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Abstract Linked Open Data comprises very many and of-
ten large public data sets, which are mostly presented in
the RDF triple structure of subject, predicate, and object.
However, the heterogeneity of available open data requires
significant integration steps before it can be used in appli-
cations. A promising and novel technique to explore such
data is the use of association rule mining. We introduce
“mining configurations”, which allow us to mine RDF data
sets in various ways. Different configurations enable us to
identify schema and value dependencies that in combina-
tion result in interesting use cases. We present rule-based
approaches for predicate suggestion, data enrichment, on-
tology improvement, and query relaxation. On the one hand
we prevent inconsistencies in the data through predicate sug-
gestion, enrichment with missing facts, and alignment of the
corresponding ontology. On the other hand we support users
to handle inconsistencies during query formulation through
predicate expansion techniques. Based on these approaches,
we show that association rule mining benefits the integration
and usability of RDF data.

Keywords Linked open data · RDF · Association rule
mining · Schema analysis

1 Inconsistency in RDF Data

The increasing amount of Linked Open Data (LOD) on the
Web raises new opportunities and challenges for the data
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mining community [14]. LOD is often represented in the Re-
source Description Framework (RDF) data model: a triple
structure consisting of a subject, a predicate, and an object
(SPO). Each triple represents a statement or fact.

When processing RDF data, meta information, such as
ontological structures and exact range definitions of pred-
icates, are desirable and ideally provided by a knowledge
base. However in the context of LOD, knowledge bases
are often incomplete or simply not available. Even when a
knowledge base is available, we often observe triples that
violate its axioms. This inconsistency and lack of metadata
impedes the utilization of LOD. Thus, it is useful to auto-
matically generate meta information, such as ontological de-
pendencies, range definitions, and topical associations of re-
sources. Association rule mining is a promising approach to
create such metadata, as we show in this article.

As resources can be connected through multiple pred-
icates, co-occurring in multiple relations, frequencies and
co-occurrences of statement elements become an interesting
object of investigation for pattern analysis methods, such as
association rule mining. Association rule mining has been
widely studied in the context of basket analysis and sale rec-
ommendations [5]. In fact, association rules can be discov-
ered in any domain, with many items or events among which
interesting relationships can be inferred from co-occurrence
of those items or events in existing subsets (transactions). To
mine RDF data, several questions must be answered: What
should be mined in which context, and what are the appli-
cation fields for each approach. Previous work concentrates
on inductive logic programming and graph mining, or is re-
stricted to scenarios where domain knowledge and complete
ontology structures are available.

We propose an approach that applies association rule
mining at RDF-statement level by introducing the concept
of mining configurations, briefly introduced in [2]. A min-
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ing configuration specifies one element of the SPO construct
as the context of rule mining (the transaction identifiers) and
another as the target of rule mining (the items and transac-
tions). For each of the possible six configuration we describe
the corresponding opportunities and application fields. In
particular we show four applications that are based on min-
ing configurations and benefit the usability and machine-
readability of RDF data:

Predicate Suggestion When creating new triples manually,
the creator might not exactly know which properties and val-
ues should be chosen. For instance, authors of Wikipedia
infoboxes, which are the information source for DBpedia
facts, are often inexperienced and only infrequently edit
such data. Such users might forget to use certain predicates
or might use similar but not common predicates for a new
entry (e.g., city instead of locationCity). Those heterogeneous
entries make integration of the complete dataset difficult.
Predicate suggestion remedies the problem, providing users
with a list of commonly used predicates, based on the al-
ready existing predicates for the entry.

Enrichment with Missing Facts Applying the suggestion
approach to objects in addition to predicates enables us also
to suggest object values as part of a new fact. We can then
combine both approaches to amend data with completely
new facts. As a proof-of-concept we applied our mining
concept to the popular DBpedia data set [7] and achieved
promising results.

Data-driven Ontology Re-engineering While there are
best practices for publishing Linked Open Data using es-
tablished ontologies [14], our analysis of the Billion Triple
Challenge Dataset 2011 showed that due to various reasons
certain “misusage” patterns occur frequently. This misuse
partly stems from the fact that ontology definitions may be
either too specific or too generic. The mismatch of data and
ontology impedes the integration of data sources. We have
identified two general misusage cases that can be remedied
following our rule-based methodology [1].

