

SYSTEMATIC ETL MANAGEMENT –
EXPERIENCES WITH HIGH-LEVEL OPERATORS

(Practice-Oriented)

Alexander Albrecht
Hasso Plattner Institute for Software Systems Engineering

University of Potsdam, Germany
Alexander.Albrecht@hpi.uni-potsdam.de

Felix Naumann

Hasso Plattner Institute for Software Systems Engineering
University of Potsdam, Germany
Felix.Naumann@hpi.uni-potsdam.de

Abstract: Large organizations load much of their data into data warehouses for subsequent querying, analysis, and
data mining. Extract-Transform-Load (ETL) workflows populate those data warehouses with data from various data
sources by specifying and executing a set of transformations forming a directed acyclic transformation graph
(DAG). Over time, hundreds of individual ETL workflows evolve as new sources and new requirements are inte-
grated continuously into the system. Managing these, often complex, ETL workflows is a daunting task.
We built an ETL management framework to improve this difficult task by providing high-level operations, such as
searching, matching, or merging ETL workflows. In this paper, we present our lessons learned throughout the im-
plementation of a prototypical ETL management framework. We discuss our observations and experiences and
highlight selected suggestions and algorithms, which we propose to be suitable for building useful ETL management
operators.

Key Words: ETL, Data Warehousing and Repository, Data Integration

INTRODUCTION
Extract-Transform-Load (ETL) tools are visual programming tools that allow the definition of complex
workflows to extract, transform, and load heterogeneous data from one or more sources into a data ware-
house. ETL workflows are stored in repositories to be executed periodically, e.g., every hour, daily or
once a week. In the course of a complex data integration project up to several hundred ETL workflows
are created by different ETL developers [1] and stored in such repositories. ETL gained significant popu-
larity and has established itself as a backbone in real production data warehouses: With 70%, ETL devel-
opment dominates the development efforts required in current data warehouse scenarios [2].
We propose ETL management as a framework for supporting ETL workflow development and mainte-
nance based on high-level operations, such as searching, matching, or merging entire ETL workflows. In
general, an ETL management operator is an abstraction of individual ETL management tasks often done
manually in today’s ETL tools. The inputs and outputs for any ETL management operator are ETL work-
flows. For example, the input for the SEARCH operator is the entire ETL repository passing the keyword
query as a parameter and it returns all ETL workflows that satisfy the specified search query.
In previous work [3, 4], the initial idea of a framework for supporting the systematic management of large
ETL workflow repositories was presented. In this paper, we discuss algorithms and methods that turned
out to be useful for implementing typical ETL management operators. Furthermore, we provide a detailed
walkthrough of a simple ETL management scenario to highlight our main findings. We tested our imple-
mentation on real-world ETL repositories created separately by different departments of a banking organ-
ization in Switzerland (CH), Germany (DE), and Spain (ES) using Informatica PowerCenter.

Fig. 1. ETL workflow complexity characterized by number of sources

Fig. 2. ETL workflow complexity characterized by number of targets

Fig. 3. ETL workflow complexity characterized by number of transformations

The test ETL repositories contain 45 (CH), 131 (DE), and 167 (ES) ETL workflows. Figures 1 – 3 show
some characteristics of the three ETL repositories to emphasize that ETL development results in complex

0"

20"

40"

60"

80"

100"

120"

1" 2" 3" 4" 5" 6" 7" 8" 9" >"10"

N
um

be
r'o

f'E
TL
'w
or
kfl

ow
s'

Number'of'Sources'

CH"

DE"

ES"

0"

20"

40"

60"

80"

100"

120"

1" 2" 3" 4" 5" 6" 7" 8" 9" >"10"

N
um

be
r'o

f'E
TL
'w
or
kfl

ow
s'

Number'of'Targets'

CH"

DE"

ES"

0"

10"

20"

30"

40"

50"

60"

70"

80"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" >"20"

N
um

be
r'o

f'E
TL
'w
or
kfl

ow
s'

Number'of'Transforma3ons'

CH"

DE"

ES"

ETL workflows. On average, each ETL workflow extracts data from 3 (CH), and 2 (DE, ES) sources. The
average number of transformations is 14 (CH), 12 (DE), and 4 (ES). The average number of targets are 5
(CH), and 3 (DE, ES), respectively.

The following ETL management operators are implemented in our prototypical framework:

• IMPORT: Most commercial and open source ETL tools provide ETL workflow specifications in
some proprietary XML format. To support ETL management in a tool-independent manner,
IMPORT creates a tool-independent ETL workflow representation from a product-specific ETL
workflow specification.

• DEPLOY: Generates from a tool-independent ETL workflow representation an ETL workflow for
a specific ETL tool.

• SEARCH: Retrieves all ETL workflows that satisfy the specified search query. Search queries may
address different elements of an ETL workflow, such as transformation names or database sche-
mata.

• MATCH: Given an ETL workflow, find and rank all ETL workflows that extract, transform, or
load data in a similar way.

• MERGE: Takes two or more ETL workflows as input and returns a merged ETL workflow.
• PUSHDOWN: Propagates data cleaning steps that are applied within an ETL workflow back to its

data sources.

