Cost-Aware Query Planning for Similarity Search

Dustin Lange, Felix Naumann

Hasso Plattner Institute, Potsdam, Germany

Abstract

Similarity search aims to find all objects similar to a query object. Typically, some base similarity measures for the different
properties of the objects are defined, and light-weight similarity indexes for these measures are built. A query plan specifies which
similarity indexes to use with which similarity thresholds and how to combine the results. Previous work creates only a single,
static query plan to be used by all queries. In contrast, our approach creates a new plan for each query.

We introduce the novel problem of query planning for similarity search, i.e., selecting for each query the plan that maximizes
completeness of the results with cost below a query-specific limit. By regarding the frequencies of attribute values we are able to
better estimate plan completeness and cost, and thus to better distribute our similarity comparisons. Evaluation on a large real-world
dataset shows that our approach significantly reduces cost variance and increases overall result completeness compared to static

query plans.

Keywords: Similarity Search, Similarity Measures, Query Planning

1. Introduction

Similarity search is an important application in many com-
mercial applications. As an example, consider a person data set
that typically contains information such as the name, the date of
birth, and the address of individuals that are somehow related
to a company. Often, queries against this data set have to be an-
swered extremely fast, e. g., to process online orders or to sup-
port call centers. In many cases queries may contain informa-
tion that differs from the information stored in the data set. For
example, there may be typos, outdated values, or sloppy data or
query entries. A good search application needs to handle these
errors effectively while returning results as fast as possible.

To implement an efficient similarity search system, in our
previous work we suggest to prepare a filter criterion on a set
of attribute-specific similarity indexes for a fixed cost limit [1].
We refer to the filter criterion as query plan (to access the sim-
ilarity indexes) in analogy to query plans in database systems
(to access tables and traditional indexes). In [1], a static query
plan is determined in advance as a good choice for an average
query and is used for all queries. Even if the average query run-
time is reasonable, a fixed query plan for all queries can have
a large variance in query runtime. In particular, query values
that occur very frequently in the database can lead to a very
long query runtime, which may be unacceptable regarding user
responsiveness.

In contrast, query-specific planning can offer a more reliable
query runtime. By analyzing the attribute values in the query,
we can adjust the plan to the actual query requirements. For

Email addresses: dustin.lange@hpi.uni-potsdam.de (Dustin
Lange), naumann@hpi.uni-potsdam.de (Felix Naumann)

Preprint submitted to Elsevier

very frequent query values, we apply higher similarity thresh-
olds and have a more strict query plan (than the average query
plan). Vice versa, for very rare query values, we can be less
strict and apply lower thresholds so that we better exploit the
allowed cost range (and possibly improve completeness of the
results). Such flexibility results in a more reliable execution be-
havior and potentially more complete query results, as we show
in our evaluation on a real-world dataset from a large credit
agency.

With the ability to assign different plans to individual queries,
we are also able to adhere to query-specific cost limits. As an
example, consider a large credit rating agency that has different
types of clients. E-commerce clients have strict runtime limita-
tions; they do not want to put an online transaction at risk even
if some queries are incompletely answered. In contrast, banks
have typically highest requirements on complete and correct re-
sults and are willing to invest more time. A query-specific cost
parameter can express these user profiles in a single search sys-
tem. The cost limit is also useful for systems with limited hard-
ware resources that may need to handle very different work-
loads. During very busy hours, the cost parameter may be used
to reduce the invested amount per query and still being able
to handle all incoming queries. The available cost limit then
depends on the amount and complexity of queries executed in
parallel.

Our goal is to perform efficient search, based on a set of sim-
ilarity measures and an arbitrary similarity composition tech-
nique. We assume that we can create a set of similarity indexes
that provide efficient access to the set of records based on the
defined similarity measures above a parameterizable threshold
(e.g., simpisiname = 0 for an arbitrary 6 € [0, 1]). Apart from
the similarity indexes, we do not place any restrictions on the

November 29, 2012

similarity measures or their similarity composition. Thus, we
cannot apply any of the techniques for similarity search in spe-
cific data spaces, such as metric space [2] or vector space [3].
Instead, we consider our similarity measures as black boxes and
want to find an efficient method for searching with them.

In this paper, we focus on similarity range queries: Given an
overall similarity measure simpyerq, a fixed similarity threshold
Ooveran (the range), a record set R € U (where U is the universe
of all possible records), and a query g € U, the task is to find
all records r € R with simoyerai(q, r) = Ooverail-

1.1. Filter-and-Refine Search

We briefly describe our search setting where we allow arbi-
trarily composed similarity measures and define query plans as
filter criteria.

To perform efficient similarity search with an arbitrarily com-
posed similarity measure, we apply a filter-and-refine approach:
Given a query, we first filter the entire set of records to derive
a set of probably relevant records. For this step, we need one
similarity index for each base similarity measure in the filter.
We apply filter criteria on these indexes (e. g., all records with
Simristname = 0.9 as well as all records with simiasiName =
0.8) and then combine the filtered sets (e. g., the intersection of
records with similar FirstName and LastName).

In the refine phase, we calculate the exact similarity (with
the combined similarity measure) of the query for each of the
records that survived the filtering. The result then contains the
set of records above the threshold for overall similarity (Bpyerair)-

The filter criterion (which operates on the base similarity
measures) is an approximation of the overall similarity mea-
sure (which composes the base similarity measures). The key
to success is to optimize the filter criterion — it should be as con-
cise, but as complete as possible. For as many cases as possible,
the filtered list of records should contain all sufficiently similar
records; the number of missing similar records should be as low
as possible. Additionally, this list should be as short as possi-
ble, i. e., the number of incorrect matches that are unnecessarily
compared to the query record should be as low as possible. As
mentioned above, we refer to the filter criterion as query plan.
The main focus of our paper is how to select the best possible
plan for each individual query.

1.2. Query Planning

We show an overview of our approach to query planning
in Figure 1. At compile time, the data is indexed. For each
attribute, we create an inverted index and a similarity index.
Moreover, from the data and its statistics we learn a complete-
ness tree, i.e., a data structure that is used to predict the com-
pleteness of query plans. At query time, for each query we first
select a query plan template, i. e., a combination of attributes in
disjunctive normal form (DNF). In the next step, we optimize
the query plan thresholds to maximize completeness. In both
steps, we estimate cost of query plans with the help of the in-
dexes, and we estimate completeness using the completeness
tree. The resulting query plan (with highest completeness and
cost below the cost limit) is applied as filter criterion. Only

)

Training
queries

o I 3]
-§ ’ Indexing ‘ ’ Learning ‘
o
3 l l l
g Inverted Similarity Complete-
© indexes indexes ness Tree
Cost
'g estimation
=]
g Quer Template Best query Threshold Best query
3 Y selection plan template optimization plan

A=John, B=Smith,
C=NY, D=11428

(A20.9A820.95)

(AAB)V (CAD)
V(C20.8AD>0.89)

Figure 1: Process overview

for the remaining records, the overall similarity to the query is
calculated.

This paper builds upon our work on static query planning
for similarity search [1] and allows the specification of query-
specific cost limits and appropriate query planning. The contri-
butions of this paper are:

e Definition of the novel problem of query planning for
similarity search with arbitrarily composed similarity mea-
sures and query-specific cost limits

e Exact and approximate algorithms for selecting query plan
templates (that can be interpreted as very strict query
plans) and optimizing similarity thresholds in the query
plans

e Anevaluation on a large, real-world dataset, which shows
that we can efficiently select good query plans yielding
more complete results with a more reliable query runtime

The remainder of this paper is structured as follows. In Sec-
tion 2, we discuss related work. The problem setting is intro-
duced in Section 3. We then present our approaches for se-
lecting query plan templates in Section 4 and for optimizing
thresholds in Section 5. We discuss evaluation results in Sec-
tion 6 before concluding the paper in Section 7.