Query Relaxation Through Predicate Expansion Another
possibility to deal with ontology misusage in RDF data is
to relax query results. Analyzing a SPARQL query workload
provided by usewod20121 we encountered multiple sets of
SPARQL queries that included UNION constructions join-
ing dozens of patterns to account for schema and value er-
rors and abbreviations. For example, a query for company
entities labeled with IBM looked not only for the pattern

?company dbpedia-prop:name ‘‘IBM’’@en

1http://data.semanticweb.org/usewod/2012/.

but also for

?company rdfs:label ‘‘IBM’’@en,

via a UNION construction. We show a rule-based approach
for discovering such pairs of predicates that can be used for
query relaxation.

The remaining of this article is organized as follows: First
we give an introduction to our methodology that was intro-
duced in [2]. In Sect. 3 we show how rule mining can be
applied for predicate suggestion and in Sect. 4 we show how
the approaches can be extended for auto-amendment of new
triples. In Sect. 5 we present our approach for dealing with
inconsistent property usage through ontology re-engineering
from [1] and in Sect. 6 how to deal with this problem through
predicate expansion [3]. Then we give an overview of related
work in Sect. 7 and conclude in Sect. 8.

2 Preliminaries

Our approach is based on association rule mining that is en-
abled by our concept of mining configurations [2]. First, we
give a brief introduction to the concept of association rule
mining. Next, we introduce our approach of mining config-
urations for RDF data and outline the characteristics of each
configuration.

2.1 Association Rule Mining

The concept of association rules has been widely studied in
the context of market basket analysis [4], however the for-
mal definition is not restricted to any domain: Given a set
of items I = {i1, i2, . . . , im}, an association rule is an im-
plication X → Y consisting of the itemsets X,Y ⊂ I with
X ∩ Y = ∅. Given a set of transactions T = {t |t ⊆ I }, as-
sociation rule mining aims at discovering rules holding two
thresholds: minimum support and minimum confidence.

Support s of a rule X → Y denotes the percentage of
transactions in T that include the union of the antecedent
(left-hand-side itemset X) and consequent (right-hand-side
itemset Y ) of the rule, i.e., s% of the transactions in T con-
tain X ∪ Y . The confidence c of a rule denotes the statistical
dependency of the consequent of a rule from the antecedent.
The rule X → Y has confidence c if c% of the transactions
T that contain X also contain Y . Algorithms to generate
association rules decompose the problem into two separate
steps:

1. Discover all frequent itemsets, i.e., itemsets that hold
minimum support.

2. For each frequent itemset a generate rules of the form
l → a − l with l ⊂ a that hold minimum confidence.

http://data.semanticweb.org/usewod/2012/


Datenbank Spektrum (2013) 13:111–120 113

Table 1 Six configurations of context and target

Conf. Context Target Use case

1 Subject Predicate Schema discovery

2 Subject Object Basket analysis

3 Predicate Subject Clustering

4 Predicate Object Range discovery

5 Object Subject Topical clustering

6 Object Predicate Schema matching

While the second step of the algorithm is straightfor-
ward, the first step marks the bottleneck of any algorithm.
The three best known approaches to this problem are Apri-
ori [5], FP-Growth [13], and Eclat [23]. For each of these
algorithms, there exist multiple modifications and optimiza-
tions. We use the FP-Growth algorithm for our intentions.

2.2 Mining Configurations

To apply association rule mining to RDF data, it is necessary
to identify the respective item set I as well as the transaction
base T and its transactions. Our mining approach is based on
the subject-predicate-object (SPO) view of RDF data.

Any part of the SPO statement can be regarded as a con-
text, which is used for grouping one of the two remaining
parts of the statement as the target for mining. So, a trans-
action is a set of target elements associated with one con-
text element that represents the transaction id (TID). We call
each of those context and target combinations a configura-
tion. Table 1 shows an overview of the six possible configu-
rations and their preliminarily identified use-cases. Each can
be further constrained to derive more refined configurations.
For instance, the subjects may be restricted to be of type
Person. In the following we further elaborate the meaning
of each configuration with regard to the according target of
mining (Table 1).

Mining Subjects In the RDF model, all statements with
same subject represent one entity. Subjects with many com-
mon predicates can be considered as similar subjects. Thus,
mining subjects in the context of predicates (Conf. 3) results
in rules that express clustering or ontological affiliation of
entities.