Example 1 (ETL Management). Figure 4 shows three simplified ETL workflows. All ETL workflows load
data into a customer relationship management database (marked as CRM) providing a single view of cus-
tomer information from different sources. Let us assume that the lower ETL workflow in Fig. 4 is the
result of merging the upper two independently developed ETL workflows, one that integrates customer
data from an online shop and the other loads customer data from catalog selling. A simplified address
correction is performed in all ETL workflows: The data flow is split into two streams of tuples – one
stream with missing zip codes, the other with existing zip codes. A tuple with a missing zip code is as-
signed a value using an address lookup. Finally, the two split data streams are combined into one, which
is in turn loaded into the CRM database.

We use Example 1 to motivate different ETL management tasks: Due to the large number of ETL work-
flows created in the course of a complex data integration project, searching and then matching similar
ETL workflows are typical tasks in ETL management: ETL developers begin a search for an ETL work-
flow by entering keywords relevant to the search goal. They then start using the returned ETL workflows
as input to search for similar ETL workflows in the repository. In Example 1, the upper two ETL work-
flows might have been found by a keyword-based search and a subsequent similarity search against the
ETL workflows in the given ETL repository. The matching ETL workflows perform the same data clean-
ing step and load data into the same target. They can then be merged into a single ETL workflow replac-
ing the two matched ETL workflows in the ETL repository. In Example 1, the merged ETL workflow
contains only one address lookup for all customer data. This yields to a better utilization of system re-
sources, compared to a separate execution of both single ETL workflows, because the address-lookup is
done for all customer data once. In addition, the merged ETL workflow offers an up-to-date customer
view with data extracted from all sources at the same time. Finally, a pushdown of an ETL transformation
is performed: Pushing the lookup transformation down to the sources directly replaces the missing data
with correct address information in the original sources. In this scenario, data quality of the original data
sources is improved by using a data cleaning step specified within the ETL workflow.
We regard ETL workflows as transformation graphs of the well-known model introduced by Cui and
Widom [5]. This model is generally applicable to ETL workflows from common ETL tools: An ETL
workflow is a directed acyclic transformation graph (DAG) and the topologically ordered graph structure
determines the execution order of the connected transformations. In ETL, most transformations are a

Fig. 4. Sample ETL scenario: Marketing database with a single view of customers

generalization of relational operators supporting multiple inputs and outputs. Two transformations are
connected in the graph if one transformation is applied to the output obtained by the other transformation.

Definition 1 (ETL Workflow). An ETL workflow comprises a set of transformations T with input and
output schemata, interconnected with each other forming a DAG. Let W = (V, E) be a DAG representing
an ETL workflow consisting of a set of vertices V representing the involved transformations. The edges
e ∈ E ⊆ V × V connect the output schema of one transformation with the input schema of another trans-
formation, i.e., e represents an ordered pair of transformations.

The remainder of this paper is structured as follows: The next section summarizes our main contributions.
In Section 3, we describe our prototype in more detail. In Section 4, we give a brief overview of the
SEARCH operator implemented in our prototypical ETL management framework. Section 5 presents the
MATCH operator and describes details of our similarity measures. In Section 6, we discuss our implemen-
tation of the MERGE operator and present in detail its application to ETL workflows introduced in Exam-
ple 1. In Section 7, we describe the PUSHDOWN operator. Finally, we conclude this paper with a short
summary and an outlook.

STATE-OF-THE-ART ETL MANAGEMENT
ETL has become a tool of major interest for companies integrating data and managing their quality. Cur-
rent ETL tools focus on ETL development in terms of powerful data transformation capabilities and effi-
cient and robust ETL workflow execution. However, state-of-the-art approaches for ETL management are
mostly manual and there is a clear need for ETL management functionality in real production ETL sys-
tems. For example, in data integration projects we observe a continuous improvement of ETL workflows
to ensure data quality. But data quality rules are often implemented in a single ETL workflow in a way

Join% Split%

Lookup%
Missing&Zip&

Gather% CRM%

Zip%Codes%

Gather%

Customers%
WWW%

Join% Split%

Lookup%
Missing&Zip&

Gather% Customers%
WWW%

Split%

Lookup%
Missing&Zip&

Gather% CRM%

Zip%Codes%

3.&MERGE&

1.&SEARCH&

4.&PUSHDOWN&

Customers%
Catalog%

Addresses%

2.&MATCH&

Customers%
Catalog%

Zip%Codes%

CRM%

Addresses%

that they can only be used there. With PUSHDOWN we present a novel ETL management operator to im-
prove data quality of source systems based on data quality rules specified in ETL workflows. Another
ETL management task to improve data quality is merging same views on different source systems to
achieve an up-to-date view on company-wide data. This task is supported by MERGE.
There are further examples showing that managing ETL workflows, such as exploring, maintaining, and
reusing them, is a manual and time consuming task in today’s tools. For example, the only way to explore
a large ETL workflow repository is by manual browsing or by keyword-based search. There exists some
functionality, such as job compare in IBM’s InfoSphere Information Server, to report on differences be-
tween two ETL workflows. But similarity search to rank ETL workflows by similarity is not provided in
current ETL tools, although this is a useful functionality to explore large ETL workflow repositories.
Therefore, we propose the ETL management operator MATCH.
Some existing research concentrates on other ETL management aspects, such as optimization or configu-
ration of ETL workflows [6]. Furthermore, there is a significant amount of recent research efforts to mod-
el ETL workflows with more abstract schema mapping languages, of which the Clio project is only one
example [7]. Bernstein proposed in [8] a general framework for managing schema mappings. A technique
for merging schema mappings into larger schema mappings is presented in [9]. Unfortunately, current
schema mapping languages only partially capture ETL and still lack the ability to express the variety of
ETL transformation steps [10].