2. Related Work

In the field of similarity search, there is a variety of ap-
proaches for specific cases of similarity measures and data. If
the data can be transformed into a vector space (feature space),
the search of similar objects can be reduced to the search of
close vectors. A popular similarity measure is the Euclidean
distance. For an overview on approaches to this setting, we re-
fer the reader to the survey by Bohm et al. [3]. For another
well-explored space, the metric space, the similarity measure
needs to fulfill the metric requirements, while the data can have
arbitrary form. In this setting, the triangular inequality can be
exploited to efficiently reduce the search space [2, 4]. Because

our similarity measure can have arbitrary form, both vector and
metric space approaches cannot be applied.

Another relevant similarity search approach has been sug-
gested by Fagin [S5]. The presented algorithm retrieves the top k
elements by accessing the list of elements in order of their simi-
larity to the query object regarding different aspects (e. g., order
all pictures by their similarity to blue and round). We com-
pare our approach with an extension of Fagin’s Algorithm, the
Threshold Algorithm [6], in Section 6 and show that our ap-
proach works significantly better in a setting with many exact
attribute value matches.

Deshpande et al. suggest an index structure for non-metric
similarity measures that exploits inverted indexes (similarity
lists) for all values [7]. As stated by the authors, their index
structure “AL-Tree” is only suitable for attributes with very
small numbers of distinct values. In our setting with possibly
millions of distinct values per attribute, this approach is infea-
sible.

In our previous work, we presented an approach for prepar-
ing a static query plan in advance [1]. The previous approach
iterates over all possible query plan templates and optimizes the
plan thresholds with our top neighborhood algorithm. In this
paper, with strict time constraints at query time, we first deter-
mine a good template and then optimize its thresholds. Among
the novel concepts are the completeness tree that helps estimat-
ing query plan completeness at query time, a template selection
algorithm that significantly reduces the amount of templates to
be evaluated, and a threshold optimization algorithm that uses
training queries as similarity profiles for setting thresholds. We
empirically compare our novel approach to the previous algo-
rithm in Section 6.

An area related to similarity search is duplicate detection [8,
9, 10]. For a given set of records, the task is to determine all
duplicate entries, i. e., all sets of sufficiently similar records that
refer to the same real-world entity. For similarity search, too,
the problem is to find similar entries, but only for one query ob-
ject. Duplicate detection is often run in a batch processing job,
while similarity search usually requires an answer very fast for
a satisfying user experience.

Christen et al. [11] propose to determine similar records be-
fore inserting a new record into a database, thus preventing the
insertion of duplicate records beforehand. Similar to our ap-
proach, they exploit a set of similarity indexes. To determine
the overall similarity, the authors propose to calculate the sum
of the indexed base similarity values, while our approach allows
to use any combination technique as the composite similarity
measure. In terms of query planning, the approach by Christen
et al. can be modeled as a query plan that contains a disjunction
of all attributes. Our comparison with this approach shows that
this query plan is, in most cases, considerably too expensive to
be executed.

A common approach to duplicate detection is blocking, i. e.,
similar records are grouped into blocks, and then all records
within each block are compared to each other [12]. The prob-
lem of finding the best blocking criterion is similar to that of
finding the best query plan for similarity indexes. In our set-
ting, the blocking predicates are similar to the attribute pred-

icates for which we optimize the thresholds. Michelson and
Knoblock suggest a machine learning approach to learn block-
ing schemes, i.e., selected attributes for blocking as well as
similarity measures [13]. Bilenko et al. determine an optimal
blocking criterion by modeling the problem as red-blue set cover
problem [14]. Both approaches can only decide whether the
predefined blocking attribute candidates are contained in the
optimal blocking criterion or not. In contrast to these approaches,
our proposed algorithm supports the optimization of thresholds
involved in similarity predicates (not only Boolean contained/not-
contained decisions).

Chaudhuri et al. determine duplicates by calculating the union
of similarity joins [15]. They reduce the problem of finding the
best similarity join predicate to the maximum rectangle prob-
lem. In a second step, they unite the optimal join predicates.
Their approach requires the specification of negative points (in
their case: non-duplicates) as training data, which is not helpful
in the similarity search setting, where for a given query almost
all records are irrelevant and thus negative examples. As we
cannot rely on these negative examples in our setting, we need
a more sophisticated cost estimation. In contrast to all blocking
preparation approaches, our goal is to determine the best query
plan at query time; thus, we have significantly less time for se-
lecting the plan than an approach that determines a single plan
(or blocking criterion) in advance.

3. Problem Setting

In this section, we define basic notations for composed sim-
ilarity measures and the problem of optimizing a query plan for
efficient search with those measures.

3.1. Composed Similarity Measures

We follow the common and proven notion of defining indi-
vidual similarity measures for different attributes and attribute
types; for instance, dates are compared differently than names
or addresses. These individual similarities are subsequently
combined to define the global similarity of two records.

Accordingly, we first split the problem of measuring the
similarity of two records into smaller subproblems. We define
a set of base similarity measures sim,(q, r), each responsible
for calculating the similarity of a specific attribute a of the com-
pared records g and r from a universe U of possible records. In
our person data use case, we have the functions simgirsiName
SIM| astName» SIMBirthDate sim(;ity, and simZip. All base similarity
measures can be chosen independently. For example, we could
use Jaro-Winkler distance for simgirstname [10], the relative dis-
tance between dates for simpgirhpate, and numeric difference for
simzip. We assume the domain of the similarity measures to be
between 0 and 1, with 1 representing identity and O dissimilar-
ity of the compared record parts:

simg : (UxU) - [0,1]CcR 1)

A composed similarity measure simg,..,; uses the base
similarity measures to derive an overall similarity of the two
compared records. With a fixed similarity threshold Ooyerq, @

query ¢, and a record set R C U, our goal is to find all records
r € R with SimOverall(q’ }") > 90verall~

For example, a weighted sum of the base similarity mea-
sures is one composition technique. Other techniques involve
machine learning approaches, such as logistic regression, deci-
sion trees, and support vector machines. Learnable similarity
measures have been addressed by several researchers [16, 17].
We make no assumptions whatsoever on the composed similar-
ity measure other that it is composed of base similarity mea-
sures.

3.2. Query Plans

A base similarity measure predicate sim,(q,r) > 6, covers
all records r € R for which the similarity to the query record
q € U calculated with the base measure sim, is at least §,. In
the following, we abbreviate this predicate to a > 6, and refer to
base similarity measure predicates as attribute predicates (due
to our running example, in which each base similarity measure
covers one attribute).

A query plan template is a combination of attribute pred-
icates (with yet unspecified thresholds) with the logical oper-
ators conjunction and disjunction. Query plan templates are
in disjunctive normal form (DNF), since this form is popu-
lar [14, 15] and easy to understand and modify. Note that all
logical combinations of attributes can be expressed in DNF. A
query plan template combines N attribute predicates and has the

form:
v /\ a; >0,)

with1 < i < N,Vi : 0 < 6, < 1. For clarification, we note
that our query plan template is a technical means for efficient
execution of queries and is not to be defined by a user.

Once all threshold variables in a query plan template are
assigned a value, we call this a query plan. An example for a
query plan that covers all records with similar FirstName and
Zip or LastName and BirthDate is the following:

(FirstName > 0.9 A Zip > 1.0)
Vv (LastName > 0.8 A BirthDate > 0.85)

As default threshold assignment of a query plan template, we
set all thresholds to 1.0, i.e., we perform an exact search on
all attributes. We use this default assignment to select a good
template before optimizing the thresholds.

A query plan p covers a record r € R for a query g € U iff
there is at least one conjunction ¢ in p where r is covered by all
predicates in c.

