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ABSTRACT

In recent years, dozens of publicly accessible Linked Data
repositories containing vast amounts of knowledge presented
in the Resource Description Framework (RDF) format have
been set up worldwide. By utilizing the SPARQL query lan-
guage, users can consume, integrate, and present data from
a federation of sources for different application scenarios.
However, several challenges arise for distributed query pro-
cessing across multiple SPARQL endpoints, such as devising
suitable query optimization or result caching strategies.
For implementing these techniques, one crucial aspect lies
in determining appropriate endpoint features. In this work,
we introduce several metrics that enable universal and fine-
grained characterization of arbitrary Linked Data reposi-
tories. We present comprehensive approaches for deriving
these metrics and validate them through extensive evalua-
tion on real-world SPARQL endpoints. Finally, we discuss
possible implications of our findings for data consumers.
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1. INTRODUCTION

The SPARQL Protocol and RDF Query Language
(SPARQL) is considered one of the core technologies of the
Semantic Web. Retrieving Linked Data through public
SPARQL endpoints represents a novel form of information
dissemination: Traditionally, accessing certain databases by
issuing structured queries (e.g., SQL queries) has been re-
stricted to a limited number of users, e.g., within a company
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network. Public SPARQL endpoints on the other hand enable
for a large number of users to access information from multi-
ple sources simultaneously. Related Semantic Web technolo-
gies, such as well-defined ontologies, simplify the integration
process in comparison to classical data integration efforts
that rely on undocumented or cryptic schema information.

However, as several popular publicly available Linked
Data repositories have been set up as proof-of-concept in
the context of research projects (e.g., DBpedia', Linked-
GeoData®, LinkedMDB3, ...), retrieving information from
those SPARQL endpoints at large scale is cumbersome. Typi-
cally, different policies are implemented to limit the number
of requests or the amount of retrievable information. For ex-
ample, to prevent malicious attacks and ensure responsive-
ness, the popular DBpedia SPARQL endpoint is configured
to return at most 50,000 result rows or 10 MB per request
while allowing only a maximum number of 15 requests per
second [8]. Additionally, as oftentimes SPARQL endpoints are
deployed on commodity hardware using off-the-shelf frame-
works, they are typically not configured to process specific
workloads as efficiently as possible, e.g., when compared to
databases maintained in an enterprise context.

Thus, when querying and integrating Linked Data from
a federation of SPARQL endpoints, one challenge lies in de-
termining appropriate endpoint characteristics, e.g., for de-
vising suitable query plans. Here, derived statistics need to
accurately reflect actual SPARQL operations instead of ac-
counting only for generic access patterns when querying the
endpoint, thus potentially underestimating execution costs.
For example, while the general network latency for con-
necting to an endpoint might be low, the delay for send-
ing SPARQL requests and retrieving appropriate responses
might be considerably higher. This can be caused by other
processes running on the endpoint or misconfigured set-ups.
Also, even though executing a simple request can result in
reasonable response time, more complex queries containing
joins may take considerably longer to execute, e.g., due to
missing indexes or unexpected query engine behavior.

In this work, we propose a novel idea for determining
SPARQL endpoint characteristics that aid data consumption
in general and data integration in particular. To this end, we
present a number of comprehensive metrics suitable for de-
scribing more complex workloads of SPARQL queries. Here,
we focus on several operations that have high relevance for
real-world requests as indicated by previous findings [2].

http://dbpedia.org/sparql
http://linkedgeodata.org/sparql
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Moreover, we present approaches to determine these met-
rics using suitable SPARQL queries. Thus, we argue that the
results determined by issuing these queries accurately re-
flect actual SPARQL requests. We back up this argument by
evaluating the introduced metrics using real-world SPARQL
endpoints and provide a thorough discussion of the results.

This paper is organized as follows: We present related
work for our approach in Sec. 2, where we also point out
novel aspects of our metrics. Next, we introduce the pro-
posed metrics and their implementation in Sec. 3. Af-
terwards, we evaluate these metrics on several real-world
SPARQL endpoints and discuss the findings in Sec. 4. Fi-
nally, in Sec. 5 we summarize this paper and indicate future
research potential.