PROTOTYPE
We implemented a prototype for generic ETL management, meaning that all high-level operators, such as
SEARCH, MATCH, or MERGE, are generally applicable to arbitrary ETL workflows from different ETL
tools. The generic approach is achieved by treating ETL workflows as transformation graphs in a tool-
independent manner. The introduced IMPORT operator enables tool-independent ETL management by
converting ETL workflow specifications from an ETL tool, such as Informatica’s PowerCenter or Talend
Open Studio, into a generic ETL workflow representation. In our prototype, ETL management operators
are applied to the imported ETL workflows and in case of MERGE or PUSHDOWN the result is, in turn,
deployed as an executable ETL workflow into the original ETL tool. To this end, we implemented the
DEPLOY operator.
In our implementation, we focus only on the ETL specification representing the ETL workflow as a trans-
formation graph and do not assume additional information. This is a realistic setting, since on the one
hand most ETL tools export ETL workflow specifications in some proprietary XML format. On the other
hand, it is unrealistic to assume additional information about ETL workflows, such as snapshot data pro-
cessed by single ETL transformations. In real-world scenarios limited access rights, limited user permis-
sions, and limited system resources are the main arguments against instance-based approaches: A typical
ETL developer has no overall rights to access data stored in arbitrary database tables. Furthermore, ex-
tracted data is transformed in several subsequent transformation steps. As the data created in those inter-
mediate processing steps is usually not persisted, we cannot assume to have access to such helpful infor-
mation.
With our prototypical ETL management framework, we do not claim to cover the full range of possible
ETL management operators, but we suggest novel operators, which we believe are useful in ETL man-
agement. In the next sections, we discuss these operators in detail and present algorithms for implementa-
tion. We refer to existing research concentrating on other ETL management aspects, such as optimization
or configuration of ETL workflows [6]. These techniques from ETL research can be directly implemented
as operators in our prototype, such as the ETL management operator OPTIMIZE that automates the rede-
sign of a given ETL workflow to achieve better performance.

ETL workflow I II III

Sample
keyword set

Customers, Catalog, Ad-
dresses, Zip, Codes, CRM

Customers, WWW, Zip,
Codes, CRM

Customers, WWW,
Catalog, Addresses, Zip,
Codes, CRM

Table 1: Sample keyword sets for ETL workflows from Example 1

Dictionary of keywords ETL workflow list

addresses → I III

catalog → I III

codes → I II III

crm → I II III

customers → I II III

www → II III

zip → I II III

Fig. 5. Inverted index for ETL workflows from Example 1

crm → I II III

www → II III

Intersection ⇒ II III

Fig. 6. Intersecting keyword lists from Fig. 5 for keyword query WWW, CRM

SEARCH
We have observed and experimented with ETL repositories containing many hundreds of ETL work-
flows: Searching ETL workflows becomes more and more important as the size of an ETL repository
increases. SEARCH enables an ETL developer to easily and efficiently find all relevant ETL workflows
within an ETL repository. As with traditional search engines, the SEARCH operator in our ETL manage-
ment framework receives a set of keywords as input and returns a list of ETL workflows that contain all
keywords in some ETL workflow elements, such as transformation names or database schemata. Table 1
shows three example keyword sets for ETL workflows from Example 1, each including keywords ex-
tracted from database table names.
To speed up the keyword search, the implementation of our SEARCH operator employs an inverted index.
The inverted index comprises a dictionary of keywords from all ETL workflow elements together with a
list for each keyword describing its occurrence in the repository of ETL workflows (see Fig. 5). To re-
trieve all ETL workflows that contain a set of keywords, we only return those ETL workflows that are
present in all corresponding keyword lists of the inverted index. These ETL workflows are found by in-
tersecting the keyword lists for each keyword from the inverted index. For efficiency, we keep the invert-
ed index in memory. Furthermore, the computation of the intersection of keyword lists is done quickly in
linear time, because the ETL workflow IDs in the keyword lists are maintained in sorted order.

Example 2 (Processing keyword queries). Consider the conjunctive keyword query CRM WWW and the
inverted index shown in Fig. 5. For the two keyword matches found in the dictionary the corresponding
keyword lists are retrieved and intersected to quickly find the two ETL workflows that contain both key-
words, as shown in Fig. 6.

