Estimating the Number and Sizes
of Fuzzy-Duplicate Clusters

Arvid Heise

Gjergji Kasneci

Felix Naumann

Hasso-Plattner Institute (HPI)
Postdam, Germany

first.last@hpi.de

ABSTRACT

Duplicates in a dataset are multiple representations of the
same real-world entity and constitute a major data qual-
ity problem. This paper investigates the problem of esti-
mating the number and sizes of duplicate record clusters in
advance and describes a sampling-based method for solv-
ing this problem. In extensive experiments, on multiple
datasets, we show that the proposed method reliably es-
timates the number of duplicate clusters, while being highly
efficient.

Our method can be used a) to measure the dirtiness of
a dataset, b) to assess the quality of duplicate detection
configurations, such as similarity measures, and c) to gather
approximate statistics about the true number of entities rep-
resented in the dataset.

Categories and Subject Descriptors
H.2.0 [Database Management|: General

General Terms
Algorithms, Theory

Keywords

Data integration, estimation, duplicate, cluster, pair

1. DUPLICATE DETECTION

Duplicates in a dataset are multiple representations of the
same real-world entity and constitute a major data quality
problem. The consequences range from unsatisfied employ-
ees and customers, to incorrect analyses that lead to poor
business decisions.

Duplicate detection (aka. record linkage, entity resolution,
etc.) is the task of finding duplicate records, so that they
can be subsequently eliminated or merged. Various tech-
niques have been proposed to solve the two main challenges:
When to declare a pair or cluster of records as a duplicate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’ 14, November 3-7, 2014, Shanghai, China.

Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2661885.

and how to efficiently find them all without naively search-
ing the complete Cartesian product of possible record pairs.
While the first challenge is usually solved by employing spe-
cific similarity measures and thresholds, the latter is solved
by employing smart candidate selection techniques, such as
the Sorted Neighborhood (SNM) [7] or (non-)overlapping
Blocking [11].

However, all methods have in common that different pa-
rameters (e.g., thresholds, window sizes, and blocking keys)
influence the result in different, often non-obvious, ways.
Usually, these parameters are iteratively tweaked in succes-
sive runs and the respective outcome evaluated against a
validation set or by close examination. This process con-
sumes much time and resources and can be frustrating.

In practical scenarios, prior to the full and costly detec-
tion of all duplicates, the user might be rather interested to
quickly gain a vague idea on the approximate sizes of dupli-
cate clusters in the dataset, based on a user-defined similar-
ity measure. If done in a simplistic way, the estimation of the
cluster sizes may be as expensive as the retrieval of the du-
plicates itself. Hence, to be practically relevant, any method
for estimating the numbers and sizes of duplicate clusters in
a dataset would have to run much faster than any dupli-
cate detection algorithm on the same dataset. In addition
to being a means for estimating the degree of dirtiness of a
dataset, such a method could be used for fine-grained analy-
ses of the distribution of duplicates and thus help estimating
the costs of various duplicate detection strategies.

In this paper, we propose a reliable and highly efficient
technique to estimate the sizes of duplicate clusters in a
dataset. The overarching vision of this work is to provide
useful tools for interactive data cleansing systems, and thus
provide users with a means for quickly calculating approxi-
mate statistics, planning resources accordingly (e.g., for the
query optimizer), and analyzing data cleansing strategies.

1.1 Problem statement

In the following, we informally describe the challenges and
formally define the key concepts.

DEFINITION 1 (DUPLICATE CLUSTERS). The output of
a duplicate detection run on a dataset R is the set of dupli-
cate clusters Cr, where each C' € Cr represents the set of
all representations of the same real-world entity according
to the used duplicate detection algorithm. Formally, Cr is a
partition over the equivalence relation ~, i.e., the quotient
set R/ ~:={C CR |Vrir; €C:r; ~r;} =Cr.

We are especially interested in the size distribution of the
duplicate clusters.

DEFINITION 2 (CLUSTER SIZE HISTOGRAM). The clus-
ter size histogram Hp is the absolute histogram over the
number of clusters of a certain size from the set of all clus-
ters Cr. We denote the i-th entry in the histogram with
Hi = |{C € Cr : |C| = i}| corresponding to the number of
clusters of size i.

The duplicate clusters and our estimations highly depend
on the parameters of a duplicate detection run. In this
paper, we assume the traditional, three-phase duplicate de-
tection approach, which starts with a candidate selec-
tion method, such as SNM or Blocking, to retrieve a list
of record pairs that have a high probability to be dupli-
cates. It then performs the candidate comparison, which
may apply similarity measures and fixed thresholds on the
candidates. Finally, a clustering algorithm (e.g., transi-
tive closure) generates duplicate clusters from the given set
of pairs. Most other duplicate detection approaches can be
simulated with this approach, so that our estimation method
is transferable to other approaches as well.

All algorithms and parameters influence the result of a
duplicate detection run. Therefore, our estimations need to
be considered in the context of the actual parameters and
we accordingly define the problem we aim to solve:

Given a configured duplicate detection run on a dataset R,
Duplicity Estimation determines the estimated cluster size
histogram Hyp' ~ Hzr with much less effort than the run
itself would take.

1.2 Use cases and contributions

We envision four types of applications of our presented
techniques.
Data Quality Estimation. In data integration processes,
experts have to decide which data sources to integrate. Usu-
ally, they need to trade effort with the expected data quality
gain. Our methods help with both: We can estimate the du-
plicity of one data source as an indicator for its quality and
we can estimate the overlap between two data sources.
Interactive Systems. Tweaking the parameters of a du-
plicate detection task can be cumbersome, especially if it
takes a long time to calculate the results. With our tech-
niques, users can quickly see the approximate numbers of
duplicates and some examples.
Approximate Statistics. For complex statistical analyses
to reach business decisions, additional data sources are often
integrated in an ad-hoc fashion. Since these statistics usu-
ally aggregate data, a full duplicate detection unnecessarily
delays the results. With our techniques, we can efficiently
answer questions, such as 'How many distinct customers do
two companies have after a potential fusion?’.
Query Optimization. Recent development in (scientific)
data workflows aims to optimize a large variety of operators.
A complete integration of these operators into the optimizer
requires an estimation of the output cardinality and reorder-
ing rules. In this paper, we address the former.