To evaluate query plans, we define different performance
metrics. The completeness comp(p, g) of a query plan p for a
query ¢ is the proportion of records r € R with simoyerai(q,r) >
Ooveran that are covered by p. Our goal is to find as many similar
records as possible. The definition of completeness resembles
the common definition of the recall measure; because of the
usual usage of recall for evaluation purposes, we prefer the term
completeness as a property of the internally used query plans.
The cost cost(p, g) of a query plan p for a query ¢ is the number
of records in R that are covered by p. For each covered record,
an expensive calculation of its overall similarity to the query

record is required. To limit query execution time, cost must be
less than or equal to a query-specific threshold C,; only query
plans that fulfill this property are valid plans. The threshold C,
is specified by the user in advance.

Given a set R of records, a query g, and a query-specific
cost limit C,, the cost-aware query planning problem is to
determine the query plan p that maximizes
comp(p, q) subject to cost(p,q) < C,,.

3.3. Preparation

Our approach uses the following data for estimating cost
and completeness of query plans. As training data for estimat-
ing completeness, we use a set T of correct query/result record
pairs (g, r) where g and r are similar according to the composed
similarity measure. We assume that the training data appropri-
ately covers the diversity of queries.

For cost estimations, we use available statistics of value fre-
quencies in the created indexes. For each attribute, we create
an inverted index i-ind, : V, — P(R) that determines the set of
records in R that contain an attribute value v € V,,. In addition,
for each attribute, we create a similarity index s-ind, : V, X
[0, 1] — P(V,) that determines for a value v € V, and a thresh-
old 6, the set of similar values v, € V, with sim,(v,v,) > 6,.

4. Template Selection

In the following, we describe how to determine a good query
plan template for a given query. Our algorithm interprets a tem-
plate as a very strict query plan: A plan where all thresholds are
set to 1, i.e., only exact search is performed (using inverted
indexes only). This is necessary for predicting the cost and
completeness of the template. In Section 5, we describe how
to determine appropriate thresholds for the template selected in
this section.

Why does it make sense to determine the template first?
First and foremost, the template, i. e., the structure of the query
plan, is more important for the search than its thresholds: The
template expresses which attributes are restricted, i.e., which
attribute values from the result record must match the query
values. Our goal is to find a template where most errors in the
query are made in the non-restricted attributes. The next step
is then to carefully lower the thresholds, so that all remaining
(hopefully few) errors in the template’s attributes are also cov-
ered. Our evaluation results in Section 6.2 confirm that in our
case most queries can be answered with a well-selected tem-
plate, while the plans (with lower thresholds) are required for
answering the remaining (small) fraction of queries (cf. Fig-
ure 5(a)). In addition, as our optimization algorithm is run
with each query, it must be very fast, so that overall query run-
time is not significantly affected. The solution space of pos-
sible templates is considerably smaller than for query plans
(only attribute combinations are considered; thresholds are ig-
nored). Thus, optimizing thresholds for only the best template
saves a considerable amount of time. Lastly, in some use cases,
our proposed algorithm already determines a very good solu-
tion. In particular, when most queries contain only few errors

1
.
[
§ 0.95 ‘ m0-10
[T}
B 09 m11-100
3 e |
® 101 -1000

“ 085 - ‘

LastName City 1001+

Attribute

Figure 2: Completeness of templates consisting of only one attribute each,
grouped by frequency of the respective attribute

(i.e., there are several attributes that exactly match the correct
record), then there is no need for similarity indexes at all. In
these cases, our template optimization approach described in
this section is sufficient; only inverted (exact) indexes on at-
tributes need to be created — similarity indexes on the attributes
are unnecessary.

First, we describe how to evaluate a conjunction of attributes
as part of a query plan template. The described completeness
and cost estimations for conjunctions are then combined to es-
timations for the complete plan in DNF. Based on these estima-
tions, we finally describe our algorithm for template selection.

4.1. Completeness Estimation

Evaluating the completeness of a query plan means predict-
ing which attributes of a query match the correct result record.
An intuition to tackle this problem is that the frequency of val-
ues has a strong influence on the errors that are made. Psy-
cholinguistic studies showed that high-frequency words are more
likely to be spelled correctly than low-frequency-words [18,
19], because the corresponding paths in the brain have been
activated much more often (and vice versa for low-frequency
words) [20].

If an attribute value in the query occurs frequently in the
database, then we can be quite sure that it is spelled correctly
and that it might be a good candidate to include in the template
(because inclusion means that the attribute values must match).
For query values that we find only rarely in the database, there is
a higher probability that they contain errors —e. g., because they
are misspelled versions of actually frequent values or because
someone did not know and thus misspelled a rare value. Thus,
it should not be part of the restricting attributes in a template.

As an example, Figure 2 shows the completeness of two
templates containing exactly one attribute each. The results are
calculated for a set of 1000 randomly selected queries from our
person data use case (see Section 6 for details). The figure
shows completeness values for different frequency ranges for
the respective attributes. We can see that the completeness val-
ues for both templates increase with the according frequency
(confirming previous studies on the correlation of frequencies
and spelling errors [18, 19]). Note that our approach contains
no hard-wired formulas, but rather exploits any relationship be-
tween frequency and completeness that is contained in the train-
ing data.

f(FirstName) < 1000

tr% \lee

[0.75,0.80,0.70] f(LastName) < 2000

tr% \%lse

[0.89,0.75,0.71] [0.91,0.96,0.90]

Figure 3: Completeness tree example for two attributes FirstName, LastName.
Leaves show completeness arrays for the templates FirstName, LastName, and
FirstName A LastName.

Because frequencies of values indicate the probability of
contained errors, we use value frequencies to determine a tem-
plate’s completeness. We formalize the problem as a regression
task: Given the frequencies of the attribute values of a query ¢
and a query plan template g, predict comp(qt, q).

Our approach is to partition the training data using the given
frequencies. We then calculate the completeness value in each
partition for each query plan template. We learn the best parti-
tioning using a tree learning algorithm. For a given query and
conjunction, the idea is then to estimate the completeness from
those training queries that have similarly frequent attribute val-
ues.

We call the resulting regression tree a completeness tree.
The tree consists of decision nodes and regression values in the
leaves. In our case, a decision node refers to an attribute fre-
quency, e. g., f(FirstName) < 1000. As prediction value, a
leaf contains the completeness regarding the data partition that
is defined by the path of all decision nodes from the root to
the leaf. The leaf contains a completeness array, i.e., a list
of completeness estimations for all subsets of attributes. We
show an example in Figure 3. The root node is a decision node
with f(FirstName) < 1000. For any query with rare values
for FirstName, we reach a leaf node. The value 0.75 in the
leaf node’s completeness array means that 75 % of all training
queries with f(FirstName) < 1000 are covered by the conjunc-
tion FirstName; similarly, 80 % are covered by LastName, and
70 % are covered by FirstName A LastName.

The algorithm for creating the completeness tree is shown
as Algorithm 1. The tree is created top-down, starting with the
root node. To determine the best decision node for the root
node, every possible attribute frequency is evaluated. The best
node is the one with lowest sum of squared errors (SSE) be-
tween predicted and actual value. The remaining nodes are cre-
ated with a greedy algorithm. The locally best node is fixed and
the algorithm is applied recursively to the left and right child
nodes. A node is not further split if the number of remaining
training instances |T| falls below a threshold T, or if the pre-
diction error cannot be decreased.

The SSE calculation is shown in Line 8. For a conjunction ¢
and a training data set 7, we determine the estimation error
for the predicted completeness. The predicted completeness pr
is calculated as the fraction of training queries in 7' covered
by c; this number is returned by m(T,c). For these covered

Algorithm 1 function createNode(T)
Input: set T of training query/result record pairs
QOutput: split node or leaf node

1. if |T| < T, then
2: return leaf node with data T’
3: sp « null
4: E,;, < estimation error (SSE)on T
5: for each attribute a do
6
7
8

for each distinct frequency f of any value of a do
// evaluate split point {a, f)
Eup < X mT, o)1 = pr)* + (IT| = m(T, c))pr

ceconj
where pr « %
9: if £, < E,» then
10: sp «—(a, f)
11: Epin < Ea,f

12: if sp = null then

13: return leaf node with data T

14: else

15: IC « createNode({d € T | f(d, sp.a) < sp.f})
16: rC « createNode({d € T | f(d, sp.a) = sp.f})
17: return split node (/C, rC)

instances, the correct value is 1 (as they have been matched);
thus, the squared error for the predicted value is (1 — pr)?. For
the instances that have not been matched, the correct value is O,
and we have a squared error of pr2.