 ETL workflow I ETL workflow II

1/2

0

0

1/2

1/2

0

1

0

1

1

2/3

2/3

2/5

2/5

Fig. 7. Weights for directly and indirectly interdependent transformation pairs from Example 1

In contrast to best-match searching in traditional search engines, our experiences have revealed that ETL
developers are interested in exploring all ETL workflows from the search result [11]. For example, an
ETL developer who wants to replace an erroneous lookup transformation starts to submit a keyword
search with the corresponding lookup table name and explores the entire search result. In this example, a
result ranking would not support an ETL developer. Instead, we observed a need for meaningful filters to
make accessing relevant ETL workflows more efficient. The use of ranking strategies according to some
relevance criteria and focusing only on the top results is often not appropriate in ETL management. Fur-
thermore, it is practically impossible to obtain only the relevant ETL workflows from an ETL repository
if the keyword search consists of only one or two search terms.

Building upon this key observation, our implementation improves the access to the search result by
providing a set of facets representing particular ETL workflow characteristics. We implemented facets as
filters and the set of predefined filters includes, for example, the list of databases loaded within the re-
turned ETL workflows. An ETL developer manually selects different filters to separate relevant ETL
workflows from irrelevant ones. The set of applied filters is shown to the ETL developer and the search
result is refined accordingly. Thus, an applied filter does not execute a new keyword search, but updates
the way the search result is displayed. An ETL workflow belongs to the updated result list if it contains
the selected filter criteria, for example a certain target database.

MATCH
Identifying similar ETL workflows brings a number of benefits in ETL management, including an im-
proved reuse and maintenance of ETL workflows. Furthermore, discovering matching ETL workflows in
large ETL repositories supports consolidation of similar ETL workflows into one integrated ETL work-
flow (see Example 1).
Given an ETL workflow, the MATCH operator allows to discover similar ETL workflows or sub-
workflows stored within the ETL repository. In analogy to information retrieval systems, the operator

Split&Customers&
Catalog'

Split&Customers&
WWW"

Split&Addresses&

Join% Split%

Split& Lookup&
Missing&ZIP&

Split& Gather!

Split& CRM&

uses a numeric similarity measure on how well each ETL workflow in the repository matches the given
ETL workflow, and ranks the result accordingly: It is hard to define a generally suitable similarity meas-
ure for ETL workflows, because of the presence of semantic or syntactic heterogeneity. Already the defi-
nition of input and output schemata for equivalent transformations causes problems, because different
ETL developers often define attribute labels independently. Thus, in different schemata a variety of ab-
breviations, synonyms, homonyms, and hypernyms for semantically related attribute labels occur. In con-
sequence, finding similar transformations at the schema-level becomes difficult. To make matching even
more challenging, known schema matching approaches assume that the regarded schemata are at least
somehow related to one another. For schemata in different ETL workflows we cannot ensure that this
assumption holds.

In order to find corresponding ETL workflows within a given ETL repository, we implemented a struc-
ture-aware MATCH operator in our prototypical ETL management framework. The structure of an ETL
workflow is described by pairs of transformations: We consider pairs of transformations that are explicit-
ly connected in one ETL workflow as directly interdependent. Two transformations that are connected by
a path of length greater than 1, we consider as indirectly interdependent. Each pair of transformations is
associated with a weight between 0 and 1 representing the reciprocal of the average path length between
the two transformations.
As we want to measure similarity between ETL workflows according to how often they contain equiva-
lent pairs of transformations, our model is akin to the well-known vector space model from information
retrieval (IR) theory [12]: MATCH uses the associated weights to create for each ETL workflow from the
repository a weighted multidimensional vector of directly and indirectly interdependent transformation
pairs. To further improve the matching quality, we also consider the number of common transformations
between two matching ETL workflows. Therefore, we introduce additional dimensions with weight 1 to
the vector space capturing single ETL transformations.
If m is the total number of all directly and indirectly interdependent transformation pairs, and n is the
number of all distinct transformations used in all ETL workflows within the ETL repository, each ETL
workflow is characterized with an (n+m)-dimensional vector. We use the cosine similarity to measure the
similarity between the given ETL workflow represented by vector A and every other ETL workflow from
the ETL repository represented by vector B, i.e., cosine similarity: cos(A, B) = (A × B) / (||A|| × ||B||). The
calculated similarity values range from 0 to 1 since every vector contains only non-negative weights. If
both compared ETL workflows are in fact the same, the calculated similarity measure is 1. Finally, all
ETL workflows from the repository are ranked according to the calculated similarity values.

Example 3 (Measuring similarity between ETL workflows). Consider the two matching ETL workflows
from Example 1. Figure 7 shows a portion of all associated weights for directly (solid arrows) and indi-
rectly (dashed arrows) interdependent transformation pairs. The similarity between both ETL workflows
is measured with a cosine similarity of 0.68.