We address the duplicity estimation problem with the fol-
lowing contributions:

(1) We analyze the effects of sampling onto the cluster size
histogram in Section 2.

(2) In Section 3, we develop a random walk model based
on these insights to iteratively estimate the histogram.

(3) Section 4 introduces a bootstrapping method to speed
up the convergence.

(4) We extensively evaluate our method on three datasets
with different characteristics in Section 5.

(5) Section 6 extends the basic model to incorporate can-
didate selection and clustering.

Sections 7 and 8 close with a discussion of related work and
a conclusion.

2. EFFECTS OF RANDOM SAMPLING ON
DUPLICATES

To extrapolate findings on a sample S C R to the origi-
nal dataset R, it is important to understand how sampling
changes the number of duplicates and the cluster size his-
togram. In this section, we develop a probabilistic model of
the sampling process.

We denote with n = |S| the number of samples, N = |R]|
the size of the original dataset, and with r or r; a single
record in R, and consider random sampling with a sample
rate p(r € §) = . In the following, we first examine how
the number of duplicate pairs changes for a random sample
and then quantify the expected cluster size histogram.

2.1 Duplicate pairs

In some cases, it is already enough to know the num-
ber of duplicate pairs instead of the complete cluster size
histogram. For example, when integrating two clean data
sources (i.e., without duplicates within each source), we
would match only records from different sources and would
split clusters having a size larger than two.

We define duplicates as a subset of the pair set, such that
each pair satisfies the equivalence relation ~.

DEFINITION 3 (PAIR SET). A pair set of R contains all
pairs of different records of R once:
R<? = {(ri,7;) | (ri,rj) ER X R4, €{1,...,N}Ai < j}.

DEFINITION 4 (DUPLICATE PAIRS). The set of the du-
plicate pairs Dr contains all pairs of duplicates in R:
Dr = {(ri,r5) | (ri,r;) € R=* Ari ~ 1y}

We now inspect the ratio of duplicate pairs in the sample
S with respect to the original dataset R. First, we estimate
how many duplicate pairs Ds can be found in the sample.
The expected number of duplicate pairs F[|Ds|] depends on
the probability p(d € Ds) that we sample a duplicate pair
d € Dr in the sample S.

B||Ds|) = [R<*| p(d € Ds) &)
=|R<?*| p(d € Dr) p(d € Ds | d € Dr)
Because random sampling is independent of the probabil-
ity that a pair is a duplicate, the second probability is equal
to the probability that we draw a specific pair during sam-
pling p(d € S<?). We can further factor in that we have
(";‘) possibilities to draw a pair from X <2

E[|Ds|] = |R<?| p(d € Dr) p(d € S°°) (2)
= |Dr| p(d € §<?) = |Dr| ((1%))

_ n (n—1)
= |Dr| N(N-1

Hence, the number of duplicate pairs increases quadrati-
cally with the sample size.

Example. Consider a dataset with 1000 tuples and 500 du-
plicate pairs. If we sampled 100 records, we would expect
100-99

|Ds| = 5001555995 ~ 4-95 duplicate pairs in the sample. For

a 200 records sample, the expected value would be ~ 19.92.

Apparently, extrapolating from such a sample to estimate
the original (i.e., actual) number of duplicates is highly sen-
sitive to the sample variance. In the above example, we
should receive five duplicates in most samples to obtain a
good estimate of [Dr| = 5 1230999 ~ 504.55. However, even
a slight variation of one sampled duplicate changes the result

by approximately 100 duplicate pairs.

2.2 Duplicate clusters

We now generalize the model to arbitrary cluster sizes.
Similar to estimating the number of duplicate pairs, we use
the number of permutations that can occur during sampling.

Our problem is related to the multivariate hypergeometric
distribution; that is, drawing a sample without replacement
from a multi-type population. We can map our problem
to drawing a number of colored balls without replacement
from an urn: Each different duplicate cluster of size i is
represented by i balls of the same color. However, we are
not interested in how many balls of a specific color are drawn
but only in how many balls of the same color would be drawn
on average if the random sampling experiment was repeated
infinitely many times.

We can thus model our expected value by using the indi-
cator function [|C| =] that is 1 iff the size of a duplicate
cluster C' is ¢ and 0 otherwise. We iterate over all possible
events that can yield a duplicate cluster of size i in a sample

of size n. Each outcome is weighted with (IZ) _1, i.e., the re-
ciprocal to the number of possibilities of randomly sampling
n out of N elements without replacement:

Ema:ﬁ S

n) ceCr \SCRA|S|=n

llens=i] ®3)

The first sum iterates over all clusters in R and the sec-
ond sum enumerates all possible sample outcomes w.r.t. a
specific cluster. Now, we can replace the second sum with
the probability that we draw i elements from a cluster in the
original dataset, which can be expressed as:

w2 () o

cecr

Intuitively, there are (JZ) possible sample permutations.
For a cluster of size ¢ in the sample, we draw ¢ records from
the cluster C', add n — i records from the remaining dataset
R\ C to fill up the sample, and normalize the result over all
sample permutations.

Because the probabilities of drawing i elements from two
different clusters with the same sizes are the same, we can
simplify the calculation by collapsing the cases. For each
cluster size k in the original dataset, we calculate the prob-
ability once and multiply it by the number of clusters of the
given size H%.

- (DO

E[Hs] =Y Hr-r—= (5)
k=1

()

Original histogram Exp. histogram from sampling

Ex. | Hk H:r H} Hx Hs HE HE HE
1000 0 0 0 | 100.000 0.000 0.000 0.000
0 500 0 0| 90.090 4.955 0.000 0.000

0 0 0 250 | 73.095 12.088 0.878 0.023
600 100 40 20| 93.604 3.030 0.109 0.002

W N

Table 1: Four different cluster size histograms for
a dataset of size 1000 (left) and the expected his-
tograms from sampling 100 records (right).