2. RELATED WORK

The related work for this paper draws mainly from two
fields: First, in recent years several frameworks for dis-
tributed SPARQL processing have been devised. Here,
we comment on similarities and differences between these
projects and our approach. Also, multiple benchmarks have
been established for evaluating the performance of RDF
storage systems. We illustrate key characteristics of these
benchmarks and point out the connection to this paper.

2.1 Distributed SPARQL Processing

Whereas conventional relational database management
systems (RDBMS) typically rely on a shared nothing ar-
chitecture mostly for replication and load-balancing pur-
poses, Linked Data repositories allow for truly distributed
query processing. DARQ [12], one early project assisting
distributed SPARQL querying, provides a transparent layer
that enables access to a federation of SPARQL endpoints.
Here, the goal is to minimize the overall query execution
time by determining the optimal execution plan. The infor-
mation used for this task is based on statistics included in
the service description for each endpoint. SPLENDID [5], a
similar framework, uses voiD [1] descriptions instead. How-
ever, in real-world scenarios, this kind of metainformation
is oftentimes not available, insufficient, or outdated.

A more recent project named FedX [15] allows for effi-
cient distributed SPARQL query processing without the need
of any explicit service annotations or voiD descriptions. In-
stead, extensive operator re-ordering techniques are applied:
For example, a rule-based optimizer is utilized for order-
ing joins according to heuristics determined in advance.
Whereas this approach does not rely on metadata published
by the endpoint provider, it also does not factor in endpoint
characteristics at run-time which might be useful for ad-hoc
fine-tuning the execution strategy.

The common goal of these projects is to optimize feder-
ated SPARQL query processing, e.g., by determining the most
suitable query plan or modifying the query structure. The
corresponding approaches rely on different information, such
as provided service descriptions (DARQ, SPLENDID) or
pre-computed metadata (FedX). Conversely, our work aims
at determining generic characteristics of real-world SPARQL
endpoints that allow to predict the performance of individ-
ual operations (such as joins). On the one hand, the goal of
our work is to assist data consumers in the evaluation of the
quality of service of publicly available SPARQL endpoints.
On the other hand, the performance metrics introduced in
this paper can also be considered as additional input fea-

tures for other distributed query processing frameworks.

2.2 RDF Benchmarking

The Berlin SPARQL Benchmark (BSBM) [4] is one of the
earliest frameworks for comparing the performance of differ-
ent RDF datastores. In this benchmark, various systems are
analyzed using synthetic workloads mimicking typical oper-
ations in an e-commerce scenario. A similar project entitled
SP?Bench [14] utilizes DBLP publication records for gener-
ating workloads instead. Whereas the majority of queries in
BSBM contain fairly simple SPARQL expressions, SP?Bench
exploits the variety of complex SPARQL operators, such as
FILTER expressions. However, as both benchmarks rely on
very specific (synthetic) query workloads, their general eli-
gibility for assessing query execution performance on real-
world SPARQL endpoints is limited.

On the other hand, a number of alternative benchmarking
frameworks aim at capturing actual Linked Data interac-
tions. In [10], the authors examine normalized user queries
issued against the popular DBpedia endpoint. Similar ap-
proaches targeting the generation of representative bench-
mark queries for concrete RDF knowledge bases are pre-
sented in [6, 13]. The goal of these works is to establish com-
prehensive workloads suitable for determining more realistic
performance results. However, whereas the benchmarks pre-
sented in the previous paragraph are typically deemed too
generic, approaches custom-tailored for specific real-world
datasets (e.g., DBpedia) lack ubiquitous applicability.

In our work, we instead aim at providing a universal
means for discerning characteristics of different SPARQL end-
points without the need for real-world query workloads.
Here, we do not rank different fine-tuned datastores hosted
within an isolated environment, but rather strive to capture
the behavior of publicly available SPARQL endpoints without
any a priori information about their configuration. As those
endpoint typically employ some limitations on the amount
of resources provided to parse individual requests, complex
benchmark queries such as the ones presented in [14] po-
tentially incur timeouts. Thus, we focus on representative
queries adhering to SPARQL standards and argue that the
aggregated individual results can serve as heuristics for esti-
mating the performance of more intricate query workloads.