Our structure-aware MATCH operator is based on the work of Jung and Bae [13]. In our approach, a trans-
formation pair corresponds to transformations pairs in other ETL workflows if the corresponding trans-
formations belong to the same type and their input and output schemata are similar. Our approach is not
restricted to a specific type of ETL transformation, but rather, we introduce a general solution applicable
to ETL transformations of different types. In our prototype, we consider ETL workflows with various
transformation types including joins, filters, expressions, lookups, and aggregations. A taxonomy of ETL
transformations is given in [14] for different ETL tools.
To compute the similarity of input and output schemata from corresponding transformation pairs, we use
again the cosine similarity. First, we tokenize all attribute labels in a schema based on case-change or
non-alphabetical characters. Then, we index all tokens from a schema with a feature vector to calculate
the cosine similarity between schemata of corresponding transformations. This approach is based on the
following observations: We have observed that (1) whole attribute labels are too specific to identify simi-
lar schemata in different transformations; (2) a token of an attribute label has a semantics of its own or it

modifies the semantics of another token; and (3) transformations that process similar data often contain
same tokens in different attribute labels in the input and output schemata.
In our implementation of the MATCH operator, we consider only relevant attributes in the input and output
schemata of a transformation, i.e., we measure the input and output similarity between two transfor-
mations based on their required and generated attributes. We perform a static analysis to detect whether
an attribute in the input schema is required or directly passed through the transformation or simply pro-
jected out. We also distinguish the attributes in the output schema as pass-through attributes or attributes
generated by the transformation. This analysis requires individual implementation for the different trans-
formation types. The idea of describing ETL transformations with characteristic schemata is based on the
work of Simitsis [15, 16]. Furthermore, we suggest future work to explore how schema decryption tech-
niques [17] may further improve finding transformations with similar inputs and outputs in an ETL repos-
itory with regard to the variety of abbreviations, synonyms, and hypernyms used in labeling
semantically related attributes.

MERGE
ETL tools provide an easy-to-use interface to develop ETL workflows. For example, copy-and-pasting
entire sub-workflows is a common practice in ETL development. This practice results in identical sub-
workflows spread over the ETL repository. The cooperation with our industrial partner shows that over
time there are many ETL workflows that may encompass shared sources, same targets and identical sub-
workflows. A best-practice in ETL management is to encapsulate those frequent sub-workflows as a sepa-
rate ETL component. The method of making parts of an ETL workflow reusable to apply it in different
ETL workflows as separate ETL components is supported in most ETL tools, such as “shared containers”
in IBM’s InfoSphere Information Server or “mapplets” in Informatica’s PowerCenter.
In our prototypical ETL management framework, the MERGE operator supports an ETL developer in
combining two or more ETL workflows into one integrated ETL workflow. There is still human decision-
making needed to ensure that the merged ETL workflows cause no data or scheduling conflicts. Exam-
ple 1 illustrates this manual process of finding non-conflicting ETL workflows using the ETL manage-
ment operators SEARCH and MATCH.

Fig. 8. Merging two identical lookup transformations into a single lookup transformation

Applying MERGE to a set of ETL workflows with identical sub-workflows, promises to enhance both the
utilization of shared resources and the performance compared to executing each ETL workflow in a sepa-
rate run. In addition to optimization, a merged ETL workflow provides a single view of all information
that was originally processed separately. Apart from performance benefits, consolidating large sets of
ETL workflows promises reduced overhead and maintenance.
Merging a set of ETL workflows starts with combining identical transformations and involves the appli-
cation of rewrite and elimination rules. Equivalent transformations are merged and form common input
and output data flows with compatible schemata. This can always be achieved by combining the attributes
of the original data flows using a “Gather” transformation after appropriately renaming all attribute labels
[18]. A combined data flow gathers the data flows of merged transformations, but each individual data
flow is tagged with an additional provenance attribute. To achieve this, we introduce the two transfor-

Lookup&
Missing&Zip& ∆&

Zip&Codes&

Gather&
∏&

∏&

...&

...&

...&

...&

mations Π and Δ. The transformation Π is implemented as a simple transformation adding an additional
provenance attribute to the data flow. The transformation Δ is implemented as a split transformation to
partition a combined data flow according to its provenance. Figure 8 shows the result of an example
merge of two identical lookup transformations into a single lookup transformation based on gathering
provenance tagged data flows and subsequent splitting. The behavior of the lookup transformations in the
two original ETL workflows is retained, because the lookup transformation operates at the row level and
we only pass the provenance attribute through the lookup transformation. This merging policy can be
applied to other row-level transformations, such as filter or split. There are different merging policies for
other ETL transformation types, such as join or aggregation.
In our implementation we use and extend techniques from query optimization in relational database sys-
tems. In particular, we employ a set of rewrite and elimination rules for ETL workflows to generate a best
merged ETL workflow. The rewrite and elimination rules map one ETL workflow to another semantically
equivalent ETL workflow, for instance by merging identical transformations, pushing a filter above a split
operation, or eliminating redundant transformation pairs. To exhaustively investigate merged ETL work-
flow alternatives, we implemented a top-down enumeration procedure to create the search space based on
step-by-step rewritings. We informally introduce some basic rules with Example 4. We refer to the work
of Roy for a comprehensive overview of the used rule set [19]. That work also proposes several methods
to improve the performance of the top-down search strategy. In a later publication by the same author
similar techniques are applied to multi-query optimization [20].

Example 4 (Merging ETL workflows). Consider the two separate ETL workflows from Example 1. Fig-
ures 9 – 12 show the application of different rewrite and elimination rules introduced in [19, 21] to finally
obtain the merged ETL workflow shown in Fig. 4 of Example 1. Transformations inserted during the
application of Merge are highlighted with dashed borders.