For ease of presentation, we assume (‘;) =0fora <b
in this paper. Alternatively, ranges in sum formulas must
be adjusted to guarantee a > b. Now we are interested
in understanding which clusters the sampled elements come
from. Hence, we define a random variable X gn representing
whether an element from a cluster of size ¢ occurs in a sample
S of size n. The probability of this event happening is:

SRR WN 1o
P(XSn=1)=—> Hp-7=ts (6)
n k=1 (n)

As discussed earlier, the sum in the above formula rep-
resents all possibilities to generate a cluster of size i in a
sample of size n. Given that we have such a sample of size
n at hand (in which there occurs a cluster of size i), the
probability of picking an element from an i-cluster is i/n.

Table 1 shows four different cluster size histograms of a
dataset with 1000 records and corresponding expected his-
tograms for a sample of 100 records calculated with Equa-
tion 5. The first row constitutes a sanity check: If all
1000 records are duplicate-free, all 100 samples also must be
duplicate-free. The second row corresponds to the previous
example of 500 duplicate pairs in the previous section and
indeed returns the same result. Interestingly, in the third
row, even though the dataset consists of 250 clusters with
size four, sampling one complete cluster of size four is highly
unlikely with a sample size of 100 (one in 43 sample runs).
Lastly, the expected sampling histogram of a somewhat re-
alistically distributed dataset in the fourth row shows that
sampling clusters of size 3 and 4 is even more unlikely.

3. EXTRAPOLATING FROM SAMPLE RE-
SULTS

In the last section, we deduced Equation 5 to calculate
the expected histogram from a given histogram. The calcu-
lation may be interpreted as multiplication of a matrix with
transition probabilities Ts and the cluster size histogram
interpreted as a vector Hy.

- —

He =TsHp (7)
S1,1 S1,2 "t S1k
0 S22 0 S20k
Ts = : (8)
0 0 Sik
() ()
s p = n=i/ 9)
)

Hep = HrHR: - Hr)" (10)

We could now treat the matrix multiplication as a sys-
tem of linear equations, which can be exactly solved if the
sample size is equal to or greater than the maximum cluster
in R, ie., |S| > maz;(Hy > 0), and we would sample the
expected numbers E[Hg].

However, as seen in the last examples of Table 1, it be-
comes increasingly improbable to sample a larger cluster
with random sample resulting in two drawbacks of the exact
approach. First, we could sample a large cluster despite the
low odds and would thus heavily overestimate the number
of clusters in the original dataset. In fact, we would even
receive an impossible high number of clusters with the exact
method that needs to be compensated with negative his-
togram counts of smaller clusters. Second and more prob-
able, we would not sample a large cluster at all and thus
underestimate the number of clusters.

3.1 Probabilistic solution with random walk

We present a solution based on a random walk approach
to probabilistically estimate from which original cluster a
sample cluster has been drawn. The main intuition is to
maximize the knowledge that we can obtain from a certain
random sample and then successively enlarge the sample
until we are confident with the estimation.

To extrapolate the sample histogram H s to the estimation
Hy, we use the matrix Tz, whose components are the con-
ditional probabilities p(Xf; = 1| X§,, = 1), where X}, = 1
is a random variable representing whether a cluster of size
k is present in R.

Hy = TrHy (11)
P11 0 0
p21 p22 -0

Tr = (12)
Pk, Pk2 Dk

pri=p(Xgp=1]X5, =1) (13)

P(Xsn =1 Xk =1)p(Xk = 1)
2= P(X, = 1| X = Dp(Xp = 1)

The last equation shows the two pieces of information that
we need to calculate T'r. The first term is the conditional
probability p(XE = 1 | ngm = 1) that correspond to the
mirrored entry of T's, which in turn depend only on |R| and
|S|. The second term p(XE = 1) corresponds to an entry in

—

Hy, which we actually want to estimate. In the denomina-
tor, we normalize over all cluster sizes in the sample.
Because we need prior knowledge of H, to calculate Tr,

the iterative calculation of H_;z is an obvious choice. We
combine the transition matrices from Equations 7 and 11 to
a matrix Mg:

Hy, = TrTsHyy = MrHy, (14)

We clearly see that H_;z is the principal eigenvector of Mg.
Therefore, we propose a random walk approach to start with
a rough initial estimation Hr) and iteratively refine the
estimation until the convergence criterion is met.

Algorithm 1 consists of two nested convergence loops. In
the outer loop (Lines 2-12), the algorithm first enlarges the
sample and calculates the relative histogram Hg by perform-
ing naive duplicate detection on the sample. In Section 6,

Input : Initial estimate H_'R(O),
convergence threshold e,
minimum number of samples minS
Output: Estimated original histogram 7-[71
14,5+ 0;

2 repeat
3 j i
4 Sy + samgle;
5 calculate Hs(j) from S ;
6 calculate Ts for current sample size ;
/* Power iterations to find H, = TrHg */
7 repeat
8 calculate T ;) with HRW;
9 Hr 41y < TROHs ()
10 1 i+1;
11 until |[Hy ;) = Hr iyl <e ori>j+100;
/* Enlarge sample until glob. converged */

12 until ||7'F7a(j) 77-[;1(1.)H1 < e and |S| > minS;
Algorithm 1: Two-phase random walk.

we show how advanced candidate selection can be used in-
stead. It also calculates the sampling transition matrix Tis',
which depends on the current size of the sample and |R|.
The inner loop (Lines 7-11) performs the random walk to
find a suitable Hy for the current Hg. In each iteration, the
algorithm first calculates the current transition matrix TR@)

with the previous estimate 7—[;2(”. This transition matrix is

then used to calculate a better estimate ., The inner

R(i+1)"
loop terminates when the estimate converg(es;)that is, the
L1-distance between two successive estimations is below a
given threshold ¢ (i.e., less than € clusters are changed), or
100 Power iterations [8] are reached, which avoids overfitting
to early samples and speeds up the overall computation.