For instance, in the DBpedia set we retrieved rules be-
tween subjects that can be classified as presidents, musi-
cians, or athletes, such as George Washington → Lyndon
B. Johnson with 92 % confidence. As rules come up when
subjects share a minimum number of properties, it can be
expected that varying the support leads to clusterings and
ontological concepts that differ in granularity. So lowering
the minimum support leads to rules connecting athletes and
presidents, because they share predicates of the more gen-
eral concept “person”, such as name or birth_place.

Mining subjects in the context of objects (Conf. 5), i.e.,
discovering subjects that share a minimum number of object
values, results in rules between entities that are topically re-
lated. Objects are values that might be associated with sub-
jects in different relations. E.g., several persons may share
the object Berlin in different roles like birth or death_place
or home_town. In fact, up to 50 distinct predicates in the
DBpedia ontology infoboxes data set version 3.7 involve the
city Berlin as object value. Therefore, organizations as well
as persons and instances of other types might share the same
objects, and are consequently topically related.

Mining Predicates While subjects represent entities in
RDF data, predicates represent the schema for those entities.
So, mining predicates in the context of subjects (Conf. 1) re-
sults in patterns and rules that show dependencies of schema
elements among entities and can be used for schema dis-
covery and analysis. Rules such as {associatedBand, in-
strument} → associatedMusicalArtist with 99 % confi-
dence and 3 % support or {activeYearsEndDate, party} →
{activeYearsStart-Date, birthDate, successor} with 2.5 %
support and 68 % confidence show that the data contains
different schemata for musicians and politicians. The dif-
ference in confidence might trigger a closer examination
of possible reasons for loose or tight consistency of the
schemata.

Mining predicates in the context of objects (Conf. 6)
aims at discovering predicates that have a strong overlap in
their value ranges. As predicates define the schema of enti-
ties, rules within this configuration can be used for schema
matching or synonym discovery. For instance, we discov-
ered rules between the predicates associatedBand and asso-
ciatedMusicalArtist that have a confidence of 100 % in both
directions.

Mining Objects In accordance to our view of entities and
schemata, objects would represent the actual values that de-
scribe an entity. Thus, mining in the context of subjects
(Conf. 2) means to discover patterns between values that are
associated to each other by co-occurring for many entities.
For example, the rule Buenos Aires → Argentina with 85 %
confidence shows that entities associated with a capital town
are probably also associated with the corresponding country.
Our approach on enriching RDF data uses these strong rules.

Rules in the context of predicates (Conf. 4) imply
range discovery of predicates as they connect values, such
as numbers, countries, or cities. Exemplary rules include
1 → {2, 3} or Albania → Italy. In fact, the mining results
of this configuration is very similar to the configuration for
mining subjects in the context of predicates. Regarding the
fact that subjects and objects have semantically different
roles in a statement, it is worth reasoning about the actual
difference of both configurations.
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Table 2 Facts in SPO structure from DBpedia

Subject Predicate Object

Obama birthPlace Hawaii

Obama party Democrats

Obama orderInOffice President

Merkel birthPlace Hamburg

Merkel orderInOffice Chancellor

Merkel party CDU

Brahms born Hamburg

Brahms type Musician

Table 3 Configuration examples

TID Transaction

(a) Context: Subject, Target: Predicate

Obama {birthPlace, party, orderInOffice}

Merkel {birthPlace, party, orderInOffice}

Brahms {born, type}

(b) Context: Object, Target: Predicate

Musician {type}

Hamburg {born, birthPlace}

Hawaii {birthPlace}

President {orderInOffice}

In the following we exemplify the application of two con-
figurations for mining predicates. Table 2 illustrates some
SPO facts extracted from DBpedia. For legibility, we omit
the complete URI representations of the resources and just
give the human-readable values. The application of Config-
uration 1 from Table 1 to our example data set would trans-
form the facts into three transactions, one for each distinct
subject as illustrated in Table 3a. In this example, the item-
set {birthPlace, party, orderInOffice} is a frequent itemset
(support 66.7 %), implying rules such as birthPlace → or-
derInOffice, party and orderInOffice → birthPlace, party
with 66.7 % and 100 % confidence, respectively. Further-
more, we can infere negative rules, such as birthPlace →
¬ born.