In our implementation, equivalent sources and targets are merged in a straightforward manner. For exam-
ple, merging the equivalent load of the CRM database in Fig. 9 is achieved by gathering the data flows
from both ETL workflows. The new “Gather” transformation is connected to the corresponding outputs of
all transformations that were originally connected to the CRM database, i.e., both Gather transformations
in the original ETL workflows. This merge results in three adjacent Gather transformations. This redun-
dancy is removed in Fig. 10 based on an elimination rule introduced in [19]. Furthermore, the equivalent
address lookup is merged in Fig. 10. In the case of merging equivalent transformations, the input cannot
simply be gathered: It is necessary to distinguish the input by tagging the data flow with an additional
provenance attribute. This is performed with the Π transformation assigning a unique provenance number
to each data flow passing through a merged transformation. The provenance attribute is used in a subse-
quent Δ transformation to split the output of a merged transformation accordingly. This approach of gath-
ering provenance tagged data flows and subsequent splitting according to the provenance guarantees to
preserve the transformation behavior in the original ETL workflows.
Figure 11 shows the result after applying further elimination rules, such as removing the redundant Δ
transformation in Fig. 10. This transformation becomes obsolete, because both outputs are gathered in the
subsequent transformation. After the application of this elimination rule, the two Π transformations in
Fig. 10 are unnecessary and are removed from the ETL workflow. This removal can be performed, be-
cause the provenance attribute is never required in the subsequent transformations.
In Figure 12, the equivalent split transformation is merged. This leads to a redundant transformation pair:
The Δ transformation is followed by a transformation gathering all its outputs. This redundant transfor-
mation pair is removed from the ETL workflow. The other Δ transformation and therefore both Π trans-
formations are also redundant and removed from the ETL workflow, for the same reasons described for
Fig. 11. Finally, we obtain the merged ETL workflow shown in Fig. 4 of Example 1.
One challenging problem we encountered using the MERGE operator was that already the input ETL
workflows are often difficult to understand and the merged ETL workflow becomes even more complex.
Therefore, gaining a big-picture understanding of all complex ETL workflows motivates us to propose the

Fig. 9. Combine both ETL workflows by merging the same target CRM database

Fig. 10. Merge address lookup after coalescing adjacent gatherings of data flows

Fig. 11. Remove redundant Δ before subsequent data flow gathering and redundant Π

Fig. 12. Merge equivalent split transformations

Join Split

Lookup
Missing Zip

Gather

Zip Codes

Customers
WWW

Customers
Catalog

Addresses

Split

Lookup
Missing Zip

Gather

CRM

Zip Codes

Gather

Join Split

Lookup
Missing Zip ѐ

Zip Codes

Customers
WWW

Customers
Catalog

Addresses

Split

CRM Gather Gather
ѓ

ѓ

Join Split

Lookup
Missing Zip

Zip Codes

Customers
WWW

Customers
Catalog

Addresses

Split

CRM Gather Gather

Join Split

Lookup
Missing Zip

Zip Codes Customers
WWW

Customers
Catalog

Addresses

CRM Gather

Gather ѐ
ѐ

ѓ

ѓ

Gather

concept of ETL workflow abstraction as future work. Because an ETL workflow that is more abstract is
usually easier to comprehend, ETL workflow abstraction is a fundamental technique for coping with ETL
workflow complexity in the context of MERGE.

PUSHDOWN
Real-world data extracted from external sources often contains errors. Thus, data cleaning, the task of
detecting and correcting errors in data, plays an important role in data warehousing: Only high quality
data produces reliable analysis and data mining results.
Within an ETL workflow specific data quality problems, such as assigning missing values, assuring refer-
ential integrity and uniqueness, can be solved using standard ETL transformations, such as lookup trans-
formations. For instance, the ETL workflows in Example 1 complement source data lacking zip codes
with a correct value using an address lookup. We consider a lookup transformation that replaces missing
source values as a candidate data repair. Pushdown automatically discovers this type of candidate within
a given ETL workflow. Then, the ETL developer decides out of all discovered repairs which ones to per-
form at the sources, such as replacing missing source values with data from a lookup table. Applying
these cleaning steps to the sources improves data quality for applications working on the same data
sources. Furthermore, it avoids multiple fixing of data quality problems in future ETL projects and thus
reduces development time of new ETL workflows. The idea of sending back improved data to the sources
is mentioned in the literature as backflow of cleaned data and was introduced in [22]. In that work, updat-
ing the original sources with clean data from an ETL workflow is identified as a main step in data clean-
ing. In the field of data integration, for example in current data warehouse environments, this task still
remains a problem and requires much manual work. PUSHDOWN is a first attempt to automate the data
cleaning of sources based on repairs specified in their corresponding ETL workflows.
The main problem we encountered in data cleaning with ETL tools is that the more dirty the data, the
more complex it becomes to properly perform data cleaning with the fixed set of standard ETL transfor-
mations, as also observed in [23]. As data cleaning is often a complicated task, domain specific software
systems are used and, if possible, embedded as “external transformations” in an ETL workflow. For ex-
ample, for the address domain some ETL tools allow to link commercial address-matching systems, such
as Trillium or Informatica AddressDoctor, in ETL workflows to resolve errors of addresses and consoli-
date address data represented in different ways or with different standards. These systems use pre-built
rule sets, for example to extract from an attribute containing free-form address data its finer-grained at-
tributes, such as street, city, state, and zip code.
The data cleaning transformations described above belong to the same class of row-level transformations,
i.e., each transformation produces for each input data item, exactly one output data item. This may in-
clude the generation of new output attributes. We use the notion of generalized projection known from
relation databases to describe this class of transformation. A detailed description about representing these
transformations as projections can be found in [10]. This generalization allows us to apply traditional
rewrite technique from query optimization in relational database systems to push such data cleaning trans-
formations down to the sources. If a pushdown of a data cleaning transformation is possible, the result is
presented to the user as a candidate data repair. For example, the pushdown of an address cleaning trans-
formation results in an ETL workflow updating the free-form address attribute in the source using a
standardized concatenation of the finer-grained address attributes extracted in the address cleaning trans-
formation. Please note that the application of rewrite rules does not affect the original ETL workflow, i.e.,
the ETL workflow does not change during the execution of PUSHDOWN: Conceptually, we repeat the data
cleaning transformation, i.e., the same data cleaning transformation is applied twice in the ETL workflow.
This causes no side-effects, because the regarded data cleaning transformations are idempotent, i.e., ap-
plying them more than once results in the same output. Then, the pushdown is applied to the first of the