3. METRICS

In this section, we introduce the different metrics we con-
sider as criteria for characterizing SPARQL endpoints. We
point out the intuition of these metrics, their relationship to
generic workloads, and comment on previous findings where
applicable. Additionally, we illustrate how we determine the
values for these metrics using actual SPARQL queries.

3.1 Latency

In our context, the latency of an endpoint is equal to the
sum of the delay between the client sending a request and
the SPARQL endpoint receiving it, and the delay between the
endpoint sending the corresponding results and the client
receiving them. Conversely, the latency excludes any time
spent on query processing, e.g., for creating a query plan and
executing it. Instead we aim at discovering the minimum
time required for any issued valid SPARQL request. We use
this information to normalize the values of all other metrics.

We are not only interested in determining the network
latency itself (i.e., the round-trip time of the communica-



tion channel), but also in the delay of accessing the triple
store via the SPARQL interface. Consequently, to measure
the overall latency we employ queries that incur no or only
negligible execution cost. In Query 1, we use the ASK query
form that returns a Boolean result (which is true for any
non-empty SPARQL endpoint). As ASK has been part of
SPARQL since the first working draft® of the query language,
we expect all endpoints to support corresponding queries.

ASK {
?s ?p 7o

Query 1: Latency Query

The evaluation of any SPARQL query with only one triple
pattern has complexity O(n) (cf. Theorem 1 in [7]), where n
is the size of the dataset. Given that Query 1 always checks
the first triple stored in the endpoint, evaluating this query
is done in constant time. As the actual query result, i.e.,
the data sent back to the client, is of small size, this query
should give a good indication of how high the latency is.

Latency in packet-switched networks is influenced by sev-
eral factors, one of them being the (physical) distance of the
communication channel between the sender and the receiver
of the packets. In most cases, a packet will be forwarded over
a number of intermediary links before reaching the receiver,
thus the overall (minimum) latency is determined by the ag-
gregated individual latencies between all hops. Whereas the
well-known ping command can give a good indication of the
general network latency on the network layer, this method
underestimates the actual round-trip time for sending re-
quests on the application layer (e.g., when issuing SPARQL
queries).

3.2 Throughput

Measuring the throughput of a SPARQL endpoint indicates
how much data can be transmitted over a certain period of
time. In our case, the amount of data is represented by
the number of bindings generated by the endpoint for the
variables contained in the SPARQL query. We normalize the
time measured for executing Query 2 by the actual number
of result bindings received. Assuming a reasonably large
dataset containing at least 1,000 triples, the total amount
of (not necessarily unique) bindings for Query 2 should be
3,000 (1,000 for each of the variables ?s, ?p, 70).

SELECT * WHERE {
?s ?p 7o

} LIMIT 1000

Query 2: Throughput Query

As with latency, throughput is influenced by the network
infrastructure. In case either the receiver or any of the inter-
mediary links experiences a high request load, throughput
may suffer. Due to the best-effort characteristics of the In-
ternet, typically no guarantees can be given for the achieved
throughput between any two nodes in the network. How-
ever, as the number of potential routes for short-distance
packet switching is smaller due to the lower number of inter-
mediary hops, throughput can generally be estimated more
reliably than for long-distance communication [11].

4 http://www.w3.org/TR/2004/
WD-rdf-sparql-query-20041012/

3.3 Execution Time of Joins

Actual SPARQL queries can be quite complex, e.g., with re-
gard to the number of contained graph patterns. Thus, we
base the execution time measurements on three elementary
join graph patterns derived from the observations illustrated
in [2]: The subject-subject-join, the object-object-join, and
the subject-object-join. These graph pattern can give hints
about certain endpoint characteristics, such as available in-
dexes or selectivity of subjects and objects.