Having an estimate for a certain, possibly small sample
yields a high risk of overfitting to a poor sample. We thus
rerun the random walk several times with the outer loop
and enlarge the sample until 1) the estimates also converge
across samples and 2) we sampled a given minimum num-
ber of records. The first criterion causes the algorithm to
eventually converge to a well fitting estimate for the current
sample and the second criterion avoids the algorithm being
stuck in local maximum for poor initial samples.

3.2 Properties of the random walk

Algorithm 1 iteratively computes the principal eigenvector
of the matrix Mg (see Equation 14). To show that this com-
putation is well-defined, we have to show that real principal
eigenvectors of the matrix exist.

We know that every quasi-positive, and thus every posi-
tive, matrix is ergodic and therefore has a principal eigenvec-
tor. For MR, it is straight-forward to show that indeed all
components have to be positive. All components of Ts and
Tr are non-negative, so that no component in the product
can be negative. Further, the first row of Ts and the first
column of Tz are filled with positive numbers. Because the

(DG

'For n > k, we calculate the more efficient s ; = ~2E=t2,

k
which is derived through symmetry of binomial coefficients

matrix multiplication each component in Mg involves the
multiplication of the first row of T's and the first column of
Tr, we can conclude that each component must be positive.
Intuitively, from any estimated cluster of size k, we could
have sampled exactly one element, which could have been
drawn from any other cluster size. Thus, we can change the
estimation for one record in each iteration to a completely
different cluster size.

Moreover for such matrices, the principal eigenvectors can
be effectively approximated through Power iterations [8],
which is represented also in the inner loop of the algorithm.
These facts lay the mathematical foundation for the correct-
ness of Algorithm 1.

THEOREM 1. Algorithm 1 effectively approximates the
principal eigenvector of the matrices Mg from Equation 14.

Another interesting fact about Algorithm 1 follows from
the Law of Large Numbers.

THEOREM 2. The estimated variance of Hyr as computed
by Algorithm 1 converges to the true variance of the distri-
bution of cluster sizes in R.

The estimation model reliably estimates the actual du-
plicate histogram even for poor initial estimates H_;%(o) as
we experimentally show in Section 5. Nevertheless, we also
show that better initial estimates lead to faster convergence.
Thus, in the next section we provide a quick method for pro-
viding a good HR(O).

4. FOCUSED SAMPLING OF LARGER
CLUSTERS

In this section, we propose a bootstrapping method to
quickly sample larger clusters and retrieve an initial estimate
Hr (o) that covers a broad spectrum of cluster sizes. Ran-
dom sampling is not adequate for quickly generating viable
estimates of the proportions of larger clusters (|C| > 2, see
Section 2). Therefore, our focused sampling method specifi-
cally oversamples larger clusters and then counter-balances
it.

Up to this point, we did not assume anything about the
similarity measure used in the candidate comparison. For
the following focused sample approach we have to assume
monotonicity.

DEFINITION 5 (MONOTONICITY). A similarity measure
is monotonic if the overall similarity does not decrease if the
similarity of an attribute value increases.

The assumption is quite intuitive and should hold for most
similarity measures. Counterexamples occur mostly for sim-
ilarity measures that are based on non-linear weighted com-
binations of features or mixtures of negatively and positively
weighted features. We use this assumption to sample dupli-
cates in a focused way: We specifically draw from groups of
samples with the same value in at least one attribute. For
any similarity measure sim, the similarity between equal
values is maximal and thus by monotonicity we know that
for a given attribute A € A:

p(ri ~ 1o | ma(r1) = wa(r2)) > p(r1 ~ r2) (15)

The equations holds for attributes A that are used in
the similarity measure. Nevertheless, intuitively the same

Input : Sample size s, randomness ratio p
Output: Initial estimate Hr g
S <+ random sample of s - p records;
Choose suitable attributes A in dataset (Equation 16);
Initialize focused sample F <« S;
repeat
foreach A € top 3 attributes in A do
Randomly select non-distinct value v € 74 (F);
Randomly select record 7 € R\ F : wa(r) = v;
F +— FU{r}
end
until |F| > s;
11 Determine Hz and Hg from F and S;
12 Calculate counter-balanced Hsr (Equation 17);
Algorithm 2: Conceptual focused sampling.

WO Uth WNH

[y
o ©

should be true for any attribute. Algorithm 2 shows the
focused sampling algorithm.

The algorithm starts by choosing the three attributes that
are best suited for generating duplicates with equal values
in the sample. Intuitively, we want attributes where some
values appear more than once, but also not too often, so
that an equal value may be a good indicator for a duplicate.
For example, for CD records the same title or artist make a
duplicate more probable.

We empirically developed the following, straight-forward
scoring function, which works well on our evaluation dataset.
The score maximizes for uniform distributions with an av-
erage value count of two and middle-sized string lengths:

distinct count 1

_ 16
score (@count — 2)2 + 1 (Btext length — 10)2 41 (16)

For other datasets, users are free to define their own scor-
ing functions, or directly select the most suitable attributes.
If none of the above are feasible, we remind the reader that
focused sampling is only a runtime boost, and our estimation
method works also well without it.

After choosing the top three attributes, the algorithm ran-
domly samples a fraction of the initial sample S (we use
p =.5). It then repeatedly picks records with equal values
in these attributes and adds them to the focused sample.
In our implementation, we use indexes on the duplicate at-
tribute values to efficiently pick the records in near-linear
time in relation to the sample size s.

When the focused sample is complete, the algorithm cal-
culates the duplicate size histogram, which is skewed to-
wards larger duplicate clusters. We counter-balance the
skewed histogram Hr by calculating the weighted average
with the histogram over the random sample Hs.