two data cleaning transformations based on step-by-step rewritings of the ETL workflow.

Example 4 (Updating sources with improved data).Consider the merged ETL workflow from Example 1.
Figures 13 – 15 show the pushdown of the data cleaning transformation replacing missing zip codes with
correct data from a lookup table. Figure 16 shows the discovered candidate repairs.

Figure 13 illustrates the concept of doubling a data cleaning transformation to push it down to the sources
without affecting the original ETL workflow: The lookup transformation is applied twice in succession
and the first lookup transformation passes all its input attributes to the output. The output is then used as
input for the original lookup transformation. Figure 14 shows interchanging the order of the first lookup
transformation and split. This rewrite maps the initial ETL workflow to a semantically equivalent ETL
workflow: The swapped lookup transformation captures the split condition by consolidating only the data
partition with missing zip codes. To emphasize that the split condition is considered, the swapped lookup
transformation is marked with a star (*) in the figure. Figure 15 shows the result after pushing the lookup
transformation to the sources using traditional rewrite technique.
PUSHDOWN can be extended in a straightforward manner to support further data cleaning transformations
that are not representable as a single projection. For example, duplicate elimination [24] is supported in
some ETL tools, such as IBM’s InfoSphere QualityStage. This data cleaning step locates and groups simi-
lar database records from a single input and identifies potential duplicate records, which are then consoli-
dated into a single representation. This data cleaning transformation can be generalized as a combination
of a projection generating a new output attribute to identify a group of duplicates, followed by an aggre-
gation to perform the final consolidation of groups of duplicates. Similar to what was discussed above for
a single projection, this generalization allows us to apply traditional rewrite techniques known from query
optimization in relational database systems to push this data cleaning transformation down to the sources.

CONCLUSION
With this paper we reported our observations and experiences made during the implementation of a ge-
neric ETL management framework. We have highlighted some of our main findings and presented feasi-
ble algorithms and methods for building ETL management operators, such as SEARCH, MATCH, or
MERGE. Furthermore, we investigated the usefulness of the introduced high-level operators to improve
ETL development and maintenance, especially in the context of data warehousing.
Managing ETL systems is a laborious task that can be successfully accomplished only through full ETL
workflow comprehension: As ETL workflows quickly become complex and difficult to understand, effec-
tive techniques are needed to support ETL developers in understanding ETL workflows in the context of
ETL management. As a conclusion, we see in addition to generic ETL management operators the need for
fundamental ETL workflow comprehension techniques in ETL, such as workflow abstraction or meaning-
ful labeling of workflows. Previous work [16] already started to focus on the workflow comprehension
problem. In that work, an effective and fully automated labeling technique is presented to support ETL
developers in understanding cryptic schemata or schema fragments of complex ETL workflows.

ACKNOWLEDGMENT
This research was supported by InfoDyn AG; we want to thank Benjamin Böhm and Dieter Radler of
InfoDyn AG for supplying large, real-world ETL repositories.

Fig. 13. Repeat the data cleaning transformation in the original ETL workflow

Fig. 14. Interchanging the order of split and lookup transformation

Fig. 15. Pushing lookup transformation back to the sources

Fig. 16. Discovered candidate repairs

REFERENCES
[1] Himanshu Agrawal, Girish Chafle, Sunil Goyal, Sumit Mittal, and Sougata Mukherjea. An Enhanced Extract-

Transform-Load System for Migrating Data in Telecom Billing. In Proceedings of the International Confer-
ence on Data Engineering (ICDE), Cancun, Mexico, 2008.

[2] Umeshwar Dayal, Malu Castellanos, Alkis Simitsis, and Kevin Wilkinson. Data Integration Flows for Busi-
ness Intelligence. In Proceedings of the International Conference on Extending Database Technology (EDBT),
Saint Petersburg, Russia, 2009.

[3] Alexander Albrecht. METL: Managing and Integrating ETL Processes. In Proceedings of the VLDB PhD
workshop (VLDB), Lyon, France, 2009.

