 for 100,000 tuples) in the denominator would usu-
ally create a value close to 1. Therefore, we adapt the notion
by Gu and Baxter, but instead of a filtering step, we give
the efficiency in relation to a baseline approach. In our case
this is the number of comparisons, the Sorted Neighborhood
approach would have created.

Overall Blocking Key Quality (BQ)
A good blocking key should be effective and efficient. There-
fore, we define the Overall Blocking Key Quality BQ as the
harmonic mean between pairs completeness and efficiency
(BQ = 2·PC·Ey

PC+Ey
), where PC is pairs completeness and Ey is

efficiency.

3.2 Key Generation Workflow
Automatic blocking key generation is performed in two

steps. First, for a training dataset with a given gold stan-
dard, all combinatorially possible blocking keys are evalu-
ated. Second, for a test dataset, typically lacking a gold
standard, the previously created list of blocking keys is it-
erated to find the best valid blocking key.

Training Phase
As the first step, good blocking keys are identified:

1. Generate all possible unikey combinations (i. e., block-
ing keys).



2. For each blocking key perform a duplicate detection
experiment on the reference dataset:

(a) If the number of comparisons exceeds the thresh-
old θ, discard this blocking key.

(b) Else, calculate the achieved overall blocking key
quality (BQ) for the blocking key

3. Sort all non-discarded blocking keys descendingly by
BQ.

Production Phase
The keys from the training phase can subsequently be used
to find duplicates in test datasets of similar domains.

1. For each blocking key in the previously calculated list,
check for validity for the current dataset.

2. For each remaining valid blocking key (still ordered by
BQ), start a duplicate detection run.

(a) If the number of comparisons exceeds a certain
threshold, abort the run, keeping the so-far de-
tected duplicates.

(b) Else, finish the duplicate detection run until one
of the following abortion criteria is fulfilled: the
desired number of passes have been executed, the
total number of actually performed comparisons
over all runs exceeds a threshold θ, the overall
efficiency sinks below a given threshold (i. e., no
or not enough new duplicates are found), or the
number of detected duplicates is sufficient. Note
that the thresholds might be domain dependent
or given by a user.

3.3 Incorporate Attribute Value Lengths into
Unigrams

Many attributes allow for different lengths of their val-
ues, e. g., cities, names, or phone numbers. Thus, the higher
the unikey position in an attribute, the higher the probabil-
ity of reading an empty character. In blocking key values,
empty characters are indistinguishable, no matter whether
they appear just after the last non-empty character or far
behind it. Unigrams do not carry information about the at-
tribute value’s length, they just contain a single character
from a specified position. This section shows a technique to
enhance unigram information by length-hints.

In the upper part of Figure 2, some strings with differ-
ent string lengths are shown. On the right-hand side, their
respective unigrams for the unikey givenname-8 are given.
They all consist of the empty character (represented as ⊥).
Hence, this unikey does not add any further refinement to a
blocking key for those attribute values.

We propose to pad the missing positions (empty charac-
ter) with special characters up to the highest unikey posi-
tion. In the experiments and for illustration in this paper,
we selected circled numbers (see Figure 2, lower part), be-
cause they consume only one character (and are thus com-
patible with the unigram concept) and they are very unlikely
to occur in the dataset. Moreover, they have an inherent,
human-readable order. Taking the same unikey as before
(givenname-8) we can see that there are more different uni-
grams than in the traditional variant above and they capture
similarity more closely.
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Figure 2: Replacing empty characters to allow more
fine-grained partitions

Section 4.4 shows that the circle approach outperforms
the traditional (bot5) approach in terms of BQ due to better
refinement capabilities.

4. EVALUATION
Section 4.1 presents the datasets used for evaluation. Sec-

tion 4.2 introduces the key figures while Section 4.3 evalu-
ates on details and on how well blocking keys can be used
for other datasets. Finally, Section 4.4 evaluates the length-
hints approach.