To determine the execution time of the join operations, we
need to retrieve a number of sample triples on which they
can be applied. As a reference, for the subject-subject-join
operation, the appropriate sampling request is displayed in
Query 3. Using the FILTER condition, we ensure that the re-
trieved bindings differ in at least the object, thus eliminating
joins of identical triples. Typically, predicates are less selec-
tive than either subjects or objects in RDF statements [16],
therefore in general non-equality can be identified more eas-
ily for objects than for predicates when issuing Query 3.

SELECT ?7pl ?p2 7ol 702 WHERE {
?s 7pl 7o1
?s ?p2 702 .
FILTER (701 != 702)

Query 3: Subject-Subject-Join Sampling Query

We also randomize the requests that are used to retrieve
sample data regarding the position of the first match. In
general, we can use random values for the OFFSET operator to
retrieve arbitrary information from the knowledge base, as-
suming the OFFSET position is smaller than the overall num-
ber of results for the query. In the case of Virtuoso-backed
SPARQL endpoints, we also utilize the custom bif:rnd func-
tion which retrieves elements considerably faster than using
high OFFSET values.

We devised Query 4, Query 5, and Query 6 to probe
the execution time of the subject-subject-join, object-object-
join, and subject-object-join, respectively. Here, resources in
the queries are instantiated using the data retrieved during
sampling. For instance, in Query 4 the resources p1, 01, p2, 02
are replaced by the corresponding results for Query 3.

SELECT 7s WHERE {
?s p1 o1 .
?s p2 02

} LIMIT 1

Query 4: Subject-Subject-Join Query

SELECT 70 WHERE {
s1 p1 7o .
S2 p2 7o

} LIMIT 1

Query 5: Object-Object-Join Query

SELECT 7?so WHERE {
?so p2 o
S p1 ?so

} LIMIT 1

Query 6: Subject-Object-Join Query



4. EVALUATION

For our evaluation, we gathered results for the metrics
described in Sec. 3 for three SPARQL endpoints: DBpedia,
LinkedGeoData (LGD), and LinkedMDB. All of these have
been established in the context of research projects. At
the time of writing, the DBpedia and LinkedGeoData end-
points utilize the OpenLink Virtuoso framework® (Version
7.00 and 6.02, respectively), while LinkedMDB uses the D2R,
server [3] to allow data access via SPARQL.

First, we measured the metrics described in Sec. 3 by issu-
ing the corresponding queries from a local machine running
Microsoft Windows Server 2008 R2 and connected to the
Internet through a 1 Gbps network interface. In addition,
we conducted more measurements on the Elastic Compute
Cloud® (EC2) provided by Amazon Web Services (AWS) to
compare different locations and hardware resources. To this
end, we instantiated the default Linux Amazon Machine Im-
age” (AMI) in various configurations: “EU (Ireland) Tiny”,
“US (West) Tiny”, and “US (West) Medium”®. Here, the
“Tiny” and “Medium” instances differ mostly in the comput-
ing and network performance of their virtualized hardware.

For each set-up, we recorded 100 measurements for the
metrics described in Sec. 3. For all our experiments, we ran-
domized the order of the requests sent to the endpoint to
reduce potential (short-term) server-side caching of results.
Additionally, all experiments were run during a 24 hour in-
terval to cater for potential access spikes at certain times
in different parts around the globe. Consequently, the aver-
age delay between any two successive requests was approx.
22 seconds. Any request that did not yield an HTTP 200
response, e.g., because of transmission errors, was not in-
cluded in the analyses. All sample bindings required for the
join operations described in Sec. 3.3 were retrieved several
days before conducting the actual experiments, thus elimi-
nating any caching effects.

In Fig. 1-3, we visualize measurements for the different
join operations w.r.t. the individual latency across all ex-
perimental set-ups for the DBpedia, LinkedGeoData, and
LinkedMDB endpoints, respectively. For all measured val-
ues and endpoints, each column represents the upper quar-
tile (@3) execution time for the respective operation and
the average latency (grey), thus summarizing the round-trip
time of the SPARQL queries introduced in Sec. 3.3. We il-
lustrate the @3 values as they provide robust upper bound
estimations while eliminating high-value outliers. We also
indicate the average value of the individual execution times
as a solid black line within the respective column.