Configuration 6 in the context of objects would create
the transactions presented in Table 3b. The frequent itemsets
here contain predicates that are similar in their ranges, e.g.,
{born, birthPlace}. Given the negative rule in Conf. 1 and
the pattern in Conf. 6, one could conclude that both predi-
cates born and birthPlace have synonymous meanings and
can be used for predicate expansion. In this work we present
use cases based on the configurations 1, 2, and 6.

3 Predicate Suggestion

Suggestion of predicates or objects aims at two goals. First,
the user who is creating new facts for a certain subject might
be grateful for reasonable hints. Second, system feedback
might prevent the user from using inappropriate synonyms
for predicates as well as objects.

Suggestion Workflow For suggesting predicates or objects
for a user that is creating facts for a certain subject we di-
rectly apply the Configurations 1 or 2, respectively. The
major computation effort lays in generating all relevant as-
sociation rules within the specific configuration. The sug-
gestion workflow for predicates requires two preprocessing
steps: (1) Generate all association rules between predicates.
(2) Create an index to facilitate the retrieval of all relevant
rules for a specific suggestion situation. We create a rule
matrix, which is a two dimensional predicate-predicate
matrix, where one index identifies the antecedents and one
index the consequents of a rule. Each entry specifies the con-
fidence of the rule involving the specific antecedent and con-
sequent. For missing rules the entry is zero by default.

When a user is inserting or editing the facts related to
a specific subject, the system is aware of all predicates that
have already been inserted for the current subject. For gener-
ating a list of suggestions, all rules that incorporate the pre-
viously inserted predicates as their antecedents are retrieved.
The suggestions then are all those predicates that occurred
as consequences of the retrieved rules. The ranking of the
suggestions is based on scores that are computed for each
suggestion by aggregating all confidence values of the re-
trieved rules that have the specific predicate suggestion as
their consequence. Based on the next chosen predicate the
suggestion list changes again, because the rules that contain
the new predicate as their antecedent are also taken into ac-
count.

Regarding our example from Table 2, imagine we are
to insert a record for D. Cameron by beginning with the
statements “D. Cameron birthPlace London.”
and “D. Cameron orderInOffice Prime Min-
ister.” All rules that have birthPlace and orderI-
nOffice as their antecedents are retrieved. Considering
only rules of size two, the set of predicate rules relevant for
the next suggestion include birthPlace → party with
66.7 % confidence, orderInOffice → party with
100 % confidence, and birthPlace → instrument
with 33.3 % confidence. Setting the minConf = 50 %, the
predicate party would be the top suggestion.

Predicates vs. Objects The suggestion of objects is tech-
nically equivalent to the suggestion of predicates, but the
amount of objects is by magnitudes larger. For instance,
the DBpedia 3.6 data set contains 1,100 distinct predicates
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Table 4 Evaluations for 10,000 predicate/object suggestions per data
set

Type p@5 p@10 MRR at 10

(a) Predicate suggestions

Thing 0.420 0.639 0.20888

Person 0.510 0.714 0.26199

Place 0.507 0.771 0.21717

Work 0.275 0.555 0.12450

Species 0.648 0.909 0.27802

(b) Object suggestions

Thing 0.050 0.055 0.03179

Person 0.027 0.028 0.02315

Place 0.069 0.069 0.06058

Work 0.015 0.015 0.01276

Species 0.440 0.541 0.22191

but 3,980,642 distinct objects. Thus, the minimum support
threshold must be chosen very low to retrieve any rules from
the data, but the frequencies of those values are too low to
derive meaningful dependencies. Furthermore, for a user,
choosing an object value for a proposed predicate is more
convenient than vice versa. For example, a user might have
created the entry Barack Obama birthPlace Hon-
olulu. The system might contain an object-to-object rule
with enough confidence saying Honolulu → USA and
suggests to add a new fact with USA as its object. The user
is confronted with the situation not knowing how the subject
and the proposed object are connected and which predicate
(birthDate, residence, etc.) to choose. In addition
to the semantical fitting of the predicate, the user has also
to consider its appropriateness with regard to consistency
among similar entities, because ontological similar entities
should share the same set of predicates.

Tables 4a and 4b show the performance of our algorithm
on several datasets from DBpedia. Here we randomly re-
moved predicates and objects from each entity and tried to
suggest it with our algorithm. The tables display precision at
x (p@x) and mean reciprocal rank (MRR) scores, showing
that indeed association rule mining is much more suited for
suggesting predicates than objects.