4.1 Datasets and Settings
For evaluation, we chose as training dataset a confiden-

tial corporate address dataset (called “Corporate-1”) with a
random sample of 100,000 tuples consisting of 12 attributes,
comprising names, city, date of birth, etc. Further, we took
unikeys for all attributes and selected the first five positions,
a generally sound value according to our experience. In to-
tal, this yields 12 ·5 = 60 unikeys. We further created block-
ing keys consisting of unikey combinations of sizes 3 to 5.
This creates

(
60
57

)
+
(
60
56

)
+
(
60
55

)
= 5, 983, 367 unikey combina-

tions. The sample contains 804 pairwise disjoint duplicates,
roughly 1%.

To come up with a comparison threshold θ, we took the
traditional Sorted Neighborhood pair selection algorithm on
this dataset with a window size of 100. Such an algorithm
performs exactly θ = 9, 895, 050 comparisons. Thus, we use
this θ when evaluating the six million blocking keys. The
similarity measure for the corporate dataset was a perfect
lookup in the gold standard, i. e., the similarity measure
always achieves a precision of 100%. Therefore, we only
report on recall (pairs completeness).

We chose two datasets as test datasets, one was another
(disjoint) 100,000 sample from the corporate address dataset
(called “Corporate-2”), the second was a 100,000 sample of
a places dataset, integrated data from Facebook, Gowalla,
and Foursquare about places such as shops, restaurants, etc.
throughout the world (called “Places”).

5⊥ is written as \bot in LATEX



The experiments were performed on a many-core Linux
CentOS (64 bit) machine. The multithreaded implementa-
tion was written in Java using 10 GB of main memory and
30 threads.

4.2 Overall Blocking Key Quality
Figure 3 shows the duplicate detection results for the

training dataset regarding the number of found duplicates
and the number of comparisons performed to find those du-
plicates. Each point shows the results for one blocking key.
Only results for a pairs completeness of at least 82% (660 du-
plicates; achieved by 325 blocking keys) are shown.
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Figure 3: Performed comparisons against each num-
ber of found duplicates (showing only results with
at least 82% pairs completeness).

For example, there are several blocking keys that find
674 duplicates; the most efficient key ([familyname-0,
familyname-1, zip-0, zip-1], gray circle) performed
1,690,163 comparisons and took 277 ms while the least ef-
ficient key ([street-0, street-1, street-2, street-3],
gray triangle) used 9,578,354 comparisons within 475 ms
for the same number of duplicates. Yet, the threshold
θ (9,895,050) prevented calculating far worse keys (e. g.,
[phone-0, title-0, title-1, title-2] for the same re-
sult by using 4,164,642,286 comparisons in 74,797 ms). Note
that the partitioning itself (i. e., without time for compari-
son) only takes 314 ms on average for all of the three men-
tioned blocking keys (445 ms on average over all blocking
keys).

For the 6 million blocking keys evaluated, the total calcu-
lation took one full day with our 30-thread implementation.

All of the three blocking keys have the same pairs com-
pleteness (82%), but they can be distinguished by their ef-
ficiency which is 83% for the first key and only 3% for the
second key. The overall blocking key quality BQ mediates
between both measures and is shown for the same 325 block-
ing keys in Figure 4.

The best blocking key has a BQ of 89.31%. It finds 672
duplicates using 407,232 comparisons. Among all blocking
keys, 5,329 blocking keys have a BQ of at least 80%.

4.3 Detailed Experiment Results
Table 1 shows the most successful blocking keys with re-

gard to the number of found duplicates, comparisons, pairs
completeness, efficiency, and BQ. To compare, an “expert
guess” – the ad-hoc blocking key [city-0, familyname-0,

givenname-0, zip-0] a human expert might have come up
with – only found 274 duplicates.
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Figure 4: Overall blocking key quality (BQ) for the
blocking keys from Figure 3, sorted by BQ.

Just a bit of derivation in the attribute positions as in
[city-0, familyname-0, givenname-3, zip-1] had found
7 more duplicates comparing one fifth fewer records. The
most successful blocking key found 86.69% of the duplicates,
but used 12,521 comparisons for each duplicate. In contrast,
the most efficient blocking key only performed 27 compar-
isons per duplicate revealing only a small fraction of all the
duplicates. Finally, the overall best key was both, effective
and efficient, as described above. The respective maximum
values in the table are emphasized.