In our setting, we have a multi-label regression problem,
i.e., we want to predict several values (the completeness of all
possible attribute conjunctions) at the same time. We solve this
problem by creating only one regression tree. Our optimiza-
tion criterion is the sum of SSE of all conjunctions — our goal
is to reduce the average error over all conjunctions. We do not
weight the SSE of individual conjunctions as we have no indi-
cation which conjunction might be more relevant than another
for any query. Note that if we had created one tree for each con-
junction, the predicted values would have referred to different
partitions in the data — preventing us from combining the values
for calculating disjunction completeness later on.

The completeness of an attribute conjunction for a given
query is determined by traversing the completeness tree with
the frequencies of the query values from the root node to a leaf
node. The result is the predicted completeness value for the
conjunction stored in the determined leaf node.

4.2. Cost Estimation

The cost of a query plan template is defined as the num-
ber of covered records in the record set. For each attribute, we
know the number of records that are covered by the respective
attribute value in the query: We use the inverted indexes on the
attributes to determine these numbers.

Having these attribute cost is sufficient to estimate the car-
dinality of a complete query plan. In a nutshell, we estimate the
cost of a query plan p for a query g € U by estimating the prob-
ability that a randomly selected record r € R is covered by p.

We multiply the probability with the cardinality of the complete
record set to determine expected cost:

cost(p,q) = |R| x P(covers,(q,r) | r €R) 3)

By calculating cost using probabilities, we are able to easily
handle conjunctions and disjunctions in the query plans with
probability theory. As we empirically show in Section 6.2, our
cost model can accurately predict cost of a query plan with a
small variance remaining.

In the following, we abbreviate the probability that a ran-
domly chosen element r € R is covered by an attribute predi-
cate a > 6, in P(covers,»g,(q,7r) | r € R) as P(a > 6,) and any
conjunctions and disjunctions accordingly.

We first estimate the probability that an element is in the set
of records determined with a conjunction, such as LastName A
City. For two attributes a and b, we want to estimate the proba-
bility P(a A b). To resolve the joint probability, we distinguish
between attributes that are statistically dependent or indepen-
dent. We first determine the default case for attributes (depen-
dent or independent) and then a set of exceptions from the de-
fault case (e. g., independent value combinations for dependent
attributes). In our case, we observe that City and Zip are depen-
dent and that each attribute is dependent on itself (this is rel-
evant if a conjunction contains several predicates on the same
attribute); all other attributes are largely independent from each
other. If dependent attributes are not known in advance, these
can be determined with statistical independence tests, such as
the y>-test.

Next, we determine the exceptions from the default case.
In few cases, there are some strong deviations from the cost
model, especially for the attributes FirstName and LastName.
Specific value combinations of the two attributes frequently co-
occur, while the involved values co-occur significantly less of-
ten with other values. Because our independence assumption
does not hold in these cases, we determine a small list of very
frequently co-occurring attribute values for these two attributes:
We calculate the values where the estimation error of the cost
model for dependent attributes is at most an order of magnitude
higher than the estimation error of the default model for in-
dependent attributes (so that our algorithm tends to select more
strict plans). In these exceptional cases, we regard the attributes
as if they were dependent (and vice versa for default dependent
attributes).

To estimate joint probabilities of dependent attributes, we
assume the worst case: the two predicates completely over-
lap, i.e., the records covered by one predicate are completely
covered by the second predicate. Thus, we estimate the prob-
ability of the predicates’ conjunction as the minimum of the
probabilities of two predicates (and accordingly for three or
more overlapping predicates). For statistically independent at-
tributes, we simply calculate the product of the predicate prob-
abilities. Thus, for two predicates we have:

P(anb) = P (.a)P (b), if @ and b are independent, @
min(P(a), P(b)), else

For more than two attributes, we accordingly resolve joint

probabilities of statistically dependent attributes and then cal-
culate the product of the remaining predicate probabilities of
independent attributes.

With the inverted indexes (defined in Section 3.3), we can
determine the individual predicate probability for a value v of
an attribute a as:

li-ind, (V)|

P(a>86,) = TR (5)

4.3. Evaluating Templates in DNF

We have described how to estimate completeness and cost
for conjunctions of attribute predicates. As query plan tem-
plates use predicates in disjunctive normal form, we now de-
scribe how to combine conjunction estimations into overall es-
timations.

For both completeness and cost estimations, our estimations
for conjunctions can be regarded as probabilities. For cost, we
modeled this explicitly. For completeness, the fraction of cov-
ered correct query/result record pairs can be interpreted as the
probability that a plan covers a result record. The following
combination technique thus applies to both concepts.

For the union of two sets, we can calculate the cardinality as
the sum of the cardinalities of the two sets, less the intersection
of them. The same applies to probabilities. For example, we
want to estimate P(a V b) and have:

Plavb) = P(a)+P(b)—PaAb) ©6)

The conjunctions can be estimated as described in Sections 4.1

and 4.2. For the general case of n conjunctions ¢; in the disjunc-
tion /1, ¢;, the principle of inclusion and exclusion gives us:

P(\n/c,-)z (1 > P(/\cf) ™
i=1 k=1 Tclgl,;}c,n}, teT

4.4. Optimization Algorithm

Being able to predict cost and completeness of a query plan
template, we can now define an algorithm to determine the best
template, i.e., one that maximizes completeness with cost be-
low the cost limit.

Our algorithm starts with an empty DNF. We iteratively add
conjunctions to the DNF, until no other conjunctions can be
added or until a specified number of conjunctions is reached.

For a given query g, we first determine the set of conjunc-
tions that have cost below C, (to fill the first “slot” in the re-
sulting DNF). The power set of conjunctions and its inclusion
relation can be represented as a directed graph G(V, E), where
the vertices are the attribute conjunctions V = P(attributes) and
the edges represent the inclusion property. There is a directed
edge (vi,vp) iff vi D v,. We call this graph the conjunction
graph. Figure 4 shows a representation of a conjunction graph
example in the form of a Hasse diagram.

To efficiently determine the set of valid conjunctions, we
apply a backtracking and pruning approach on the graph. We
traverse the conjunction graph from the largest conjunction to
the empty conjunction (in the figure: from bottom to top) with

| |

AANB AANC AAD BAC BAD CAD

| |

AANBAC AANBAD ANCAD BACAD
AANBACAD

Figure 4: Conjunction graph for four attributes A, B, C, D

depth-first search. By removing an attribute from a plan, the
plan becomes less restrictive, thus the completeness of the plan
increases, but so do its cost. Beginning with the largest con-
junction, we evaluate the conjunction to test wether it forms a
valid plan. If it is valid, we add it to the set of valid conjunc-
tions and then determine the next conjunction by removing one
attribute (i. e., traversing one of the outgoing edges). If the cost
of a conjunction ¢ are too high, then any conjunction ¢* C c is
less strict and has thus equal or even higher cost, so that we can
prune the search at this point — we remove all edges to vertices
¢* C ¢ from the graph.