The question is now whether the suggestion of objects or
predicates results in better results when we know not only
the corresponding subject but also one of the remaining two
parts. In the following section we show that indeed this in-
tuition enables us to automatically generate completely new
facts.

4 Auto-amendment of Triples

Following our suggestion scenario from Sect. 3, based on a
subject that is being edited, the algorithm could try to gen-

Table 5 Results for predicting 20,000 random predicates for each type

Type Predictions Precision Recall

Thing 18,731 89.98 % 84.28 %

Place 19,775 92.84 % 91.80 %

Person 19,936 77.34 % 77.10 %

Work 19,865 87.04 % 86.55 %

Species 19,986 89.67 % 89.61 %

Organization 19,820 81.31 % 80.58 %

Animal 19,975 99.97 % 99.84 %

Album 19,861 96.27 % 95.61 %

Film 19,842 93.77 % 93.03 %

erate new facts by guessing predicate and object combina-
tions. We call this method of creating new statements where
the user decides which subject has to be amended with new
triples user-driven auto-amendment. The drawback of this
approach is that no matter in which order the predicate and
the object are being generated, the algorithm has difficul-
ties to decide for the correct object, because there are only
few high-confidence object rules. On the other hand experi-
ments showed that knowing the correct object and subject of
a fact, the precision for choosing the correct predicate with
our approach is very high when applied to different sam-
ples of DBpedia 3.6 (see Table 5). Here, the suggestion al-
gorithm considers only those predicates that have been wit-
nessed with the given object in the data set. Based on this
observed phenomenon we present a different way of creat-
ing new statements. Our data-driven auto-amendment ap-
proach lets the system itself choose the subjects that should
be amended with new triples.

Our approach is based on the following intuitions:

1. For object rules o1 → o2 with high confidence (above
90 %) the subjects occurring with the object o1 are also
likely to occur with the object o2. However 10 % of the
subjects that occur with o1 violate the rule by not oc-
curring with o2 in any fact. Our assumption is that those
facts are absent, because of missing thoroughness dur-
ing data creation. For example a user that adds Hon-
olulu as the birthPlace of a person assumes that the
country where Honolulu lies (namely the USA) is im-
plicitly given. Another example is the high-confidence
rule Wehrmacht → World War II, which is com-
prehensible but raises the question why the confidence
value is not 100 %, since per being registered as mem-
bers of the Wehrmacht (the Nazi Germany army) should
have accordingly taken part in World War II.

2. A subject should not be enriched with a fact containing
object o2 if on the basis of the rules involving schema
predicates, no predicate can be chosen for the connection
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with o2. This intuition allows a softening of the earlier
intuition that expects all subjects that violate o1 → o2

should be extended with a triple containing o2.

For data-driven auto-amendment we need to generate all
predicate rules, corresponding to Conf. 1 from Table 1, and
store them within a predicate-predicate rule matrix. Then we
generate high-confidence object rules oi → oj in the man-
ner of Conf. 2. For each object rule oi → oj , all subjects
that occur with the antecedent of a high-confidence rule but
not with its consequent are retrieved. These subjects may be
amended with new facts having the current object rule con-
sequent oj as their value. The choice for 90 % as the high
confidence threshold is arbitrary. The higher this threshold
is, the fewer new statements can be generated but higher pre-
cision is achieved. Then the algorithm proceeds with retriev-
ing the candidate predicates that have oj in their range. The
score for each candidate predicate is then computed in the
same manner as described for predicate suggestions based
on given rules with schema predicates as antecedents.

Note the number of new facts depends on the number of
existent high-confidence rules and their corresponding set
of rule violating subjects. Using this approach on DBpe-
dia v3.6 we were able to generate 26,646 new facts out of
which 31 % where actually included in the later version 3.7.
Most of the inclusions correspond to new facts on entities of
types Artist or Animal, where the ratio was above 50 %.

The runtime of our algorithm even for the complete
dataset is in the order of a few minutes (including the time
for creating the transaction data base for association rule
mining) and mostly depends on the parameters used for rule
mining. The runtime reported here and in the rest of this
article refer to experiments on a standalone notebook with
a 2.66 GHz Intel Core Duo processor and 4 GB DDR3 mem-
ory.