[4] Alexander Albrecht and Felix Naumann. Managing ETL Processes. In Proceedings of the VLDB International

Join% Split%

Lookup%
Missing&Zip&

Gather% CRM%

Zip%Codes%

Gather%

Customers%
WWW%

Customers%
Catalog%

Addresses%

Lookup%
Missing&Zip&

Zip%Codes%

Join% Split%

Lookup%
Missing&Zip&

Gather% CRM%

Zip%Codes%

Gather%

Customers%
WWW%

Customers%
Catalog%

Addresses%

Lookup*%
Missing&Zip&

Zip%Codes%

Join% Split%

Lookup%
Missing&Zip&

Gather% CRM%

Zip%Codes%

Gather%

Customers%
WWW%

Customers%
Catalog%

Addresses%
Lookup*%
Missing&Zip&

Zip%Codes%

Lookup*%
Missing&Zip&

Zip%Codes%

Update' Customers'
WWW'Addresses'

Lookup*'
Missing'Zip'

Zip'Codes'

Lookup*'
Missing'Zip'

Zip'Codes'

Addresses' Update' Customers'
WWW'

Workshop on New Trends in Information Integration (NTII), Auckland, New Zealand, 2008.
[5] Yingwei Cui and Jennifer Widom. Lineage Tracing for General Data Warehouse Transformations. VLDB

Journal, 12(1), 2003.
[6] Panos Vassiliadis and Alkis Simitsis. Extraction, Transformation, and Loading. In Encyclopedia of Database

Systems, pages 1095–1101, 2009.
[7] Laura M. Haas, Mauricio A. Hernandez, Howard Ho, Lucian Popa, and Mary Roth. Clio Grows Up: From

Research Prototype to Industrial Tool. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD), Baltimore, MD, 2005.

[8] Philip Bernstein. Applying model management to classical meta data problems. In Proceedings of the Confer-
ence on Innovative Data Systems Research (CIDR), Asilomar, CA, 2003.

[9] Bogdan Alexe and Mauricio A. Hernandez. Map-Merge: Correlating Independent Schema Mappings. In Pro-
ceedings of the International Conference on Very Large Databases (VLDB), Singapore, 2010.

[10] Mauricio A. Hernandez, Stefan Dessloch, Ryan Wisnesky, Ahmed Radwan, and Jindan Zhou. Orchid: Inte-
grating Schema Mapping and ETL. In Proceedings of the International Conference on Data Engineering
(ICDE), Cancun, Mexico, 2008.

[11] Thorsten Papenbrock and Sven Viehmeier. Development of the Server Achitecture for a Graphical ETL Pro-
cess Management System. Bachelor’s thesis, Hasso Plattner Institute, 2010.

[12] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, Boston,
MA, USA, 1999.

[13] Jae-Yoon Jung and Joonsoo Bae. Workflow Clustering Method Based on Process Similarity. In Proceedings of
the International Conference on Computational Science and Its Applications (ICCSA), Glasgow, UK, 2006.

[14] Panos Vassiliadis, Anastasios Karagiannis, Vasiliki Tziovara, and Alkis Simitsis. Towards a Benchmark for
ETL Workflows. In Proceedings of the 5th International Workshop on Quality in Databases (QDB), Vienna,
Austria, 2007.

[15] Alkis Simitsis, Panos Vassiliadis, and Timos Sellis. Optimizing ETL Processes in Data Warehouses. In Pro-
ceedings of the International Conference on Data Engineering (ICDE), Tokyo, Japan, 2005.

[16] Alkis Simitsis, Kevin Wilkinson, Umeshwar Dayal, and Malu Castellanos. Optimizing ETL workflows for
Fault-Tolerance. In Proceedings of the International Conference on Data Engineering (ICDE), Long Beach,
CA, USA, 2010.

[17] Alexander Albrecht and Felix Naumann. Schema Decryption for Large Extract-Transform-Load Systems. In
Proceedings of the International Conference on Conceptual Modeling (ER), Florence, Italy, 2012.

[18] Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes Gehrke, and Alan Demers. Rule-Based Multi-
Query Optimization. In Proceedings of the International Conference on Extending Database Technology
(EDBT), Saint Petersburg, Russia, 2009.

[19] Prasan Roy. Optimization of DAG-structured Query Evaluation Plans. Master’s thesis, Indian Institute of
Technology, Bombay, 1998, http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.46.9924

[20] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and Extensible Algorithms for Multi
Query Optimization. In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), New York, NY, USA, 2000.

[21] Karsten Draba. Merging ETL Processes. Master’s thesis, Humboldt-Universität zu Berlin, 2009.
[22] Erhard Rahm and Hong-Hai Do. Data Cleaning: Problems and Current Approaches. IEEE Data Engineering

Bulletin, 23(4), 2000.
[23] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian Saita. Declarative Data Clean-

ing: Language, Model, and Algorithms. In Proceedings of the International Conference on Very Large Data-
bases (VLDB), Rome, Italy, 2001.

[24] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating Fuzzy Duplicates in Data Ware-
houses. In Proceedings of the International Conference on Very Large Databases (VLDB), Hong Kong, China,
2002.