For example, if A A B in Figure 4 turns out to be invalid,
then A, B, and ¢ also must be invalid as they are less strict. In
this case and in case there are no more attributes to remove,
the algorithm applies backtracking: We return to the set that in-
cluded the attribute that we just removed, and then we try to re-
move another attribute. This approach allows us to prune paths
in the graph containing only invalid plans as early as possible.
Note that an efficient recursive implementation of this approach
does not need to construct the entire graph. However, it is nec-
essary to store visited vertices as well as unreachable vertices
(where we removed all incoming edges) to prevent unnecessary
evaluations of vertices. We show in Algorithm 2 a recursive
implementation of the function evaluateTemplate(q,C,,d, c),
which evaluates a disjunction d and a conjunction ¢ to deter-
mine whether d V ¢ forms a valid plan. Initially, the function
is called with d = € as empty disjunction and the conjunction
containing all attributes as c.

We have now determined the set of valid conjunctions for a
given query. Each such conjunction ¢ forms an initial disjunc-
tion d = ¢, where one position has been filled. As a template
may contain several conjunctions (up to a pre-defined maxi-
mum number of conjunctions), we continue adding conjunc-
tions. At this point, we have two variants of our algorithm:

e Exact variant: We continue with all valid disjunctions.

o Greedy variant: We continue only with the best valid
disjunction (with highest completeness).

In the following, we describe how to proceed with any se-

Algorithm 2 function evaluateT emplate(q, Cy, d, c)

Input: query g, cost threshold C,,
disjunction d representing current template,
conjunction ¢ to be added to current template
1: if ¢ is empty
or c already visited
or c is subset of any conjunction of d
or c is subset of any invalid result then
return
else if cost(d v c,q) > C, then
add c to invalid results
return
else
add c to valid results
for each attribute a € c do
evaluateT emplate(d, c A —a)

R A A A T

lected valid disjunction d. To determine the next conjunction,
we again run the backtracking algorithm on the conjunction
graph. The process is equivalent to a function call to
evaluateT emplate(d, c) in Algorithm 2 with d as disjunction
and, again, the conjunction containing all attributes as c¢. For
each evaluated conjunction ¢, we now evaluate whether the dis-
junction d V c is valid, and we can prune the graph as in the pre-
vious step if it is invalid. We add only conjunctions c that are
not subsets of any conjunction in d, as otherwise ford = d’ Vv c¢*
withc € ¢* wehavedV e =d' Ve, i.e., c does not fill a position
in addition to d; we thus should have already seen the disjunc-
tion in the previous iteration of the algorithm. We repeat this
process until all positions of d have been filled or until there are
no more conjunctions left to add.

As a result, we have determined the best query plan tem-
plate for a given query. This template can now immediately be
executed as a very strict query plan (with all thresholds set to
1.0), or we can determine the best query plan by optimizing its
thresholds as described in the next section.

The worst case runtime of the described algorithm depends
on the number of attributes. For n attributes, there are up to
2" subsets of attributes that form a conjunction. For a maxi-
mum disjunction length of /, the maximum amount of disjunc-
tions is less than 2™, while the maximum value for [is n!. The
algorithm runs thus in O(2"). While this worst-case runtime
seems large, the actual runtime largely depends on the chosen
cost limit and the query. Our algorithm allows early pruning
of the search process, so that the number of actually evaluated
query plans is much smaller without missing any valid query
plan. With the greedy variant, the number of evaluated query
plans can be further reduced. In Section 6.2, we empirically
compare the exact and greedy versions of the algorithm.

5. Threshold Optimization

With the algorithm of the previous section, we can deter-
mine a good query plan template. Although the template can be
interpreted as a very strict query plan that accesses only inverted

indexes, there are many situations where such a plan is not suffi-
cient. Consider a query that contains a typo in each of its fields.
In this case, any query plan that executes an exact search for
each of its attributes cannot find the correct result record in the
database. Thus, as a next step, we extend our solution space to
query plans with arbitrary thresholds.

Similar to the previous section, we first discuss how to es-
timate completeness and cost of a given query plan with vary-
ing thresholds before presenting optimization algorithms to ef-
ficiently traverse the space of possible query plans.

5.1. Cost Estimation

To estimate the cost of a query plan for a given query, we
construct a similarity histogram for each attribute. We do this
only once for each query and then combine the information
from the histograms to estimate the cost of all query plans that
we evaluate for the query.

A similarity histogram for a value v of an attribute a in a
query ¢ is a function hist,, : ®, — IN that returns for each
possible similarity threshold 6, € ©®, the number of records
r € R with sim,(q,r) > 0,, i. e., the number of records that have
a sufficiently similar value for a.

To construct the histogram, we use the similarity index that
we created for each attribute. For a given value v of an attribute
a in the query and for each threshold 6, € ®,, we determine the
number of records in the database with a similar value:

hisra,v(ga) = |s-inda(v, 9a)|

We store the number of matching records for each similar value
directly in the similarity index; it can also be determined with
the inverted index, resulting in more index accesses at query
time. A query may contain a value that has not yet been in-
dexed; in this case, similar values are calculated at query time.
The calculated similarity values can be inserted into the simi-
larity index to speed up future queries. However, inserting too
many spelling variants from queries may slow down index read
performance. Future work will cover when the similarity in-
dex should be updated depending on the distribution of unseen
query values.

The individual attribute cost can be combined into conjunc-
tion and disjunction estimations as described in Sections 4.2
and 4.3.

5.2. Completeness Estimation

With the help of the completeness tree described in Sec-
tion 4.1, we have estimated the completeness of templates. A
node in the completeness tree refers to a subset of the training
queries that is relevant to a given query. Our estimation of a
query plan’s completeness given the query also refers to this set
of queries, thus providing a consistent completeness estimation.

We observe that for a query plan template with n attributes
where we have v different possible similarity thresholds per at-
tribute, there are V" different combinations of threshold settings
(e.g., for two attributes, we could have (1,1), (1,0.99), ...,
(0.99, 1), (0.99,0.99), ...). In our use case with 5 attributes and
up to 100 similarity thresholds, iterating over the complete set

of threshold combinations is infeasible. We also observe that
the threshold space is quite sparse. Even in our case with hun-
dreds of thousands of training queries, only a very small set of
3400 distinct threshold combinations actually occur in the data.
Thus, instead of precalculating all completeness values for all
conjunctions and all nodes in the completeness tree, we perform
live aggregation at query time.

We extend the completeness tree by attaching the simi-
larity values of those training query/result record pairs to the
completeness tree nodes that fall into each node’s training data
partition. This is exactly the set of record pairs that we used to
calculate the node’s completeness values for the attribute con-
junctions in the templates.

To determine a query plan’s completeness, we work with
the node of the completeness tree that we find by traversing
the tree with the given query (the same node that we have de-
termined for selecting the best template). We iterate over the
training queries that were assigned to this node and sum up the
number of matching training queries. To increase aggregation
performance, we store only distinct similarity value combina-
tions for the training query/result record pairs in the complete-
ness tree nodes. The completeness of a query plan is then the
proportion of queries that are matched by the plan. For a given
query, all completeness estimations are consistent, as they all
refer to the same set of training queries. Aggregating these con-
junction estimations to disjunction estimations is performed as
described in Section 4.3.

5.3. Optimization Algorithms

We are now able to estimate cost and completeness of any
query plan for a given query. We define two alternative algo-
rithms for optimizing the thresholds in the query plan template.
We first observe that traversing the complete threshold space
at query time is infeasible, for the same reason as precalculat-
ing cost estimations for all threshold combinations is infeasible.
The following two different approximate algorithms both solve
the problem, but have certain advantages and disadvantages de-
pending on search parameters.

5.3.1. Similarity Profile Algorithm

Our first approach is based on similarity profiles and shown
as Algorithm 3. With the completeness tree, we determine a set
of relevant training query/result record pairs for estimating the
completeness of queries. We can interpret each distinct simi-
larity value combination as a similarity profile, i.e., a specific
configuration of the query plan thresholds. There must be at
least one query that could have been successfully answered us-
ing this profile. Thus, the profile is a good candidate for setting
the query plan’s thresholds. The resulting algorithm is fairly
simple: We iterate over all similarity threshold combinations
(similarity profiles) for the query (which we determined with
the completeness tree). For each profile, we create a plan by
using the profile similarities as thresholds. The valid plan with
highest completeness is the result.