5 Reconciling Ontologies and Data

A common case of inconsistency is the mismatch of ontol-
ogy definitions and the underlying data. In particular, di-
vergences between ontology specification and instance data
may occur in two scenarios: On the one hand, the ontology
might have been developed independently and before actual
data using it was published, e.g., in the case of the “Friend
of a Friend”2 ontology (FOAF). On the other hand, the on-
tology might have been tailored for existing data, e.g., in
the case of the DBpedia project, which evolved extensively
since its first specification, while revising existing class def-
initions was sometimes neglected during this evolutionary
process.

2http://xmlns.com/foaf/spec/.

Based on an existing ontology, we identify two typical
cases where the specification differs from usage patterns:
overspecification and underspecification. We refer to a cer-
tain class as being overspecified, if one or more properties
are declared for this class by the ontology, but are rarely
(if ever) used for real-world data, e.g., scottishName
for Settlement. There are several reasons, why over-
specification occurs: Data providers cannot set proper val-
ues for the defined properties, e.g., a scottishName for
a non-Scottish Settlement. There may be multiple se-
mantically equivalent properties defined for a class, e.g.,
occupation and profession for Person. Last but
not least, subclasses might have been added and (inher-
ited) properties are now used only in combination with
these, e.g., philosophicalSchool used exclusively
with Philosopher, but defined for parent class Person.

A class is underspecified, when in real-world data certain
properties are used frequently even though they are not spec-
ified by the vocabulary. Underspecification may occur when
the class definition lacks certain properties that are com-
monplace in instance data, e.g., genre for Band. It could
also happen that a property is defined for certain subclasses
whereas it covers additional instances of their common par-
ent class, e.g., numberOfStudents is defined for Uni-
versity, but also used for instances of other subclasses of
EducationalInstitution such as College. Note
that a class can simultaneously be overspecified and under-
specified (with regard to different properties).

Given a dataset with typed instances and a corresponding
ontology, we apply frequency and association rule analysis
by applying Conf. 1 to identify and remedy over- and under-
specification [1]. Identifying cases of overspecification in a
class definition is straightforward: Given a minimum sup-
port threshold of s, each property that does not hold s in
the given data constitutes an overspecification of the current
class and should therefore be marked as removal candidates
for this class. Thus, for each property defined for the class its
distinct occurrences as predicate for all entities of the given
class are counted and the total is compared against the mini-
mum support. We identified 503 removal suggestions in the
DBpedia 3.6 ontology and 622 removal suggestions in the
DBpedia 3.7 ontology, all with support ≤1 %. Table 6 shows
sample results of overspecification in DBpedia 3.7. Some of
the removal suggestions can be moved to a more suitable
subclass as suggested in [1].

Having marked removal suggestions, we identify predi-
cates that are used frequently for instances of a specific class
but are not defined as properties for the class itself or any of
its parent classes in the ontology. Based on association rules,
we propose only those predicates to a class that are highly
correlated with already (validly) defined properties of this
class. This way we avoid suggesting frequent predicates that
are used because of wrong type assignment of the associated

http://xmlns.com/foaf/spec/
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Table 6 Overspecified
properties for DBpedia 3.7 Property Class Support

scottishName Settlement 0.000 %

distanceToEdinburgh Settlement 0.021 %

philosophicalSchool Person 0.202 %

countySeat PopulatedPlace 0.831 %

anthem PopulatedPlace 0.147 %

depth Place 0.723 %

numberOfGraduateStudents EducationalInstitution 0.300 %

Table 7 Suggestion quality for DBpedia 3.6 and 3.7

DBpedia Total Useful Not Useful Undecided

3.6 283 234 (83 %) 15 34

3.7 317 268 (85 %) 31 18

instances, i.e., instances where no predicates is included in
the class definition. Furthermore, the suggestions are more
accurate within a branch of the subclass hierarchy.

The entire process described so far is in the order of a
few hours (including the time for creating the transaction
database for association rule mining) even for large datasets
(such as the BTC crawl) and mostly depends on the param-
eters used for rule mining.

Table 7 illustrates the amount and quality of class prop-
erty suggestions for DBpedia 3.6 and 3.7 (minSupp: 1 %,
minConf : 70 %). Overall, the majority of the suggestions
have been labeled as useful. Suggestions marked as unde-
cided are those for which we could not decide whether they
enhance the class definition or not. This was often the case,
when a similar or synonymous property had already been
defined for a class in the ontology (e.g., for Person, Per-
son/weight is specified, weight is suggested). Syn-
onym discrepancy constitutes a major problem for data con-
sumers, as it happens that either properties are inconsistently
used or the expectation of a user towards a property and the
ontology designer may diverge. In the next section we pick
up on the synonym discrepancy and present a solution for
discovering such synonyms.