The Top 20 blocking keys (regarding to BQ) are depicted
in Table 2 in the appendix. At the end of the day, 3,531,838
of the 5,983,367 blocking keys (59%) caused few enough
comparisons and were considered for the training dataset.

The most frequent unikeys among the Top 300 blocking
keys (Table 3) contain expected attributes (ZIP code, street,
familyname) at the top and show that for most attributes
the first position is not the most frequent one.

Domain Transfer
We used the Corporate-2 dataset to evaluate whether block-
ing keys can be taken over to another dataset from the same
domain. Since both samples (Corporate-1 and Corporate-2)
have been derived from the same dataset, the schema is the
same and thus all blocking keys are valid. We chose the 300
best blocking keys (according to their BQ) from the training
dataset and performed duplicate detection runs on them.

The absolute number of found duplicates marginally in-
creased, because there are a few more duplicates in the
second sample. However, all the relative measures (pairs
completeness, efficiency, and BQ) remained nearly stable.
The average overall blocking key quality among the top 300
blocking keys decreased slightly from 85.54% to 85.19%,
while BQ even improved for 89 blocking keys. Table 4 in the
appendix shows key figures for the first 10 blocking keys.

In another experiment, we applied the 300 blocking keys
from before on the Places dataset (7,151 duplicates to find)
which has a different schema (and value distribution), but a
similar domain. Here, only 131 blocking keys are valid, how-
ever the first invalid blocking key had rank 50. The average
overall blocking key quality is 94.29% due to a generally
higher pairs completeness. This means that the duplicate
characteristics resemble the blocking keys very well, even
with data from different languages and domains. Table 5 in
the appendix shows key figures for the first 10 blocking keys.



Description Blocking key Found
dupli-
cates

Compa-
risons

Pairs
Com-
plete-

ness

Effi-
ciency

BQ

Expert guess [city-0, familyname-0,

givenname-0, zip-0]

274 258,077 34.08% 97.39% 50.49%

Most duplicates and maxi-
mum pairs completeness

[zip-0, zip-1, zip-2, zip-3] 697 8,727,009 86.69% 11.80% 20.78%

Least comparisons per du-
plicate and most efficient

[city-0, familyname-0, family-

name-3, givenname-3, street-3]

214 5,781 26.62% 99.94% 42.04%

Overall best [familyname-0, familyname-1,

zip-0, zip-1, zip-2]

672 407,232 83.58% 95.88% 89.31%

Table 1: Selected outstanding blocking keys

4.4 Attribute Lengths in Unigrams
For all the experiments in this section, we used the circle

approach, preserving attribute lengths. In this section, we
evaluate the usefulness of integrating the attribute length in
a unigram. We ran each deduplication experiment/blocking
key twice for the Corporate-1 dataset, first with the bot,
second with the circle replacement strategy.

Among the 61 distinct top 50 blocking keys (both from
circle and bot), 19 blocking keys have a higher quality when
using the circle approach, 29 blocking keys have the same
quality, and 13 blocking keys have a higher quality for bot.

The traditional replacement strategy (bot) creates equal-
sized or larger partitions, because the character diversity is
smaller. This, in turn, causes more comparisons and might
increase the pairs completeness compared to the circle ap-
proach lowering the efficiency. Since in practice, the number
of allowed comparisons has to be limited, some blocking keys
cannot be considered when using the bot approach while the
circle approach still allows those blocking keys. The best
blocking key that causes too many comparisons when using
bot has a BQ of 62.69% and finds 74.38% of the duplicates.

5. CONCLUSION
We presented a technique to discover high quality block-

ing keys on a given training dataset. The blocking keys were
evaluated regarding pairs completeness and efficiency; both
measures are joined in the notion of the overall blocking key
quality. The experiments showed that it is possible to eas-
ily find high quality blocking keys for other datasets from
similar domains lacking a gold standard by selecting them
from the results of the training dataset. Length-hints pro-
vide useful help and even allow otherwise discarded blocking
keys to be considered.