Algorithm 3 Similarity Profile Algorithm
Input: query g, cost threshold C,, template ¢
Output: plan p,,, with optimized thresholds
I: Dres := €
2: maxC :=0
3: § := set of similarity threshold combinations
from completeness tree for g

4: for each s € S do

5. p:= setThresholds(t, s)

6: if cost(p,q) < C, A comp(p,q) > maxC then
7: maxC = comp(p, q)

8: Pres == D

9: return p;.

Algorithm 4 Iterative Algorithm
Input: query g, cost threshold C,, template ¢,
top neighborhood size w
Output: plan p,,., with optimized thresholds
L1 Dres := €
2: maxC :=0
3: W :=set of plans, initially contains only the plan built from
¢t where all thresholds are set to 1
4: while true do
55 Ri=Upew N(p)
6: W:i=0
7. for each p € Rdo
8
9

if cost(p, q) < C, then

: W := WU {p}
10: if comp(p, q) > maxC then
11: maxC := comp(p, q)
12: DPres := D
13: if W =0 then
14: break

15 W :=set of w plans from W with highest completeness
16: return p,.g

5.3.2. Iterative Algorithm

Our second approach for threshold optimization iteratively
lowers thresholds to find the best threshold combination (Algo-
rithm 4). In our previous work, we refer to the algorithm as the
top neighborhood algorithm (TNA) [1].

The general idea of TNA is to start with the plan with high-
est thresholds (in our case, all thresholds are set to 1), then fol-
low promising plans in its neighborhood (the top plans), until
we cannot reach any unseen valid plan. The result is then the
valid plan with highest completeness found so far. In the fol-
lowing, we describe the algorithm in more detail.

The initial plan must be the one with highest thresholds,
since any other plan for starting could make it impossible to
find the best solution due to our downwards search approach.

We define the neighborhood of a plan to help us navigate
the threshold space. A query plan p has a neighborhood N(p)
that contains all query plans that can be constructed by lowering
one threshold of p by one step (e. g., by 0.01). For example, the
neighborhood of a plan with two thresholds 6, and 6, has two

elements:

Na=6,Nb =6

{a>6,—0.01 ADb =6,
a>0,\Nb>6,-0.01}

The neighborhood thus defines all possible directions to tra-
verse the solution space given one query plan. We define the
neighborhood only for lower thresholds and thus higher com-
pleteness (and also higher cost), since we traverse the threshold
space from higher to lower thresholds.

In each iteration of our algorithm, we have a window W =
{q1,...,qu} of n query plans that are currently regarded. We
extend the neighborhood concept to windows by defining the
set of all neighborhood plans for the plans in W as N(W) =
Upew N(p). We then select a subset of these plans: the w plans
with highest completeness (and lowest cost, if there are several
plans with equal completeness; if there are more than w eligible
plans, a random selection is made). We call this set the top
w neighborhood 7,,(W). Only plans with cost below the cost
limit C,, are contained in this set.

The cost limit C, also determines the stopping criterion of
our algorithm. If the top w neighborhood contains only plans
with cost above C,, then the algorithm terminates and returns
the best plan found so far. Otherwise, the algorithm continues
with a new iteration by setting W := T,,(W) (w is thus also the
maximum window size).

5.3.3. Algorithm Analysis

The similarity profile algorithm iterates over all combina-
tions of similarity values in the training data set 7. An upper
bound for all combinations is ®", where ® denotes the num-
ber of different thresholds per attribute and n the number of
attributes. However, the number of actually occurring combi-
nations is typically much smaller and depends on the number
and diversity of the training instances.

The iterative algorithm lowers the thresholds in the plan
step-by-step, until the cost limit C, is reached. In the worst
case, all thresholds must be lowered to their lowest possible
values. The complexity of the iterative algorithm is linear in
the number of predicates in the query plan, the number of pos-
sible thresholds of all predicates, and the top neighborhood size
w[1].

We empirically compare the algorithms in Section 6.2.

6. Evaluation

In this section, we discuss evaluation results on real-world
data. We introduce the dataset and experimental settings in
Section 6.1. In Section 6.2, we compare the discussed query-
specific planning algorithms with previous work on static query
plans as well as with related work and we discuss several as-
pects of our approach in greater detail.

6.1. Dataset and Evaluation Settings
Dataset

We evaluated our approach on real-world data from Schufa,
the largest German credit agency. The Schufa database contains
information about the credit history of about 66m people.

10

Our data set consists of two parts: a person data set and a
query data set. The person data set contains about 66 million
records. The most relevant fields for our search problem are
name, date and place of birth, and address data (street, city,
zip). The query data set consists of a 2-week query log with
2 million queries to this database. For each query, we know
the exact search parameters (most record fields are mandatory),
and the result obtained by Schufa’s current system. Each result
contains up to five candidate records.

The Schufa system automatically evaluates its confidence.
A confidence value is assigned to each result. If only one result
could be found and if its confidence is above a pre-determined
high threshold, then the result is automatically accepted. Re-
sults with a confidence below a pre-determined low threshold
are automatically discarded. In some cases, hand-crafted deci-
sion rules can be applied. In all other cases, Schufa is particu-
larly careful: An expert determines whether one of the results
can be accepted or not.

Thus, there are many manually evaluated queries (the least
confident cases) that we can use for evaluating our approach.
We randomly selected 1,000 of these very difficult queries for
evaluating our system.

Evaluation Settings

Query templates or plans can be statically created at com-
pile time [1]. We pre-compiled the best template and plan (on
a set of 100k training queries). We include the following two
static approaches for comparison:

o T Static: Select the best static query plan template.

o P Static: Select the best static query plan.

Recall that the default threshold assignment for a template sets
all thresholds to 1.0. We will use this default assignment in
the following to compare the results for templates and derived
plans.

Our approach first selects an appropriate template for the
query (Section 4); we have two approaches for selecting tem-
plates (Greedy and Exact). We then optimize the plan’s thresh-
olds (Section 5); we evaluate the similarity profile algorithm as
well as the top neighborhood algorithm. Overall, our approach
creates six query plans for a query:

o T Greedy: Select the best query plan template for the
given query with the greedy algorithm.

o T Exact: Select the best query plan template for the given
query with the exact algorithm.

o P Greedy Prof: Select the best template with the greedy
algorithm, then optimize the plan’s thresholds with the
similarity profile algorithm.

o P Greedy Iter: Select the best template with the greedy
algorithm, then optimize the plan’s thresholds with the
iterative top neighborhood algorithm.

o P Exact Prof: Select the best template with the exact
algorithm, then optimize the plan’s thresholds with the
similarity profile algorithm.

o P Exact Iter: Select the best template with the exact al-
gorithm, then optimize the plan’s thresholds with the it-
erative top neighborhood algorithm.

Christen et al. propose using a fixed accumulation function
for calculating the similarity of a query record to the result
records and ranking the results [11]. Their result set contains
all records where at least one of the attributes contains a value
similar to the query record. We achieve the same result set by
using the query plan that contains a disjunction of all attributes,
which we discuss in Section 6.2 as one of the naive query plans.

We performed all tests on a workstation PC. Our test ma-
chine runs Windows XP with an Intel Core2 Quad 2.5 GHz
CPU and 8 GB RAM. All data as well as inverted and similar-
ity indexes are stored as tables in a PostgreSQL (Version 9.0.1)
database. In the database, the original data tables require 26 GB,
the inverted indexes require 2 GB, and the similarity indexes re-
quire 19 GB.