The results in Fig. 1 exhibit great variation: Whereas the
subject-subject-join execution times for the first three exper-
iments (Local, EU Tiny, US Tiny) is similar, for the other
two join operations the results differ significantly. How-
ever, it should be noted that the Q3 execution time for the
subject-subject-join operation was always higher than for
the other two metrics. For the last set-up (US Medium), the
Q3 execution times were noticeably higher, possibly caused
by high load experienced by the DBpedia endpoint at the
time. Even though the results depicted in Fig. 1 are mixed,
a general trend can be observed for these experiments: In

http://virtuoso.openlinksw.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/ec2/instance-types/
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Figure 1: @3 and average execution times w.r.t. average
latency for the DBpedia SPARQL endpoint (values in ms)

nearly all cases, the aggregated execution time, i.e., the sum
of the join execution times and the latency, is higher than
for any other endpoint. When considering the limitations
placed on the DBpedia endpoint as outlined in [8], this ob-
servation suggests to replicate data locally when deploying
time-critical Linked Data applications relying on this knowl-
edge base. For instance, this can be done by caching re-
trieved results or by exploiting the provided file dumps.
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Figure 2: @3 and average execution times w.r.t. average
latency for the LGD SPARQL endpoint (values in ms)

For LGD, the determined @3 and average values for all
client configuration are remarkably similar as indicated in
Fig. 2. Additionally, the general ratio between the differ-
ent join operations remains nearly constant for all mea-
surements. On the other hand, Fig. 2 illustrates the effect
of varying latency when evaluating overall execution time:
Whereas the different QY3 execution time values are nearly
identical among all set-ups, the latency of the EC2 US in-
stances is in orders of magnitude higher than for the local
machine or the EC2 instance hosted in the EU. In a real-
world application this fact can assist in establishing suitable



caching strategies: For low-latency connections to the LGD
endpoint, caching any data may not be necessary. However,
retaining data locally might be beneficial when a client ac-
cessing the LGD endpoint incurs high latency.
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Figure 3: Q3 and average execution times w.r.t. average
latency for the LinkedMDB SPARQL endpoint (values in ms)

As with LGD, the ratio of the @3 execution time values
between the different join operations for the LinkedMDB
endpoint is nearly identical throughout our measurements
as depicted in Fig. 3. Additionally, in our experiments the
latency for connecting to this endpoint also remained nearly
constant regardless of the client location. Thus, the overall
execution times including latency for LinkedMDB are highly
similar. Again, when consuming data from the LinkedMDB
endpoint this insight might prove useful: If a client issues
complicated requests (e.g., multiple subject-subject-joins),
thereby aggregating costly execution time, it can help to
store the received data locally for efficient future access.

5. CONCLUSION

In this work, we have presented several metrics aimed at
characterizing SPARQL endpoints and evaluated these met-
rics for a number of publicly available Linked Data reposito-
ries. We determined in our evaluation that endpoints exhibit
different characteristics: For instance, while it comes as no
surprise that latency is influenced by the network infras-
tructure, the costs for join operations depend on a number
of factors that are not obvious to a data consumer. However,
by applying the metrics outlined in this work, he or she can
determine whether an endpoint is eligible for certain types
of services, e.g., for retrieving, processing, and presenting
data in an interactive on-line application.

We illustrated several basic heuristics, which we consider
essential buildings blocks for estimating the execution times
of more complex workloads. Based on previous findings
(e.g., as reported in [2]), the different operations underly-
ing our metrics account for a large majority of all SPARQL
queries. Consequently, the derived results are relevant for
many application scenarios, e.g., for devising appropriate
data caching, prefetching [9], and integration strategies, or
generating query execution plans for federated systems.

For future work, we aim at incorporating more intricate
request patterns as endpoint metrics while warranting uni-
versal applicability of our approach, e.g., with regard to the
SPARQL 1.1 specification. Moreover, the conducted exper-
iments can be extended to other endpoints to survey po-
tential patterns between different SPARQL frameworks and
relate these results to the findings established in RDF bench-
marking experiments. Finally, we plan on deriving compo-
sition methods suitable for combining the proposed metrics
to determine the cost of real-world SPARQL workloads.
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