Our final goal is to create an autonomous system (a ser-
vice) for the entire duplicate detection process, with no need
for human configuration. In this work, we assume that some
pre-processing is already done: Input data is structured and
the schema has been analyzed. Moreover, each attribute in
the schema is assigned to a class (e. g., city, family name, or
ZIP code) [15], and with it to some similarity measure. As
a next step, such a service has to find high quality blocking
keys automatically. Our proposed automatic duplicate de-
tection technique just needs one training dataset per domain
to be efficient and autonomous. With the training dataset’s
gold standard, a list of good blocking keys can be compiled
beforehand. This list is subsequently searched for the best
valid blocking key for each customer dataset.

As a future research direction, true n-grams instead of
unigrams can be taken as blocking key features. This dra-
matically increases the computational complexity. Hence,
a good heuristics is needed to estimate the number of com-
parisons upfront without performing the whole partitioning.
Many parameters were fixed in the evaluation, e. g., taking
the first five attribute value positions. A good choice for
that number derives from the attribute’s class (see above).
For gender, 1 might be enough, but dates might benefit from
8 to 10 positions.

Many of the best blocking keys resemble each other and
only differ in one or two unikeys. Multiple passes with dif-
ferent blocking keys might be more effective if the blocking
keys are more diverse. The trade-off between pairs com-
pleteness (e. g., by having a larger diversity) and efficiency
(e. g., by saving comparisons due to quite similar blocking
keys) should incorporate this and generate improved, more
carefully aligned sets of blocking keys.

The BQ treats pairs completeness and efficiency equally.
It is possible to place more weight on the pairs complete-
ness to achieve better results, while using more computa-
tion power, enabling different cost models. Furthermore,
test datasets usually offer attributes which are currently ig-
nored, but might provide good unikeys. Finally, overlapping
partitioning techniques are not yet considered by the block-
ing key creation technique, but have the potential to give
even better results. However blocking keys face special re-
quirements here, such as unikey order sensitivity.
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Appendix

Rank Blocking key BQ
1 [familyname-0, familyname-1, zip-0, zip-1, zip-2] 89.31%
2 [street-1, street-4, zip-0, zip-1, zip-2] 89.21%
3 [street-0, street-1, zip-0, zip-1, zip-2] 88.81%
4 [street-1, street-4, zip-1, zip-2] 86.88%
5 [familyname-0, familyname-1, zip-1, zip-2] 86.23%
6 [street-0, street-1, zip-1, zip-2] 86.07%
7 [street-1, street-4, zip-0, zip-2] 85.87%
8 [familyname-0, familyname-1, title-3, zip-1, zip-2] 85.60%
9 [familyname-0, familyname-1, title-2, zip-1, zip-2] 85.60%

10 [familyname-0, familyname-1, title-4, zip-1, zip-2] 85.60%
11 [familyname-0, familyname-1, title-1, zip-1, zip-2] 85.60%
12 [familyname-0, familyname-1, title-0, zip-1, zip-2] 85.60%
13 [familyname-0, familyname-1, zip-0, zip-2] 85.05%
14 [street-0, street-1, zip-0, zip-2] 84.94%
15 [familyname-0, familyname-1, title-3, zip-0, zip-2] 84.46%
16 [familyname-0, familyname-1, title-4, zip-0, zip-2] 84.46%
17 [familyname-0, familyname-1, title-2, zip-0, zip-2] 84.46%
18 [familyname-0, familyname-1, title-1, zip-0, zip-2] 84.46%
19 [familyname-0, familyname-1, title-0, zip-0, zip-2] 84.46%
20 [street-1, street-4, zip-0, zip-1] 84.36%

Table 2: Top 20 blocking keys for Corporate-1 train-
ing dataset.

Unikey Frequency
zip-2 256
zip-1 187
street-1 162
zip-0 147
street-4 124
street-0 121
street-3 108
street-2 71
familyname-0 56
familyname-1 33
zip-3 27
hno-0 25
hno-1 15
pobox-4 14
pobox-1 14
pobox-3 14
pobox-0 14
pobox-2 14
title-3 14
title-4 14
title-2 14
title-1 14
title-0 14
familyname-4 2

Table 3: A histogram of the unikeys for the Top 300
blocking keys.



Corporate 1 Corporate 2
Blocking key Found

Dup-
licates

Com-
paris-

ons

Pairs
Com-

pleten.