6.2. Results

Naive Plans

First, we evaluated two naive query plans, namely a query
plan p. that contains a conjunction of all attributes, and an-
other plan p, that contains a disjunction of all attributes (cor-
responds to the result set of the approach by Christen et al.).
While both query plans are not useful for actually answering
queries, they do provide a means for describing the difficulty of
the selected query data set. With p., we achieve a completeness
of only 0.063, while p; can answer all queries correctly. This
means that only few queries (almost) completely agree with the
matching record, and all queries contain at least one correct at-
tribute value (note that this a coincidence, as there also might
be queries allowed that contain errors in all attributes). The
average cost of p. is 0.1 (meaning in many cases no record
is covered at all), and for p;, we have unacceptably high cost
of 622,526.1, i.e., we scan and compare almost 1 % of the en-
tire database with the query. Selecting a query plan that is less
strict than p,, so that higher completeness can be achieved, and
more strict than p,, so that cost can be reduced, is subject to
query planning algorithms discussed in the following.

Comparison of Planning Algorithms

We have evaluated the planning algorithms presented in this
paper with different cost limits. Note that for the static plans,
we needed to prepare plans for all cost limits that we used in the
experiment, while for the query-specific plans, no preparation
for the selected thresholds was necessary (as we can use any
threshold in our algorithm).

In Figure 5, we show average completeness, cost, and vari-
ance of cost for all planning algorithms. Regarding the com-
pleteness (Figure 5(a)), all algorithms achieve a relatively high
completeness compared to the naive plan p; (not shown). For
the static template (T Static), we observe a constant value for
all cost limits (this holds true for all evaluated measures). This
is due to the fact that our algorithm could not find any better
template with average cost above 20. Next, we observe that the
static template (T Static) as well as the query-specific templates

11

-B-T Static
0.98
ﬁ —A—P Static
§ 0.96 —<T Greedy
[}
TE-':- 0.94 =T Exact
S ~0—P Greedy Prof
0.92
P Greedy Iter
0.9 T T T T . =P Exact Prof
20 50 100 200 500 1,000 2,000 P Exact Iter
Cost limit
(a) Completeness
10,000
—=-T Static
% 1,000 == P Static
° s =T Greedy
?:9 =T Exact
o |
z 100 »-P Greedy Prof
P Greedy lIter
10 | B———————8———8———8—8 = __p xact Prof
20 50 100 200 500 1,000 2,000 P Exact Iter
Cost limit
(b) Cost
1,000,000
]
2 ___5/ =T Static
o 100,000 A Z .
§°] > —&—P Static
a>: / < —<T Greedy
© 10,000 /
%5 / =T Exact
° 4
é 1,000 5// P Greedy Prof
§ = P Greedy lter
100 : : : : ; , =&—P Exact Prof
20 50 100 200 500 1,000 2,000 P Exact Iter
Cost limit

(c) Variance of Cost

Figure 5: Results per cost limit

(T Greedy and T Exact) achieve the overall worst results. The
static plan (P Static) performs better; however, for low cost lim-
its, the static plan is clearly outperformed by all query-specific
plans. Note that the absolute completeness value of the best
query-specific plan algorithm for a cost limit of 20 is already
97.8 %, a very high value regarding the difficulty of the queries
and the low cost limit. With cost limits of 200 and higher, the
static plan and the query-specific plans all perform quite well.
Comparing the different planning algorithms, we observe that
(1) the exact template selection (T Exact) achieves noticeably
better results than the greedy algorithm (T Greedy), and (2) the
iterative threshold selection algorithm (P Greedy Iter and P Ex-
act Iter) outperforms the profile-based algorithm (P Greedy Prof
and P Exact Prof) for lower cost limits.

As can be seen in Figure 5(b), the average query cost largely
corresponds to the selected cost limit, as expected. Cost for
templates are always below cost for plans, which makes perfect
sense, as the templates are the basis for the selected plans. Up to
a cost limit of 500, the cost for the static plan also corresponds
to the cost limit; for higher cost limits, there is only little cost

1 . " . e o
& BT Static
08 ——P Static
2
(V]
$ 0.6 =T Greedy
L =T Exact
204
g . ~o—P Greedy Prof
° 0.2 P Greedy Iter
0 —o—P Exact Prof
20 50 100 200 500 1,000 2,000 P Exact lter
TA

Cost limit

Figure 6: Comparison with Threshold Algorithm (TA)

increase. The reason for this behavior is that the best plans
that the static plan optimization algorithm found were not much
more expensive, even with the higher cost limits. In an analysis
of the created static plans, we have seen that the selected plan
already covers all training instances that we used for learning
the static plan, so that no plan with higher completeness can
actually be found.

We show the variance of the average cost in Figure 5(c).
The static plan results in significantly higher cost variance than
the query-specific plans (note the logarithmic scale in the fig-
ure). The reason is that the static plan has very high cost for
frequent query values and very low cost for rare query values,
while the query-specific plans are adjusted to the frequencies of
the query values. Only for very high cost limits, the variance
of the static plan does not increase due to the comparably low
cost of the determined plans (as can be seen in Figure 5(b)).
The remaining portion of the variance can be explained with
the estimation error of our cost model that we discuss in a later
experiment (cf. Figure 9).

Comparison with Related Work

Prominent previous top-k retrieval algorithms are Fagin’s
Algorithm and its successor, the Threshold Algorithm
(TA) [6]. Fagin et al. work with a set of sorted lists to retrieve
records with values similar to the query values (our similar-
ity index approach offers similar sorted access). TA retrieves
records in a round-robin style from the sorted lists (sorted ac-
cess) and determines all missing base similarity values (random
access).

To compare our approach with TA, we perform a top 1
search, i. e., we are interested only in the best matching record.
Our goal is to determine the number of overall comparisons that
are needed by our approach and by TA. Every retrieved record
is counted as one comparison, which is less fine-grained than
an analysis of the required number of attribute similarity calcu-
lations (random accesses). To compare within our cost-limited
problem setting, we determine the completeness of the results
of TA and our approach after reaching the specified cost limits.
Results are shown in Figure 6.

We can see that for all analyzed cost limits, TA performs
significantly worse than our approach. The reason can be found
in the distribution of similar values: For the various attribute
values, we can have many records with exact matches (e. g.,
thousands of persons with the same zip code and thus with

12

1,000

m
£
S 800
E =T Greedy
]
5 600 =T Exact
g 400 »-P Greedy Prof
g — ¢ M - M P Greedy Iter
_g 200 *f . , S o . ——P Exact Prof
§ 0 T ; T T T) P Exact Iter
g 20 50 100 200 500 1,000 2,000
Cost limit
(a) Query plan creation time (query-specific plans only)
100,000
A —-T Static
£ 10,000
g ——P Static
= 1,000 -
> ,000 =T Greedy
Q
g_ 100 =T Exact
b ©—P Greedy Prof
] 10
8 P Greedy Iter
1 T T T , ——P Exact Prof

20 50 100 200 500 1,000 2,000

Cost limit

P Exact Iter
(b) Overall query time (creation and execution)

Figure 7: Average time for query plan creation and execution

a similarity of 1.0). If we retrieve records ordered by single
attribute similarity to the query record at a time, we need to
evaluate many irrelevant records, because finding the correct
record in the beginning of this list is unlikely. In contrast, our
approach considers (the union of) intersections of the lists of
records with similar attribute values and thus prefers evaluating
records with multiple matching attribute values. An advantage
of TA is the possibility to pause and resume retrieving the top
results. In contrast, if we see that we could not find any relevant
results with our approach, we would need to first determine a
new query plan with higher cost limit and then execute the plan
(skipping already evaluated records).

Query Time

We show query plan creation and execution time in Fig-
ure 7. As can be seen in Figure 7(a), for all template selection
algorithms and for the profile-based threshold optimization al-
gorithm, the time for creating the plan is nearly constant. Only
for the iterative threshold optimization algorithm, an increase
can be measured. The reason is that the iterative algorithm
explores significantly more threshold combinations as the cost
limit is increased.