6 Predicate Expansion

We already showed that some discrepancies between prop-
erty usage and ontology definitions emerge when instead of
defined properties synonymous predicates are used in the
data. Some examples that we encountered during our eval-
uations on the DBpedia data set where for instance city
or location instead of locationCity. Of course two
synonymous predicates may have been defined deliberately
for two disjoint purposes, but because they have been used

in substitution of each other, the data consumer has to deal
with the inconsistency. We developed an approach for auto-
matically discovering predicates that have been used in sub-
stitution of each other in the data, i.e., they have some syn-
onymous meaning. The discovery of such dependencies is
relevant for query expansion. A user that looks for actors of a
movie and intuitively chooses the predicate starring will
miss all actors where a synonymous predicate like artist
has been used. Note, we explicitly talk about synonymously
used predicates instead of synonym predicates. For exam-
ple, predicates with more general or specific meaning often
substitute each other in the data. E.g., artist is often used
as a substitute for starring even though artist is more
general than starring.

Our approach is again based on mining configurations.
We apply Configurations 1 and 6 in the same manner as
exemplified in Sect. 2. With Configuration 1 we perform
schema analysis in the context of subjects. Configuration 6
enables us to mine similar predicates in the context of ob-
jects. We also looked into the range structure of predicates
by looking at value type distributions. Despite the fact that
type definitions might not always be available we could not
identify any benefit to the range analysis approach in our
experiments.

Configuration 1 enables us to do frequency analysis and
rule discovery per entity. We used this configuration already
for suggesting new predicates for data creators and gener-
ating inclusion suggestions for the ontology. Here we have
to look at a different intuition: Expansion candidates for a
predicate should not co-occur with it for any entity. It is
more likely for entities to include only one representative
of a synonymous predicate group within their schema, e.g.,
either starring or artist. That is why we look for neg-
ative correlations in Configuration 1.

Negative schema correlations might also lead to false
positives, such as recordLabel and author as both oc-
cur for different entities. While songs have the predicate
recordLabel, books have the predicate author. So a
negative correlation is not a sufficient condition for a predi-
cate to be expanded by another. Therefore we also take the
range content of predicates into account.
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Table 8 Discovered top 5 synonym pairs on DBpedia subsets

DBpedia Work DBpedia Organization

1. artist, starring city, location

2. artist, musicComposer city, hometown

3. author, writer location, hometown

4. creator, writer city, ground

5. composer, musicComposer city, locationCity

Our second intuition is that as synonym predicates have a
similar meaning they also share a similar range of object val-
ues. Normally when trying to compute the value overlap be-
tween two predicates one would look at the ratio of overlaps
depending on the total number of values of such a predicate.
We apply a more efficient range content filtering approach
(RCF) based on Conf. 6 that constitutes a mining scenario
where each transaction is defined by a distinct object value.
So each transaction consists of all predicates containing the
distinct object value in their range. Frequent patterns in this
configuration are sets of predicates that share a significant
number of object values in their range. Experiments showed
that this approach is by magnitudes faster than the pairwise
overlap recognition approach.

For combining both configurations we decided on the fol-
lowing order: (1) first retrieve all predicate pairs through
range content filtering, then (2) analyze their schema co-
occurrences. This strategy has two advantages: as retrieving
negative correlations and type vectors is time-consuming,
it is reasonable to perform both on given candidates in-
stead of using them on the complete data set to retrieve
candidates. Furthermore, the minimum support threshold for
range value overlap is a more expressive threshold than ar-
bitrary correlation and scoring thresholds on schema level,
which are more suited for ranking purposes of the filtered
candidates.