Hsr =p(vi=v2)Hr + (1 —plrri=v2))Hs (17)

2/ A€ctop(A)veEA

Here, p(v1 = v2) is the probability to randomly choose
a record pair with equal values from one of the three at-
tributes. This probability is usually quite low (< .01), so
that the weighted average indeed resembles the expected
sampling histograms (Section 2). We now use Hsx to tweak
any initial histogram towards the gold histogram in a few
Power iterations (10 iterations of the inner loop of Algo-
rithm 1).

Focused sampling results in a better initial estimate Hy ()
that approaches the gold histogram up to five iterations
faster than the original initial estimate and therefore speeds
up the overall estimation for duplicate detection runs with
compute-expensive similarity measures.

S. EVALUATION

We evaluated our algorithm on three datasets with dif-
ferent characteristics to demonstrate the generality of our
approach. We first describe the datasets and the test setup
and then examine how fast our estimates converge to the
gold standard with different qualities of initial histograms.
The main design goal of the estimation method is to save
as many candidate comparisons as possible. Hence, we are
mostly interested in the number of iterations of the outer
loop in Algorithm 1, since this loop enlarges the sample
and causes additional comparisons. Further, we observe the
variance and discuss the accuracy. Lastly, we measure the
number of iterations needed to achieve certain error bounds
and measure the runtime of our method.

5.1 Datasets

The CD dataset consists of 750,000 CD records from
FreeDB with a semi-automatic gold standard [14] created by
combining automatic labeling for easy-to-classify pairs and
manual labeling for hard pairs. Because of its many contrib-
utors, the dataset contains 55,323 duplicates clusters, which
are approximately power law distributed with cluster sizes
up to 50. We use it as the main dataset for our evaluation.

A much cleaner dataset is the Customer dataset con-
taining 1,039,776 person records including 89,782 artificially
polluted duplicate pairs. The dataset was generated by a
large industry partner to test (their) duplicate detection al-
gorithms and simulates the integration result of three rela-
tively clean, duplicate-free datasets with a small overlap.

On the other side of the spectrum is the Cora dataset with
only 182 clusters in 1878 bibliographic records and a max-
imum cluster size of 238 records. It is a real-world dataset
with a gold standard [4]. Due to the relatively huge clusters,
it tests the boundaries of our method.

5.2 Test setups

For each dataset we used the corresponding gold standard
to create a gold histogram. We use an oracle as the candi-
date comparison, which simulates a perfect similarity mea-
sure by looking up the result in the gold standard. Note,
that we could have created other gold histograms with a
naive duplicate detection run with other candidate compar-
isons; the gold histogram would be generated with the result
of that particular run. With the oracle, however, we receive
the most realistic gold histogram. Further, through prelim-
inary experiments we discovered that e = 10 and minS =5
show a good trade-off between accuracy and efficiency.

We repeat the estimation 100 times for each dataset with
three different initial histograms and measure the estimated
cluster size distribution after each iteration. In each itera-
tion, we add VN records from the total N records to the
random sample. We choose the following three initial his-
tograms with a maximum cluster size m. Later, we use
focused sample to receive better initial histograms.
Uniform: Each record has the same probability to be in
a cluster of size k. Because the cluster of size k in 7—['72(0)

contains k records, we normalize by %: H%(O) = %%

600000 —
? Iteration 0 20 = 40 —+ 60 = 80
4000004 4
o
200000 g
3
2
600000 —
o2
3
@ 400000 -
S
o
%5 200000 - <
] g
> =
5 3
S
9]
Ne)
€
=]
Z r
600000 —
400000 -
5
<
[0}
200000 8
xe}
Q
E
o}
g2
T T T T T .I-
0 10 20 30 40 50
Cluster size

Figure 1: Convergence for 10 iterations on the CD
dataset with the three different initial histograms
(y-axis is square-scaled).

Power law: Half of the records are duphcate free, a quarter
is in pairs, an eights in triples and so on: HR(O)
This is a realistic distribution for most datasets.

Inverse power law: We mirror the power law: ’H%(O) =

i Qm% 2,2” . This is a highly unrealistic distribution, em-

ployed to test the robustness of our approach.

l
k 2k 2m—1'

5.3 Different initial histogram

First, we measure the convergence of the estimation on
the CD dataset in Figure 1 with the three different initial
vectors. Note that we use square scales on the y-axis to
better observe the relatively rare, larger cluster sizes. For
further improved readability, we plotted in this and follow-
ing figures only a few data points; the corresponding line is
generated from data points for each cluster size.

If we use the power law distribution (top), the estimate
converges quickly to the gold histogram within ten itera-
tions. Early iterations already result in good approxima-
tions, because the initial vector corresponds well to the gold
histogram.

Iteration 0——5 15 25 = 50 — gold

Power law Uniform Inverse power law
—kl=- — k- ——l=-
750000 -
o)
(]
>
©
'S 500000 -
9]
Ko}
£
=)
zZ
250000 - I I
—I—--}— —_——l= - —_— i -
T T T T T T
1 2 1 2 1 2
Cluster size

Figure 2: Standard deviation of the estimates for du-
plicates and non-duplicates in the Customer dataset.

The uniform distribution (middle) needs 12 iterations to
converge. After two iterations, we can already see a power
law distribution, which then quickly approaches the gold
histogram.

The estimation algorithm needs five iterations to change
the inverse power law (bottom) into a power law and a total
of 15 iterations to converge to the gold histogram. Neverthe-
less, we want to emphasize that the algorithm still converges
with a sample of only about 17,000 records (2.3%) to the
correct result despite the completely wrong initial estimate.

Altogether, we can see that the algorithm reliably con-
verges. The better the initial estimate, the faster the con-
vergence occurs. For the Cora and Customer dataset, we
observe similar convergence after 15 iterations. We also con-
ducted a sanity check and used the gold histogram as the
initial histogram and observed that the estimates do not di-
verge from the gold histogram.