Effi-
ciency

BQ Found
Dup-

licates

Com-
paris-

ons

Pairs
Com-

pleten.

Effi-
ciency

BQ

[familyname-0,

familyname-1, zip-0, zip-1,

zip-2]

672 407,232 83.58% 95.88% 89.31% 729 401,129 83.21% 95.94% 89.13%

[street-1, street-4, zip-0,

zip-1, zip-2]

670 396,567 83.33% 95.99% 89.21% 732 396,333 83.56% 95.99% 89.34%

[street-0, street-1, zip-0,

zip-1, zip-2]

668 455,230 83.08% 95.39% 88.81% 726 444,373 82.87% 95.50% 88.74%

[street-1, street-4, zip-1,

zip-2]

670 914,682 83.33% 90.75% 86.88% 720 262,808 82.19% 97.34% 89.12%

[familyname-0,

familyname-1, zip-1, zip-2]

672 1,082,543 83.58% 89.05% 86.23% 724 289,010 82.64% 97.07% 89.28%

[street-0, street-1, zip-1,

zip-2]

668 1,060,006 83.08% 89.28% 86.07% 720 328,685 82.19% 96.67% 88.84%

[street-1, street-4, zip-0,

zip-2]

670 1,129,843 83.33% 88.58% 85.87% 691 284,009 78.88% 97.12% 87.05%

[familyname-0,

familyname-1, title-3,

zip-1, zip-2]

661 1,060,663 82.21% 89.28% 85.60% 691 290,549 78.88% 97.06% 87.03%

[familyname-0,

familyname-1, title-2,

zip-1, zip-2]

661 1,060,666 82.21% 89.28% 85.60% 691 291,244 78.88% 97.05% 87.03%

[familyname-0,

familyname-1, title-4,

zip-1, zip-2]

661 1,060,668 82.21% 89.28% 85.60% 721 431,861 82.30% 95.63% 88.47%

Table 4: Comparison of the key figures for the first 10 best blocking keys in Corporate-1 (training) applied
on Corporate-2.

Corporate 1 Places
Blocking key Found

Dup-
licates

Com-
paris-

ons

Pairs
Com-

pleten.

Effi-
ciency

BQ Found
Dup-

licates

Com-
paris-

ons

Pairs
Com-

pleten.

Effi-
ciency

BQ

[familyname-0,

familyname-1, zip-0, zip-1,

zip-2]

672 407,232 83.58% 95.88% 89.31% 7,151 270,706 100% 97.26% 98.61%

[street-1, street-4, zip-0,

zip-1, zip-2]

670 396,567 83.33% 95.99% 89.21% 6,721 405,490 93.98% 95.90% 94.93%

[zip-0, zip-1, zip-2,

street-0, street-1]

668 455,230 83.08% 95.39% 88.81% 6,753 617,040 94.43% 93.76% 94.09%

[zip-1, zip-2, street-1,

street-4]

670 914,682 83.33% 90.75% 86.88% 6,717 465,847 93.93% 95.29% 94.60%

[familyname-0,

familyname-1, zip-1, zip-2]

672 1,082,543 83.58% 89.05% 86.23% 6,721 432,902 93.98% 95.62% 94.79%

[street-0, street-1, zip-1,

zip-2]

668 1,060,006 83.08% 89.28% 86.07% 6,717 379,379 93.93% 96.16% 95.03%

[street-1, street-4, zip-0,

zip-2]

670 1,129,843 83.33% 88.58% 85.87% 6,731 545,091 94.12% 94.49% 94.30%

[familyname-0,

familyname-1, title-3,

zip-1, zip-2]

661 1,060,663 82.21% 89.28% 85.60% 6,736 993,987 94.19% 89.95% 92.02%

[familyname-0,

familyname-1, title-2,

zip-1, zip-2]

661 1,060,666 82.21% 89.28% 85.60% 6,727 1,241,669 94.07% 87.45% 90.64%

[familyname-0,

familyname-1, title-4,

zip-1, zip-2]

661 1,060,668 82.21% 89.28% 85.60% 6,717 388,312 93.93% 96.07% 94.99%

Table 5: Comparison of the key figures for the first 10 best blocking keys in Corporate-1 (training) applied
on Places.