We performed multiple experiments on DBpedia, Gov-
WILD [8], and Magnatune.3 Our experiments showed that
our combined approach generates less false positives the
more homogeneous the entities in the data set are. For ex-
ample, on the Magnatune dataset that contained only music
data we achieved precision values of 100 % on a 0.1 % sup-
port threshold for RCF, while on the DBpedia data set the
precision was around 40 %. Here the algorithm generated
false positives like foundingPlace and birthPlace,
because the subjects of these predicates are from very dif-
ferent domains while the range of both very similar. The
evidences by Configurations 1 and 6 are not enough. So it
is vital to perform the algorithm on each domain of the data
(Persons, Work, Places, Organizations) separately. Table 8

3http://dbtune.org/magnatune/.

shows our top 5 results on the DBpedia Work and Organi-
zation data set. The total runtime of our algorithm includ-
ing range content filtering and schema analysis is below 8
minutes for each presented dataset at a minimum support of
0.1 % for range content filtering and below 10 minutes at the
threshold of 0.01 %. More details on the experiments can be
found in [3].

7 Related Work

We apply existing data mining algorithms to the new domain
of LOD and proposed four different use cases on this basis.
Therefore, we show an overview of related work with re-
gard to data mining in the semantic web as well as the most
related approaches to our presented use cases.

Mining the Semantic Web Most research on mining the se-
mantic web is so far in the fields of inductive logic program-
ming and approaches that make use of the description logic
of a knowledge base [15]. Those approaches concentrate on
mining answer-sets of queries towards a knowledge base.
Based on a general reference concept, additional logical re-
lations are considered for refining the entries in an answer-
set. A statistical approach for mining the semantic web is
proposed by Nebot et al. [19], where a SPARQL endpoint al-
lows the user to define targets of mining in any desired graph
context.

Looking at RDF data as graph where resources are con-
nected via predicates as edges, another related field of re-
search is mining frequent subgraphs or subtrees [16]. How-
ever, in LOD no two different nodes in an RDF graph have
the same URI. For frequency analysis it is necessary to have
a more abstract view on the resources. For example one
could look only at the ontological types or data formats of
resources.

Predicate Suggestion For a proof-of-concept use case we
chose a predicate suggestion systems for RDF data. A sim-
ilar use case has also been applied by the authors of [10]
in the context of web-scale extraction of structured data for
knowledge base creation. The authors introduce a system
that helps database designers to create schemata by provid-
ing schema auto-completion based on extracted web tables
from the WWW.

Auto-amendment of Triples In the fields of populating
knowledge bases with missing facts, the iPopulator [17] and
KYLIN [21] are related projects. Both concentrate on popu-
lating Wikipedia infoboxes using the Wikipedia text articles
and existing infobox templates. Our approach does not use
any external data source or structural information, such as
ontologies or templates but only the existing RDF statements
of the current RDF corpus.

http://dbtune.org/magnatune/
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Ontology Engineering The most related work in this field
is the schema induction approach by Völker et al. [20]. The
authors describe how association rules can be used to recre-
ate axioms of the DBpedia ontology. Fleischhacker et al.
extend this approach to discover also characteristics that are
not predefined by an ontology, such as predicate symme-
try, asymmetry, and disjointness [12]. Our work on improv-
ing ontologies differs as we create specific suggestions for
changing the ontology of a data set by removing or adding
properties. Several works in the field on ontology engineer-
ing aim at establishing and enriching ontology specifica-
tions by using machine learning techniques [9]. The authors
of [18] present a semi-automatic approach for cross-domain
ontology learning. Similarly, in [22] machine learning meth-
ods are employed to refine the definition of the Wikipedia
infobox-class ontology.

Query Expansion and Synonym Discovery Research on
query expansion includes stemming techniques, relevance
feedback, and other dictionary based approaches [6]. On
their technical level the approaches do not apply to our
SPARQL scenario as we do not retrieve documents but struc-
tured entities. Elbassuoni et al. have already presented a
query expansion approach based on language models [11].
Our approach is based on association rules and a more sim-
plistic model and we were able to process large datasets,
such as DBpedia, in a few minutes.

8 Conclusion

We examined association rule mining on statement level and
introduced the concept of mining configurations. We applied
our methodology to several use cases that detect and can pre-
vent inconsistency in RDF data. We showed how one config-
uration can be used for predicate suggestion and ontology
re-engineering. Further we introduced approaches for triple
amendment and predicate expansion, based on combining
two configurations. Association rule mining at RDF state-
ment level is an interesting field for further research, as there
are remaining configurations to be elaborated and combined
for other interesting use cases. Beyond the various com-
bination and refinement possibilities of configurations, the
consideration of negative correlations and association rules
might also harbor interesting insights and applications. Last
but not least we will publish our mining framework for the
sake of repeatability and to support the semantic web com-
munity.
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