5.4 Variance of sampling

In the next experiment, we examine how the estimates
vary throughout the 100 aggregated runs on the Customer
dataset. This dataset contains only two cluster sizes (namely
sizes 1 and 2), which allows a clear visualization of variances.

Figure 2 shows the standard deviation of the estimates at
a specific iteration for the non-duplicates and the duplicate
pairs and the three initial histograms. The average estimate
quickly converges to the gold histogram within 15 iterations.
From that point, the standard deviation decreases with ad-
ditional iterations and is only ~ 1% after 50 iterations.

5.5 Exactness of results

The first two experiments indicate that our algorithm it-
eratively fits the estimation to the gold histogram. We now
want to closely examine the estimates of the irregular his-
togram of the Cora dataset. The histogram exhibits a com-
parably flat power law-like shape with clear peaks between
cluster sizes 30 to 60 as well as peaks (individual clusters)
at 127, 148, and 238.

We see that after five iterations, the curve already ap-
proaches to the overall form of the distribution in Figure 3.

5]
o
1

5 =20

Iteration 0

(2}
o
1

N
o
1

Number of cluster (quadratic scale)
B
1
wJopun

T T
0 50 100 150 200
Cluster size

Figure 3: Convergence for 20 iterations on the Cora
dataset. (y-axis square-scaled to highlight larger
cluster sizes)

In successive iterations the estimate is further refined un-
til also the individual peaks at cluster sizes 127, 148, and
238 are approximated. Please note that the y-axis is again
square-scaled, so that we can examine the low frequencies of
1-5 appropriately.

Obviously, our algorithm fails to exactly determine the
cluster sizes even after 20 iterations on this dataset. Nev-
ertheless, for most use cases, the estimate after five itera-
tions may be enough: The power-law distribution is esti-
mated well enough and there is at least one cluster with a
size over 100, which may either indicate poor data quality
or an ineffective duplicate detection configuration. Further,
according to our experience, larger real-world datasets are
distributed more evenly, so that the hard-to-estimate peaks
are less probable.

5.6 Number of iterations

Depending on the use case, the number of iterations for
an estimation may vary. In this experiment, we determine
a good number of iterations to meet different error bounds.

We use two measures to assess the difference between the
current estimation and the gold histogram. The root mean
square error (RMSE) calculates the normalized squared er-
ror between the estimate of each cluster size and the actual
value. Because of the power law distributions, this measures
heavily favors smaller, more frequent cluster sizes.

rmse(Hg, Hr) = [> (M — Hi)? (18)

k3

The earth mover’s distance (EMD) calculates the number
of records that is needed to transform one histogram to an-
other by moving records to adjacent fields. Intuitively, the
distance does not penalize slight misestimations as strongly
as the RMSE. For example, if a cluster of size 237 is esti-
mated instead of 238, the distance is at most 2 - 237, while
RMSE would quadratically penalize both the present cluster
at size 237 and the missing cluster at 238. We define both
measures over a gold histogram Hg and the current Hg.

Initial histogram

y]

600000 Power law 3

—4— Uniform g

400000 — -=- Inverse power law |5

[72]

2

L

200000 +)

@

5 g
2 0

L

m

30000000 %

=

3

[*]

20000000 5

o

=3

10000000 - @

[

>

[+]

(v}

01 - .
T T T T T
0 25 50 75 100

Iteration

Figure 4: Root mean square error and earth mover’s
distance for up to 100 iterations on the CD dataset.

emd(Hg, Hr) = Z emd;(Hg, Hr) (19)

0 ifi=0
emdi(Hg, Hr) = Qi (Hg — HR)
+emdi—1(Hg, Hr) else

Figure 4 shows the mean errors for up to 100 iterations
on the CD dataset. The root mean square error steadily ap-
proaches zero after an initial phase that adjusts the general
form of the distribution. For a good initial estimate, the
error immediately decreases, while the estimate needs up to
ten iterations to correct worse initial estimate.

Similarly, the earth mover’s distance reflects the correc-
tion of the general form for the inverse power law distribu-
tion. For the uniform distribution the distance decreases
earlier, because the shifting of the elements towards smaller
clusters immediately begins. The power law distribution ex-
hibits a low EMD from the start, since only few records need
to be adjusted.

If users are not confident in their initial estimate, ten it-
erations are needed to guarantee a good fit of the distribu-
tion — as seen in the EMD plots. The RMSE reveals that
fine-grained estimates need up to 50 iterations on the CD
dataset. For better initial estimates (e.g., uniform distribu-
tion), the general form is found already after five iterations.
Fine-grained estimates, however, need almost the same num-
ber of iterations for good and poor initial histograms.

The RMSE and EMD curves of the difficult Cora dataset
in Figure 5 show a step decrease of error similar to the EMD
curve of the CD dataset. For this dataset, the uniform distri-
bution shows the smallest error and converges fastest. The
power law surprisingly exhibits the greatest RMSE, because
the number of non-duplicates is heavily overestimated (900
assumed but only 64 present). Nevertheless, the power law
still represents the general form well, so that it approaches
the error of the uniform distribution within three iterations.
The algorithm corrects the general form of the inverse power
law distribution in the seventh iteration, but keeps peaks for

Initial histogram
600 - Power law ?
—4— Uniform g
400 - —=- Inverse power law |5
38
[
=
200 - :
* \ @
- A\\ el §
e
W 300000 - m
L
5
200000 - 3
3
%
100000 %
Qo
>
o
1 (v}
0 -
T T T T T
0 10 20 30 40
Iteration

Figure 5: Root mean square error and earth mover’s
distance for 100 iterations on the Cora dataset.

the large clusters and thus achieves even smaller errors than
the uniform distribution.

For the Customer dataset, only two kinds of errors are pos-
sible and, thus, both RMSE and EMD are much smoother
and start to decrease to zero at the first iteration. Both
curves (not shown) exhibit the same characteristics, because
of the close relation of EMD and RMSE in this case.