In Figure 7(b), we show overall query time including cre-
ation and execution of the query plans. We can see a linear in-
crease in overall query time for all planning algorithms, which
is because most plans have cost that meet the specified cost
limit (cf. Figure 5(b)). We observe that the largest fraction of
the query time is spent on retrieving records from the database
and applying the overall similarity measure to them. Because
a well-selected plan with low cost (and thus short query execu-
tion time) can achieve more complete results than a poorly se-

0.98 — —————
ﬁ - =T Greedy
§ 0.96 =T Exact
(7]
_E' 0.94 ;é:e’*/: ~o—P Greedy Prof
S P Greedy Iter

0.92 —o—P Exact Prof

0.9 P Exact Iter
20% 40% 60% 80% 100%
Cost limit fraction for template selection

Figure 8: Completeness for different fractions of cost limits for template selec-
tion

lected plan with higher cost (cf. Figure 5(a)), we conclude that
the small amount of time required for selecting a query plan is
well-invested.

Template Fraction

Previously, we have used the same cost limit for both tem-
plate selection and threshold optimization. Thus, it could have
been possible that the template already completely covered all
available cost, so that no threshold can be lowered anymore
in the threshold optimization step. An interesting question is
whether we can achieve better results if the template selection
may only exploit a fraction of the overall cost limit.

We show experimental results for an overall cost limit of 100
and several different cost limit fractions for the template selec-
tion step in Figure 8. While for larger fractions a noticeable
increase for the completeness of the two templates can be mea-
sured, the completeness of the resulting plans after threshold
selection does not seem to be affected. Because the selected
template typically does not completely exploit the specified cost
limit, the threshold selection algorithm is able to spend the re-
maining cost for a satisfying overall result, irrespective of the
initial template cost limit.

Cost Model Evaluation

In Figure 5(c), we have seen that there is a variance in the
actual cost of the selected query plans. While the presented
approach for query-specific planning can significantly reduce
this variance, a portion of the variance can only be explained
with the cost model (Section 4.2). For 100 randomly selected
queries (a random subset of the previously used 1,000 queries),
we compare the estimated and actual cost of the plans derived
with exact template selection and iterative threshold selection
for different cost limits (different colors and point shapes) in
Figure 9. The comparison shows that estimation and actual
cost are typically within the same order of magnitude, so that
no plan with very low estimated cost actually has cost of thou-
sands of records (and vice versa). Cost estimation consists of
looking up the attribute cost in the database and combining the
results with probability theory. Thus, errors can only be intro-
duced in the combination step. We have already pointed out that
extreme deviations from the estimations can and should be pre-
calculated. However, because every correlation of two or more

10,000

1,000 *20
173 ¥ x
8 v g,&*g y 4100
— - Al
§ 100 ; o « 200
=1 a8
< ,i x 500
*
- 1,000
10 S
0 2,000
1
1 10 100 1,000 10,000

Estimated cost

Figure 9: Estimated and actual cost for different query plans selected with dif-
ferent cost limits

attribute values has its own characteristics, a significantly bet-
ter estimation can only come with a significantly more complex
cost model or an increased effort of precalculating and storing
all co-occurrences of all attribute values.

7. Conclusion and Future Work

We presented an approach to query planning for similar-
ity search with arbitrarily composed similarity measures. In
contrast to previous work and moving closer to the notion of
database query planning, we create a new query plan for each
query. We exploit training data to learn a completeness tree
for estimating completeness of query plans, and we use index
structures for estimating cost. Evaluation on real-world data
shows that our approach significantly reduces variance in cost
and increases average completeness.

As future work, we plan to also optimize the physical query
plan. Especially in distributed environments, where similarity
and inverted indexes as well as data are distributed among dif-
ferent nodes, we believe that we can efficiently exploit the over-
all resources by sending the query plan fragments to appropriate
nodes. As our plans typically contain a set of unions and inter-
sections, we also need to optimize the execution order to keep
intermediate results and the resulting network load as small as
possible.

Acknowledgment: We thank Schufa Holding AG for support-
ing this work.

References

[1] D. Lange, F. Naumann, Efficient similarity search: Arbitrary similarity
measures, arbitrary composition, in: Proc. of the Intl. Conf. on Infor-
mation and Knowledge Management (CIKM), Glasgow, Scotland, UK,
2011, pp. 1679-1688.

[2] P.Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search - The Metric
Space Approach, Springer, 2006.

[3] C. Bohm, S. Berchtold, D. A. Keim, Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases, ACM Computing Surveys 33 (2001) 322-373.

[4]
[3]

[6]

(7]

[8]

[9]

(10]

(11]

[12]

E. Chdvez, G. Navarro, R. Baeza-Yates, J. L. Marroquin, Searching in
metric spaces, ACM Comput. Surv. 33 (3) (2001) 273-321.

R. Fagin, Fuzzy queries in multimedia database systems, in: Proc. of
the Symposium on Principles of Database Systems (PODS), Seattle, WA,
USA, 1998, pp. 1-10.

R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for mid-
dleware, in: Proc. of the Symposium on Principles of Database Systems,
PODS *01, ACM, New York, NY, USA, 2001, pp. 102-113.

P. M. Deshpande, D. P, K. Kummamuru, Efficient online top-k retrieval
with arbitrary similarity measures, in: Proc. of the Intl. Conf. on Extend-
ing Database Technology (EDBT), Nantes, France, 2008, pp. 356-367.
A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios, Duplicate record detec-
tion: A survey, IEEE Transactions on Knowledge and Data Engineering
(TKDE) 19 (1) (2007) 1-16.

F. Naumann, M. Herschel, An Introduction to Duplicate Detection, Syn-
thesis Lectures on Data Management, Morgan & Claypool Publishers,
2010.

W. E. Winkler, The state of record linkage and current research problems,
Tech. rep., Statistical Research Division, U.S. Census Bureau (1999).

P. Christen, R. Gayler, D. Hawking, Similarity-aware indexing for real-
time entity resolution, in: Proc. of the Intl. Conf. on Information and
Knowledge Management (CIKM), Hong Kong, China, 2009, pp. 1565—
1568.

H. Newcombe, Record linkage: the design of efficient systems for linking
records into individual and family histories, American Journal of Human

14

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Genetics 19 (1967) 3.

M. Michelson, C. A. Knoblock, Learning blocking schemes for record
linkage, in: Proc. of the National Conf. on Artificial Intelligence (AAAI),
Boston, MA, USA, 2006, pp. 440-445.

M. Bilenko, B. Kamath, R. J. Mooney, Adaptive blocking: Learning
to scale up record linkage, in: Proc. of the Intl. Conf. on Data Mining
(ICDM), Hong Kong, China, 2006, pp. 87-96.

S. Chaudhuri, B.-C. Chen, V. Ganti, R. Kaushik, Example-driven design
of efficient record matching queries, in: Proc. of the Intl. Conf. on Very
Large Databases (VLDB), Vienna, Austria, 2007, pp. 327-338.

M. Bilenko, R. J. Mooney, Adaptive duplicate detection using learnable
string similarity measures, in: Proc. of the Intl. Conf. on Knowledge Dis-
covery and Data Mining (SIGKDD), 2003, pp. 39-48.

S. Sarawagi, A. Bhamidipaty, Interactive deduplication using active learn-
ing, in: Proc. of the Intl. Conf. on Knowledge Discovery and Data Mining
(SIGKDD), Edmonton, Alberta, Canada, 2002, pp. 269-278.

D. G. MacKay, L. Abrams, Age-linked declines in retrieving orthographic
knowledge: Empirical, practical, and theoretical implications, Psychol-
ogy and Aging 13 (1998) 647-662.

J. P. Stemberger, B. MacWhinney, Frequency and the lexical storage of
regularly inflected forms, Memory and Cognition 14 (1986) 17-26.

D. M. Burke, D. G. MacKay, J. S. Worthley, E. Wade, On the tip of the
tongue: What causes word finding failures in young and older adults?,
Journal of Memory and Language 30 (5) (1991) 542 — 579.