5.7 Execution time

In the last experiment, we measure the runtime of the
estimation. As before, we simulate the candidate compar-
ison with a hash lookup in the gold standard. Hence, we
measure the overhead of our random walk without perform-
ing any actual candidate comparisons. Further, we measure
the reduction ratio [1] that is defined as the ratio of saved
comparisons during estimation and the total number of all
pairs:

(2)

_q_nn=1)
™) N(N 1)

2

reduction ratio =1 — (20)

The single-threaded experiment ran on an i5 desktop PC
with 16 GB RAM and Java 1.7. The times do not include
the initial data loading phase, where all data is loaded and
held in-memory. For all configurations, the runtime of the
random walk with fewer than two seconds is negligible even
for high number of iterations. Table 2 lists the runtime in
milliseconds and the reduction ratio for the three datasets.

In general and as expected, the runtime increases with the
maximum cluster size and the number of records. For the
CD dataset, the three slowest parts of the algorithm took
90% of the runtime, where 40% of the time is spent on the
random sampling and calculation of Hg, 10% on the calcu-
lation of Ts, and 40% on the Power iterations (inner loop
of Algorithm 1). For later iterations, the calculation of Hg
and Ts take relatively more time, because the sample be-
comes larger. In contrast, the number of Power iterations
linearly decreases from 100 to 25. Nevertheless, the over-
all time per iteration increases linearly. Hence, performing
rough estimations on small samples is relatively cheap.

Dataset Number of Runtime Reduction
iterations (in ms) ratio

CD 10 83 99.987%
25 190 99.917%

50 396 99.667%

100 1045 98.667%

Customer 10 27 99.990%
25 53 99.940%

50 152 99.760%

100 632 99.040%

Cora 10 797 94.767%
20 1104 79.043%

30 1666 52.828%

Table 2: Runtime and relative number of compar-
isons for a given number of iterations per dataset.

The reduction of comparisons for the two larger datasets
is enormous and solely depends on the number of iterations.
As shown in the last section, coarse-grained estimation re-
quires fewer than ten iterations and needs to perform only
every 10,000th comparison. Of course, candidate selection
techniques also save comparisons significantly, but as we
show in Section 6, we can combine both techniques to fur-
ther improve the efficiency and accuracy.

Finally, the performance can be easily improved. For the

Cora dataset, the calculation of Ts dominates the overall
time, but can be sped up with precalculated tables. For a
product, Hs should be incrementally calculated. Nonethe-
less, the potential of our method already becomes apparent:
If one assumes that one comparison takes 20 microseconds
(measured in previous experiments [14]), a full naive run
needs half a year and a single-pass SNM with w = 100
1 hour, while a rough estimate in ten iterations take only
45 seconds, and a fine-grained estimate with near-perfect
results in 50 iterations takes less than 4 minutes.
Focused sampling. For the CD dataset, focused sampling
took 10 seconds and sped up the convergence between one
iteration for power law and five iterations for the inverse
power law distribution. Saving one iteration reduces the
estimation by 9 seconds. Therefore, focused sampling amor-
tizes for fine-grained estimation with a higher number of
iterations or more expensive candidate comparisons. Fur-
ther, it quickly pays off for repeated estimation with differ-
ent duplicate detection settings, since the focused sampling
is performed only once and could be run in the background.

6. CANDIDATE SELECTION, MULTIPLE
PASSES, AND CLUSTERING

The random walk algorithm performs naive duplicate de-
tection over the Cartesian product of the sample. If the
actual duplicate detection run encompasses candidate selec-
tion techniques, we can see two effects. First, some dupli-
cate pairs are not found and therefore cluster sizes become
smaller and the number of clusters increases (potentially as
non-duplicate clusters with single elements). Second, the
runtime of the duplicate detection run decreases. Therefore,
our estimate technique must also be more efficient.

Both effects can be used to improve the algorithm. The
obvious solution is to calculate the sample histogram using
the same candidate selection techniques, so that the estima-

tions become more accurate for the configuration and faster
at the same time. However, small adjustments to some can-
didate selection techniques are necessary. Further, to avoid
pruning too many duplicate pairs with the candidate selec-
tion techniques, usually multiple passes are run. We discuss
the most common candidate selection techniques as follows.

(Overlapping) blocking [11] groups records by some
blocking key and naively compares the records within the
groups. Duplicates can be found only within these groups.
Therefore, the estimation for blocking uses the same block-
ing keys and analogously looks for the duplicates within the
blocks. Index structures speed up the insertion of new sam-
ple records over iterations.

Sorted neighborhood method (SNM) [7] sorts the
records and compares the records only within a certain win-
dow size. The estimation for SNM uses sort-merge to ex-
tend the sample using the same sorting keys. The window
size w should be linearly adjusted to the sample rate with
w = max(2, [wf]), so that a comparable amount of neigh-
bors are selected.

Multiple passes should be analogously applied to the
sample as well. The estimation algorithm maintains multi-
ple index structures or sorted lists. Further, duplicate com-
parisons can be avoided with a cache data structure.

Results from SNM or multiple passes need to be post-
processed with a clustering algorithm to produce transitively
closed, sane results. Our estimation implicitly assumes the
transitive closure to be performed to cluster the results be-
cause of the random sample model.

Advanced clustering algorithms, such as CENTER [6]
and MERGE-CENTER [5], split large, inhomogeneous clus-
ters into smaller homogeneous clusters. Hierarchical algo-
rithms may produce much smaller clusters on a sample if
root records are missing in the sample. Coherent cluster-
ing algorithms may create relative large clusters on a sam-
ple, because coherence conditions depending on the size of
clusters are more likely to be met in a sample. A proper
adjustment of these clustering algorithm for our duplicity
estimation problem is interesting future work.

7. RELATED WORK

While — to the best of our knowledge — our problem is
new, similar problems have been addressed in related work.

7.1 Estimating transitive closure sizes

Our problem is related to estimating the transitive clo-
sure of graph data [3,10]. In contrast to our problem, the
(directed) edges between nodes are explicitly given.

Lipton and Naughton estimate the size of a generalized
transitive closure with a basic urn model similar to our
sampling model [10]. Their algorithm estimates the total
number of resulting edges in near-linear time with linearly
decreasing error. Similarly to our approach, the algorithm
adaptively samples more records to improve the estimate un-
til a given time limit is met. However, for our use cases the
estimate of edges(=duplicate pairs) is too coarse-grained.

Cohen proposes a more stable, linear algorithm to esti-
mate the total numbers of edges [3]. The Monte Carlo al-
gorithm requires reversible edges, but can also be extended
to estimate the individual neighborhoods of specific nodes,
which can be used to estimate a histogram as we do.

However, both algorithms require the edges to be present,
which would correspond to a full duplicate detection run in

our case. While the lookup for one edge is negligible in their
settings, it is an expensive candidate comparison in our case.
Therefore, these techniques are not applicable as we actively
try to reduce the number of candidate comparisons.

Similarity join and group-by

Duplicate detection can be viewed as a generalized similarity
join if duplicate pairs are of main interest or a generalized
similarity group-by if the result should be clustered.

Silva et al. define a similarity group-by operator for data-
bases and sketch a small change to the cardinality estimation
of a relational group-by operator to correctly estimate the
number of groups in a similarity group-by [13]. However, the
technique is not applicable to duplicate detection that uses
several attributes, because a lower bound for one specific
attribute often leads to low thresholds and a high overhead,
while multi-attribute similarity statistics are too costly to
be built and maintained.

Lee et al. use locality sensitive hashing to estimate the
result size of a similarity join with cosine similarity [9]. The
approach would be directly applicable to our problem if the
candidate comparison consists only of one cosine similarity
and threshold. However, we want to treat the candidate
comparison as a black box to support a large range of du-
plicate detection algorithms and configurations.

Other duplicate detection techniques

Candidate selection techniques reduce the runtime and de-
liver near-complete results [7,11]. Our estimation may in-
corporate these techniques as shown in Section 6 and thus
run more accurately and efficiently.

One goal of this paper is to provide users of duplicate
detection systems a feedback of their parameter settings to
help improve them. Our system can be easily combined with
other interactive systems to improve the user experience.
Active learning incrementally tweaks a learned candidate
comparison function to increase the quality [12]. Chaud-
huri et al. propose an example-driven automatic assembly
of a candidate selection query [2]. Both systems may be
extended with our method to show users the global impli-
cations of changed settings. Further, with our focused sam-
pling method, we can early return potentially large clusters
that may indicate suboptimal settings.

8. CONCLUSION

In this paper, we defined and solved the problem of duplic-
ity estimation, which estimates the cluster size distribution
of a complete duplicate detection run while performing only
a fraction of the candidate comparisons.

First, we developed a general sampling model that calcu-
lates the expected histogram given the histogram of a com-
plete dataset and a sample size. Second, we devised a ran-
dom walk approach that reliably and efficiently estimates
the original histogram from an increasing sample. Because
the original histogram is the principal eigenvector of our
transition matrix, our algorithm is guaranteed to converge.
Third, we proposed a focused sampling approach that finds
a good initial histogram, so that the random walk algorithm
converges faster.

We extensively evaluated our approach and could verify
the convergence even with poor initial estimates. Better
initial estimates indeed lead to faster convergence. The run-
time of our approach is very low and the comparison reduc-

tion is significant. Further, we discussed how established
candidate selection techniques can be incorporated to fur-
ther increase the efficiency.

In future research, we plan to combine our method with
more sophisticated clustering algorithms, so that the qual-
ity of the estimates in these settings is comparable to the
evaluated settings.

9. REFERENCES

[1] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive
Blocking: Learning to Scale Up Record Linkage. In
Proceedings of the International Conference on Data
Mining series (ICDM), pages 87-96, 2006.

[2] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching
queries. In Proceedings of the International Conference
on Very Large Databases (VLDB), pages 327-338,
2007.

[3] E. Cohen. Size-estimation framework with applications
to transitive closure and reachability. Journal of
Computer and System Sciences, 55(3):441-453, 1997.

[4] U. Draisbach and F. Naumann. DuDe: The Duplicate
Detection Toolkit. In Proceedings of the International
Workshop on Quality in Databases (QDB), 2010.

[5] O. Hassanzadeh and R. J. Miller. Creating
probabilistic databases from duplicated data. VLDB
Journal, 18(5):1141-1166, 2009.

[6] T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable
techniques for clustering the web. In Proceedings of the
ACM SIGMOD Workshop on the Web and Databases
(WebDB), pages 129-134, 2000.

[7] M. A. Herndndez and S. J. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
ACM International Conference on Management of
Data (SIGMOD), pages 127-138, 1995.

[8] A. N. Langville and C. D. Meyer. Survey: Deeper
Inside PageRank. Internet Mathematics, 1(3):335-380,
2003.

[9] H. Lee, R. T. Ng, and K. Shim. Similarity join size
estimation using locality sensitive hashing. Proceedings
of the VLDB Endowment, 4(6):338-349, 2011.

[10] R. J. Lipton and J. F. Naughton. Estimating the size
of generalized transitive closures. In Proceedings of the
International Conference on Very Large Databases
(VLDB), pages 165-171, 1989.

[11] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In KDD, pages
169-178, 2000.

[12] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In Proceedings of
the ACM International Conference on Knowledge
discovery and data mining (SIGKDD), pages 269-278,
2002.

[13] Y. N. Silva, W. G. Aref, and M. H. Ali. Similarity
Group-By. In Proceedings of the International
Conference on Data Engineering (ICDE), pages
904-915, 2009.

[14] T. Vogel, A. Heise, U. Draisbach, D. Lange, and
F. Naumann. Reach for gold: An annealing standard
to evaluate duplicate detection results. Journal of
Data and Information Quality, 5(1-2), 2014.

